metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(N-benzyl-N-methyl­di­thio­carbamato-κ2S,S′)(pyridine-κN)cadmium(II)

aCenter of Research Excellence in Nanotechnology (CENT), King Fahd University of Petrolium & Minerals, Dhahran 31261, Saudia Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by J. Simpson, University of Otago, New Zealand (Received 16 December 2015; accepted 17 December 2015; online 12 January 2016)

The title compound, [Cd(C9H10NS2)2(C5H5N)], features a five-coordinate CdII atom, being coordinated by two nearly symmetrically chelating di­thio­carbamate ligands and a pyridine N atom. The resulting NS4 donor set defines a distorted coordination geometry tending toward square pyramidal. In the mol­ecular packing, centrosymmetric ten-membered {⋯HCNCS}2 synthons arise as a result of methyl­ene-C—H⋯S inter­actions. These are connected into layers parallel to (10-2) via weak methyl-C—H⋯π(phen­yl) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Binary cadmium di­thio­carbamates self-assemble via secondary Cd⋯S inter­actions in their crystal structures (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]) but, the addition of base can disrupt these arrangements. A practical application of this is that the compounds become more suitable as synthetic precursors for the generation of CdS nanoparticles (Ehsan et al., 2012[Ehsan, M. A., Ming, H. N., Misran, M., Arifin, Z., Tiekink, E. R. T., Safwan, A. P., Ebadi, M., Basirun, W. J. & Mazhar, M. (2012). Chem. Vapor Dep. 18, 191-200.]; Tan et al. 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Mlowe et al., 2014[Mlowe, S., Lewis, D. J., Azad Malik, M., Raftery, J., Mubofu, E. B., O'Brien, P. & Revaprasadu, N. (2014). New J. Chem. 38, 6073-6080.]). It was in this connection that the title compound was synthesized.

The cadmium atom in Cd[S2CNMe(CH2Ph)]2(NC5H5), Fig. 1[link], is chelated by two almost symmetrically chelating di­thio­carbamate ligands and the pyridine-N atom. The near equivalence in the Cd—S bond lengths [i.e. Cd—S1–S4 = 2.5868 (5), 2.6421 (5), 2.5908 (4) and 2.6473 (5) Å, respectively] is reflected in the experimental equivalence in the associated C—S bond lengths that span the narrow range 1.7191 (17) −1.7284 (16) Å. The dihedral angle between the chelate rings is 43.36 (3)°, and the dihedral angles formed between the S1- and S3-chelate rings and the least-squares plane through the pyridine ring are 75.55 (6) and 75.99 (6)°, indicating that the pyridine mol­ecule is symmetrically disposed with respect to each chelate ring. An indicator of coordination geometry in five-coordinate structures is the value of τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the present structure τ computes to 0.41 which is nearer to an ideal square pyramidal geometry (τ = 0) than to an ideal trigonal bipyramidal geometry with τ = 1.0. The presence acute ligand bite angles [i.e. S1—Cd—S2 is 69.295 (13)° and S3—Cd—S4 is 69.094 (13)°] is partially responsible for the observed distortion. The gross structural features just described, match literature precedents (Wei et al. 2005[Wei, F.-X., Yin, X., Zhang, W.-G., Fan, J., Jiang, X.-H. & Wang, S.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 417-419.]; Ehsan et al., 2012[Ehsan, M. A., Ming, H. N., Misran, M., Arifin, Z., Tiekink, E. R. T., Safwan, A. P., Ebadi, M., Basirun, W. J. & Mazhar, M. (2012). Chem. Vapor Dep. 18, 191-200.]; Mlowe et al., 2014[Mlowe, S., Lewis, D. J., Azad Malik, M., Raftery, J., Mubofu, E. B., O'Brien, P. & Revaprasadu, N. (2014). New J. Chem. 38, 6073-6080.]).

