metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(η4-Bi­cyclo­[2.2.1]hepta-2,5-diene)bis­­(η2-3,5-di-tert-butyl-1,2,4-di­aza­phospho­lido)ruthenium

aInstitute of Organic Chemistry and College of Chemical and Materials Science, Shanxi Normal University, Gongyuan Street 1, Linfen, Shanxi Province 041004, People's Republic of China
*Correspondence e-mail: wjzheng@sxnu.edu.cn, wjzheng_sxnu@qq.com

Edited by A. J. Lough, University of Toronto, Canada (Received 14 January 2016; accepted 18 January 2016; online 28 January 2016)

In the title compound, [Ru(C10H18N2P)2(C7H8)], the two 1,2,4-di­aza­phospho­lide (dp) ligands are coordinated to the RuII ion in an almost perfect η2-geometry, with Ru—N bond lengths in the range 2.071 (3)–2.135 (3) Å. The N—Ru—N angles within each η2-1,2,4-di­aza­phospho­lide ligand are similar, with values of 37.10 (11) and 37.44 (11)°, and hence the coodination geometry around the RuII ion is highly distorted from the expected octa­hedral geometry. One of the tert-butyl groups was refined as disordered over two sets of sites, with a ratio of occupancies of 0.719 (6):0.281 (6).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound which incorporates a bi­cyclo­[2.2.1]hepta-2,5-diene (NBD) ligand, [(η4-NBD)Ru(η2-3,5-tBu2dp)2], is illustrated in Fig. 1[link]. The two 1,2,4-di­aza­phospho­lide (dp) ligands are coordinated to the ruthenium(II) atom with nearly perfect η2 geometry, with Ru—N bond lengths ranging from 2.071 (3) to 2.135 (3) Å. The N—Ru—N angles within each η2-1,2,4-di­aza­phospho­lide ligand are 37.10 (11) and 37.44 (11)°. The N—N bonds of the dp ligands are oriented with respect to the RuII so as to suggest σ-donation of the in-plane nitro­gen atom lone pairs to the metal atom while the coordinating bi­cyclo­[2.2.1]hepta-2,5-diene ligand is in a π-bonding mode with η4-coordination. This may be evidenced by the C=C bond lengths [C21=C22 1.395 (5); C26=C27 1.400 (5) Å] and Ru—C bonds [Ru1—C21 2.124 (4); Ru1—C22 2.133 (3) Å]. The bond angles (N1/N2-centroid)—Ru—(C26/C27-centroid) and (N3/N4-centroid)—Ru—(C21/C22-centroid) are 76.6 and 80.0°, respectively, suggesting a psuedo-tetra­hedral arrangement of the ligands around RuII, although the coordination is highly distorted from the expected octa­hedral arrangement.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the minor disorder component have been omitted for clarity.

Synthesis and crystallization

All manipulations were carried out using standard Schlenk techniques in an N2 filled glovebox. Solvents were dried over and distilled from Na/K alloy prior to use.

To a mixture of [(η4-NBD)RuCl2] (Albers et al., 1989[Albers, M. O., Singleton, E. & Yates, J. E. (1989). Inorg. Synth. 26, 249-258.]) (0.53 g, 2.0 mmol) and K[3,5-tBu2dp] (Zheng et al., 2006[Zheng, W., Zhang, G. & Fan, K. (2006). Organometallics, 25, 1548-1550.]) (1.04 g, 4.4 mmol) was added 30 ml tetra­hydro­furan via a syringe. After the solution had been stirred for 48 h, the volatile components were removed in high vacuum. The resulting residue was extracted with ether (3 × 10 ml). The solvent was reduced to about 10 ml and then the solution was kept at 253 K to give the title compound as deep-red crystals (0.88 g, 75%). M.p. 453 K (dep.). 1H NMR (C6D6, 296 K): δ = 1.15 (d, 18 H, CH3), 1.65 (d, 18 H, CH3), 1.19 (d, 2 H, CH2), 3.39 (d, 2 H, CH), 3.62 (t, 2 H, = CH), 4.83 (t, 2 H, = CH) p.p.m.; 13C{1H} NMR (C6D6, 296 K): δ = 31.80 (d, 3JCP = 6.25 Hz, CH3), 33.94 (d, 3JCP = 301.25 Hz, CH3), 50.92 (s, CH), 58.63 (s, CH2), 59.49, 60.26 (s, = CH), 181.81 (d, 2JCP = 62.13 CCH3), 185.24 (d, 1JCP = 63.50 Hz, PCN) p.p.m.; 31P{1H} NMR (C6D6, 296 K): δ = 67.79 (s), 114.75 (s) p.p.m.; MS(EI) m/z (%): 588 ([M+], 100); IR (KBr, Nujol mull, cm−1): 1463(s), 1377(s), 1291(m), 1086(w), 779(w), 718(m); Analysis calculated for C27H44RuP2N4: C 55.18; H 7.55; N 9.53. Found: C 55.31; H, 7.61; N, 9.67.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One of the tert-butyl groups (C18/C19/C20) was refined as disordered over two sets of sites with an occupancy ratio of 0.719 (6):0.281 (6).

Table 1
Experimental details

Crystal data
Chemical formula [Ru(C10H18N2P)2(C7H8)]
Mr 587.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.922 (5), 11.661 (5), 13.641 (6)
α, β, γ (°) 86.619 (5), 79.750 (5), 62.441 (5)
V3) 1515.2 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.910, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 6963, 5438, 4323
Rint 0.022
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.00
No. of reflections 5438
No. of parameters 335
No. of restraints 36
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.29
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

All manipulations were carried out using standard Schlenk techniques in an N2 filled glovebox. Solvents were dried over and distilled from Na/K alloy prior to use.

To a mixture of [(η4-NBD)RuCl2] (Albers et al., 