[Figure 1]
Figure 1
The mol­ecular structure of Cd[S2CNMe(CH2Ph)]2(NC5H5) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The most prominent feature of the mol­ecular packing is the formation of supra­molecular layers parallel to (10[\overline{2}]), Fig. 2[link]. Thus, centrosymmetrically related mol­ecules are connected via methyl­ene-C—H⋯S inter­actions (Table 1[link]) resulting in ten-membered {⋯HCNCS}2 synthons. The dimers are connected into a two-dimensional array via methyl-C—H⋯π(phen­yl) inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S2i 0.99 2.79 3.5926 (17) 138
C11—H11CCg1ii 0.98 2.91 3.3715 (18) 110
Symmetry codes: (i) -x, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the supra­molecular layer parallel to (10[\overline{2}]) in the crystal structure of the title compound. The layers are sustained by C—H⋯S and C—H⋯π inter­actions, shown as orange and purple dashed lines, respectively.

Synthesis and crystallization

Sodium N-benzyl, N-methyl­dithio­carbamate (2.00 g, 9.13 mmol) was dissolved in acetone (25 mL) and placed in a 250 mL round-bottom flask fitted with a dropping funnel, reflux condenser and an inert gas line. Cd(NO3)2·3H2O (1.32 g, 4.54 mmol) was added, and the milky-white solution was stirred for 30 min. At this point, pyridine (30 mL) was added to give a clear and colourless solution, and stirring was continued for a further 1 h. Filtration and slow evaporation of the reaction mixture afforded the title compound, Cd[S2CNMe(CH2Ph)]2(NC5H5), as colourless crystals. Yield 87%, M.p. 135°C. Anal. calc. for C23H25CdN3S4 (MW 584.10): C 47.25, H 4.28, N 7.19, S 21.91; found C 46.54, H 5.25, N 7.74, S 23.31%. 1H NMR (400 MHz, CDCl3): δ = 3.40 [s, 6H, 2(CH3)], 5.19 [s, 4H, 2(CH2)], 7.25–7.37 p.p.m. [complex pattern, 10H, aromatic 2(C6H5)], 7.48–9.03 [complex pattern, 5H, C5H5N]. TGA: 84–138°C (5.2% wt. loss); 138–156°C (2.9%); 146–210°C (5.5%); 210–260°C (1.1%); 260–400°C (59.1%) 26.2% residue. calc. for CdS, 24.7%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C9H10NS2)2(C5H5N)]
Mr 584.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.9361 (6), 14.832 (1), 18.9680 (13)
β (°) 101.613 (1)
V3) 2462.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.24
Crystal size (mm) 0.40 × 0.40 × 0.40
 
Data collection
Diffractometer Bruker SMART APEX diffractometer
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.636, 0.636
No. of measured, independent and observed [I > 2σ(I)] reflections 30058, 5650, 5201
Rint 0.026
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.04
No. of reflections 5650
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.31
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

Sodium N-benzyl, N-methyl­dithio­carbamate (2.00 g, 9.13 mmol) was dissolved in acetone (25 mL) and placed in a 250 mL round bottom flask fitted with a dropping funnel, reflux condenser and an inert gas line. Cd(NO3)2·3H2O (1.32 g, 4.54 mmol) was added, and the milky white solution was stirred for 30 min. At this point, pyridine (30 mL) was added to give a clear and colourless solution, and stirring was continued for a further 1 h. Filtration and slow evaporation of the reaction mixture afforded the title compound, Cd[S2CNMe(CH2Ph)]2(NC5H5), as colourless crystals. Yield 87%, M.pt: 135 °C. Anal. Calc. for C23H25CdN3S4 (MW 584.10): C 47.25, H 4.28, N 7.19, S 21.91; Found C 46.54, H 5.25, N 7.74, S 23.31 %. 1H NMR (400 MHz, CDCl3): δ = 3.40 [s, 6H, 2(CH3)], 5.19 [s, 4H, 2(CH2)], 7.25–7.37 ppm [complex pattern, 10H, aromatic 2(C6H5)], 7.48-9.03 [complex pattern, 5H, C5H5N]. TGA: 84–138°C (5.2% wt. loss); 138–156°C (2.9%); 146–210°C (5.5%); 210–260°C (1.1%); 260–400°C (59.1%) 26.2% residue. Calc. for CdS, 24.7%.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Experimental top

Sodium N-benzyl, N-methyldithiocarbamate (2.00 g, 9.13 mmol) was dissolved in acetone (25 mL) and placed in a 250 mL round-bottom flask fitted with a dropping funnel, reflux condenser and an inert gas line. Cd(NO3)2·3H2O (1.32 g, 4.54 mmol) was added, and the milky white solution was stirred for 30 min. At this point, pyridine (30 mL) was added to give a clear and colourless solution, and stirring was continued for a further 1 h. Filtration and slow evaporation of the reaction mixture afforded the title compound, Cd[S2CNMe(CH2Ph)]2(NC5H5), as colourless crystals. Yield 87%, M.p. 135°C. Anal. calc. for C23H25CdN3S4 (MW 584.10): C 47.25, H 4.28, N 7.19, S 21.91; found C 46.54, H 5.25, N 7.74, S 23.31 %. 1H NMR (400 MHz, CDCl3): δ = 3.40 [s, 6H, 2(CH3)], 5.19 [s, 4H, 2(CH2)], 7.25–7.37 p.p.m. [complex pattern, 10H, aromatic 2(C6H5)], 7.48–9.03 [complex pattern, 5H, C5H5N]. TGA: 84–138°C (5.2% wt. loss); 138–156°C (2.9%); 146–210°C (5.5%); 210–260°C (1.1%); 260–400°C (59.1%) 26.2% residue. calc. for CdS, 24.7%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Binary cadmium dithiocarbamates self-assemble via secondary Cd···S interactions in their crystal structures (Tiekink, 2003) but, the addition of base can disrupt these networks. A practical application of this is that the compounds become more suitable as synthetic precursors for the generation of CdS nanoparticles (Ehsan et al., 2012; Tan et al. 2013; Mlowe et al., 2014). It was in this connection that the title compound was synthesized.

The cadmium atom in Cd[S2CNMe(CH2Ph)]2(NC5H5), Fig. 1, is chelated by two almost symmetrically chelating dithiocarbamate ligands and the pyridine-N atom. The near equivalence in the Cd—S bond lengths [i.e. Cd—S1–S4 = 2.5868 (5), 2.6421 (5), 2.5908 (4) and 2.6473 (5) Å, respectively] is reflected in the experimental equivalence in the associated C—S bond lengths that span the narrow range 1.7191 (17) –1.7284 (16) Å. The dihedral angle between the chelate rings is 43.36 (3)°, and the dihedral angles formed between the S1- and S3-chelate rings and the least-squares plane through the pyridine ring are 75.55 (6) and 75.99 (6)°, indicating that the pyridine molecule is symmetrically disposed with respect to each chelate ring. An indicator of coordination geometry in five-coordinate structures is the value of τ (Addison et al., 1984). In the present structure τ computes to 0.41 which is nearer to an ideal square pyramidal geometry (τ = 0) than to an ideal trigonal bipyramidal geometry with τ = 1.0. The presence acute ligand bite angles [i.e. S1—Cd—S2 is 69.295 (13)° and S3—Cd—S4 is 69.094 (13)°] is partially responsible for the observed distortion. The gross structural features just described, match literature precedents (Wei et al. 2005; Ehsan et al., 2012; Mlowe et al., 2014).

The most prominent feature of the molecular packing is the formation of supramolecular layers parallel to (102), Fig. 2. Thus, centrosymmetrically related molecules are connected via methylene-C—H···S interactions (Table 1) resulting in 10-membered {···HCNCS}2 synthons. The dimers are connected into a two-dimensional array via methyl-C—H···π(phenyl) interactions.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of Cd[S2CNMe(CH2Ph)]2(NC5H5) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (102) in the crystal structure of the title compound. The layers are sustained by C—H···S and C—H···π interactions, shown as orange and purple dashed lines, respectively.
Bis(N-benzyl-N-methyldithiocarbamato-κ2S,S')(pyridine-κN)cadmium(II) top
Crystal data top
[Cd(C9H10NS2)2(C5H5N)]F(000) = 1184
Mr = 584.10Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9361 (6) ÅCell parameters from 9940 reflections
b = 14.832 (1) Åθ = 4.7–56.6°
c = 18.9680 (13) ŵ = 1.24 mm1
β = 101.613 (1)°T = 100 K
V = 2462.6 (3) Å3Block, yellow
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART APEX
diffractometer
5650 independent reflections
Radiation source: fine-focus sealed tube5201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.636, Tmax = 0.636k = 1919
30058 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.412P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5650 reflectionsΔρmax = 0.41 e Å3
282 parametersΔρmin = 0.31 e Å3
Crystal data top
[Cd(C9H10NS2)2(C5H5N)]V = 2462.6 (3) Å3
Mr = 584.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9361 (6) ŵ = 1.24 mm1
b = 14.832 (1) ÅT = 100 K
c = 18.9680 (13) Å0.40 × 0.40 × 0.40 mm
β = 101.613 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5201 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.636Rint = 0.026
30058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
5650 reflectionsΔρmin = 0.31 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.22879 (2)0.27114 (2)0.48001 (2)0.01746 (4)
S10.11972 (5)0.22882 (3)0.34732 (2)0.01997 (9)
S20.11154 (5)0.10701 (3)0.47097 (2)0.02111 (9)
S30.12935 (5)0.33548 (3)0.58899 (2)0.01989 (9)
S40.25719 (4)0.44878 (3)0.48621 (2)0.01675 (8)
N10.01535 (16)0.06902 (9)0.33438 (7)0.0186 (3)
N20.14132 (15)0.51358 (9)0.59553 (7)0.0156 (3)
N30.48097 (16)0.23716 (9)0.51799 (8)0.0183 (3)
C10.06310 (17)0.12864 (11)0.38019 (9)0.0166 (3)
C20.0497 (2)0.08587 (13)0.25657 (9)0.0251 (4)
H2A0.12290.13560.24580.038*
H2B0.09380.03140.23130.038*
H2C0.04450.10180.24060.038*
C30.07418 (19)0.01537 (11)0.35810 (9)0.0213 (3)
H3A0.03050.02430.40990.026*
H3B0.03980.06610.33140.026*
C40.24685 (19)0.01729 (11)0.34673 (8)0.0192 (3)
C50.3330 (2)0.06057 (12)0.34563 (9)0.0222 (3)
H50.28310.11740.35230.027*
C60.4916 (2)0.05665 (13)0.33482 (10)0.0269 (4)
H60.54950.11060.33350.032*
C70.5647 (2)0.02603 (15)0.32604 (10)0.0301 (4)
H70.67300.02900.31860.036*
C80.4798 (2)0.10468 (13)0.32808 (10)0.0281 (4)
H80.52980.16150.32250.034*
C90.3221 (2)0.10036 (12)0.33824 (9)0.0232 (4)
H90.26460.15440.33950.028*
C100.17278 (17)0.44101 (11)0.56036 (8)0.0151 (3)
C110.06478 (19)0.50691 (12)0.65699 (9)0.0208 (3)
H11A0.03900.48360.64060.031*
H11B0.05990.56670.67830.031*
H11C0.12240.46600.69310.031*
C120.18704 (19)0.60540 (11)0.57864 (9)0.0187 (3)
H12A0.10290.64810.58080.022*
H12B0.20700.60670.52920.022*
C130.32917 (18)0.63419 (11)0.63151 (9)0.0168 (3)
C140.47127 (19)0.59832 (11)0.62688 (9)0.0199 (3)
H140.47930.55740.58930.024*
C150.60061 (19)0.62210 (12)0.67682 (9)0.0221 (3)
H150.69680.59720.67340.026*
C160.5905 (2)0.68217 (12)0.73185 (9)0.0235 (4)
H160.67950.69830.76600.028*
C170.4501 (2)0.71837 (12)0.73662 (10)0.0241 (4)
H170.44270.75980.77400.029*
C180.3198 (2)0.69417 (11)0.68669 (9)0.0206 (3)
H180.22370.71890.69040.025*
C190.5383 (2)0.15745 (12)0.50318 (9)0.0223 (3)
H190.47100.11360.47760.027*
C200.6921 (2)0.13664 (13)0.52385 (10)0.0255 (4)
H200.72970.07990.51210.031*
C210.7892 (2)0.19962 (13)0.56167 (10)0.0255 (4)
H210.89520.18720.57610.031*
C220.7303 (2)0.28154 (12)0.57855 (10)0.0240 (4)
H220.79490.32550.60560.029*
C230.57606 (19)0.29799 (12)0.55539 (9)0.0211 (3)
H230.53600.35440.56640.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01342 (6)0.01678 (7)0.02104 (7)0.00078 (4)0.00073 (4)0.00360 (4)
S10.0214 (2)0.0189 (2)0.01913 (19)0.00597 (16)0.00304 (15)0.00025 (15)
S20.0254 (2)0.01795 (19)0.01831 (19)0.00568 (16)0.00052 (16)0.00007 (15)
S30.02097 (19)0.01831 (19)0.0215 (2)0.00438 (15)0.00700 (16)0.00030 (16)
S40.01800 (18)0.01699 (19)0.01633 (18)0.00039 (14)0.00602 (14)0.00006 (14)
N10.0186 (7)0.0169 (7)0.0195 (7)0.0030 (5)0.0019 (5)0.0024 (5)
N20.0136 (6)0.0177 (7)0.0157 (6)0.0006 (5)0.0035 (5)0.0013 (5)
N30.0158 (7)0.0186 (7)0.0201 (7)0.0001 (5)0.0024 (5)0.0002 (5)
C10.0129 (7)0.0167 (8)0.0203 (8)0.0011 (6)0.0036 (6)0.0021 (6)
C20.0276 (9)0.0283 (9)0.0188 (8)0.0064 (7)0.0033 (7)0.0054 (7)
C30.0225 (8)0.0141 (8)0.0253 (9)0.0027 (6)0.0000 (7)0.0022 (6)
C40.0229 (8)0.0193 (8)0.0145 (7)0.0036 (6)0.0017 (6)0.0003 (6)
C50.0255 (9)0.0206 (8)0.0206 (8)0.0025 (7)0.0047 (7)0.0014 (7)
C60.0276 (9)0.0312 (10)0.0230 (9)0.0029 (8)0.0081 (7)0.0012 (7)
C70.0228 (9)0.0444 (12)0.0239 (9)0.0064 (8)0.0063 (7)0.0046 (8)
C80.0310 (10)0.0298 (10)0.0229 (9)0.0140 (8)0.0038 (7)0.0033 (7)
C90.0294 (9)0.0193 (8)0.0197 (8)0.0039 (7)0.0021 (7)0.0015 (7)
C100.0101 (7)0.0186 (8)0.0153 (7)0.0003 (6)0.0002 (5)0.0006 (6)
C110.0196 (8)0.0266 (9)0.0175 (8)0.0003 (7)0.0070 (6)0.0047 (7)
C120.0197 (8)0.0162 (8)0.0197 (8)0.0026 (6)0.0024 (6)0.0005 (6)
C130.0192 (8)0.0134 (7)0.0180 (7)0.0003 (6)0.0046 (6)0.0022 (6)
C140.0215 (8)0.0182 (8)0.0214 (8)0.0018 (6)0.0076 (6)0.0013 (6)
C150.0176 (8)0.0242 (9)0.0255 (9)0.0019 (7)0.0070 (7)0.0022 (7)
C160.0231 (8)0.0259 (9)0.0213 (8)0.0089 (7)0.0038 (7)0.0002 (7)
C170.0308 (9)0.0206 (8)0.0219 (8)0.0052 (7)0.0079 (7)0.0058 (7)
C180.0222 (8)0.0164 (8)0.0243 (8)0.0010 (6)0.0075 (7)0.0009 (7)
C190.0214 (8)0.0219 (9)0.0240 (8)0.0012 (7)0.0053 (7)0.0027 (7)
C200.0243 (9)0.0246 (9)0.0293 (9)0.0081 (7)0.0096 (7)0.0019 (7)
C210.0155 (8)0.0308 (9)0.0304 (10)0.0036 (7)0.0054 (7)0.0094 (8)
C220.0174 (8)0.0233 (9)0.0294 (9)0.0040 (7)0.0000 (7)0.0042 (7)
C230.0183 (8)0.0186 (8)0.0254 (9)0.0004 (6)0.0023 (7)0.0008 (7)
Geometric parameters (Å, º) top
Cd—N32.2799 (14)C7—H70.9500
Cd—S12.5868 (5)C8—C91.384 (3)
Cd—S32.5908 (4)C8—H80.9500
Cd—S22.6421 (5)C9—H90.9500
Cd—S42.6473 (5)C11—H11A0.9800
S1—C11.7262 (17)C11—H11B0.9800
S2—C11.7191 (17)C11—H11C0.9800
S3—C101.7264 (17)C12—C131.513 (2)
S4—C101.7284 (16)C12—H12A0.9900
N1—C11.335 (2)C12—H12B0.9900
N1—C31.463 (2)C13—C181.389 (2)
N1—C21.467 (2)C13—C141.396 (2)
N2—C101.326 (2)C14—C151.385 (2)
N2—C111.469 (2)C14—H140.9500
N2—C121.475 (2)C15—C161.389 (2)
N3—C231.340 (2)C15—H150.9500
N3—C191.340 (2)C16—C171.384 (3)
C2—H2A0.9800C16—H160.9500
C2—H2B0.9800C17—C181.392 (2)
C2—H2C0.9800C17—H170.9500
C3—C41.515 (2)C18—H180.9500
C3—H3A0.9900C19—C201.386 (2)
C3—H3B0.9900C19—H190.9500
C4—C51.386 (2)C20—C211.375 (3)
C4—C91.397 (2)C20—H200.9500
C5—C61.392 (3)C21—C221.387 (3)
C5—H50.9500C21—H210.9500
C6—C71.384 (3)C22—C231.381 (2)
C6—H60.9500C22—H220.9500
C7—C81.388 (3)C23—H230.9500
N3—Cd—S1114.12 (4)C7—C8—H8120.0
N3—Cd—S3107.77 (4)C8—C9—C4120.63 (17)
S1—Cd—S3137.998 (15)C8—C9—H9119.7
N3—Cd—S299.83 (4)C4—C9—H9119.7
S1—Cd—S269.295 (13)N2—C10—S3119.60 (12)
S3—Cd—S2101.303 (14)N2—C10—S4121.79 (12)
N3—Cd—S497.24 (4)S3—C10—S4118.61 (9)
S1—Cd—S4107.379 (13)N2—C11—H11A109.5
S3—Cd—S469.094 (13)N2—C11—H11B109.5
S2—Cd—S4162.384 (14)H11A—C11—H11B109.5
C1—S1—Cd86.44 (6)N2—C11—H11C109.5
C1—S2—Cd84.82 (6)H11A—C11—H11C109.5
C10—S3—Cd87.02 (5)H11B—C11—H11C109.5
C10—S4—Cd85.19 (6)N2—C12—C13110.41 (13)
C1—N1—C3122.72 (14)N2—C12—H12A109.6
C1—N1—C2121.19 (14)C13—C12—H12A109.6
C3—N1—C2116.08 (13)N2—C12—H12B109.6
C10—N2—C11121.63 (14)C13—C12—H12B109.6
C10—N2—C12122.96 (13)H12A—C12—H12B108.1
C11—N2—C12115.34 (13)C18—C13—C14119.01 (15)
C23—N3—C19118.46 (15)C18—C13—C12120.71 (15)
C23—N3—Cd119.97 (11)C14—C13—C12120.24 (15)
C19—N3—Cd121.57 (11)C15—C14—C13120.30 (16)
N1—C1—S2121.43 (12)C15—C14—H14119.8
N1—C1—S1119.26 (12)C13—C14—H14119.8
S2—C1—S1119.30 (9)C14—C15—C16120.40 (16)
N1—C2—H2A109.5C14—C15—H15119.8
N1—C2—H2B109.5C16—C15—H15119.8
H2A—C2—H2B109.5C17—C16—C15119.65 (16)
N1—C2—H2C109.5C17—C16—H16120.2
H2A—C2—H2C109.5C15—C16—H16120.2
H2B—C2—H2C109.5C16—C17—C18120.03 (16)
N1—C3—C4113.03 (14)C16—C17—H17120.0
N1—C3—H3A109.0C18—C17—H17120.0
C4—C3—H3A109.0C13—C18—C17120.60 (16)
N1—C3—H3B109.0C13—C18—H18119.7
C4—C3—H3B109.0C17—C18—H18119.7
H3A—C3—H3B107.8N3—C19—C20122.40 (16)
C5—C4—C9118.70 (16)N3—C19—H19118.8
C5—C4—C3122.22 (15)C20—C19—H19118.8
C9—C4—C3119.08 (15)C21—C20—C19118.82 (17)
C4—C5—C6120.89 (16)C21—C20—H20120.6
C4—C5—H5119.6C19—C20—H20120.6
C6—C5—H5119.6C20—C21—C22119.14 (16)
C7—C6—C5119.79 (18)C20—C21—H21120.4
C7—C6—H6120.1C22—C21—H21120.4
C5—C6—H6120.1C23—C22—C21118.80 (17)
C6—C7—C8119.95 (18)C23—C22—H22120.6
C6—C7—H7120.0C21—C22—H22120.6
C8—C7—H7120.0N3—C23—C22122.35 (16)
C9—C8—C7120.04 (17)N3—C23—H23118.8
C9—C8—H8120.0C22—C23—H23118.8
C3—N1—C1—S24.2 (2)Cd—S3—C10—N2177.56 (12)
C2—N1—C1—S2176.90 (12)Cd—S3—C10—S42.63 (8)
C3—N1—C1—S1176.86 (12)Cd—S4—C10—N2177.61 (13)
C2—N1—C1—S12.0 (2)Cd—S4—C10—S32.58 (8)
Cd—S2—C1—N1177.38 (13)C10—N2—C12—C13100.13 (17)
Cd—S2—C1—S13.67 (9)C11—N2—C12—C1376.79 (17)
Cd—S1—C1—N1177.29 (13)N2—C12—C13—C18103.51 (17)
Cd—S1—C1—S23.74 (9)N2—C12—C13—C1474.33 (19)
C1—N1—C3—C4111.20 (17)C18—C13—C14—C150.2 (2)
C2—N1—C3—C467.76 (19)C12—C13—C14—C15177.64 (15)
N1—C3—C4—C527.0 (2)C13—C14—C15—C160.3 (3)
N1—C3—C4—C9154.03 (15)C14—C15—C16—C170.0 (3)
C9—C4—C5—C61.3 (3)C15—C16—C17—C180.4 (3)
C3—C4—C5—C6179.78 (16)C14—C13—C18—C170.1 (2)
C4—C5—C6—C70.9 (3)C12—C13—C18—C17177.98 (15)
C5—C6—C7—C80.0 (3)C16—C17—C18—C130.4 (3)
C6—C7—C8—C90.6 (3)C23—N3—C19—C201.3 (3)
C7—C8—C9—C40.2 (3)Cd—N3—C19—C20177.92 (13)
C5—C4—C9—C80.7 (3)N3—C19—C20—C210.8 (3)
C3—C4—C9—C8179.71 (16)C19—C20—C21—C220.6 (3)
C11—N2—C10—S32.3 (2)C20—C21—C22—C231.4 (3)
C12—N2—C10—S3174.39 (11)C19—N3—C23—C220.5 (3)
C11—N2—C10—S4177.86 (11)Cd—N3—C23—C22178.80 (13)
C12—N2—C10—S45.4 (2)C21—C22—C23—N30.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.992.793.5926 (17)138
C11—H11C···Cg1ii0.982.913.3715 (18)110
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.992.793.5926 (17)138
C11—H11C···Cg1ii0.982.913.3715 (18)110
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C9H10NS2)2(C5H5N)]
Mr584.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.9361 (6), 14.832 (1), 18.9680 (13)
β (°) 101.613 (1)
V3)2462.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.636, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
30058, 5650, 5201
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.04
No. of reflections5650
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: mazhar42pk@yahoo.com.

Acknowledgements

The authors acknowledge funding from the UMRG (RP007A-13AET) and the High-Impact Research Scheme (UM·C/625/1/HIR/242).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhsan, M. A., Ming, H. N., Misran, M., Arifin, Z., Tiekink, E. R. T., Safwan, A. P., Ebadi, M., Basirun, W. J. & Mazhar, M. (2012). Chem. Vapor Dep. 18, 191–200.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMlowe, S., Lewis, D. J., Azad Malik, M., Raftery, J., Mubofu, E. B., O'Brien, P. & Revaprasadu, N. (2014). New J. Chem. 38, 6073–6080.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationWei, F.-X., Yin, X., Zhang, W.-G., Fan, J., Jiang, X.-H. & Wang, S.-L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 417–419.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds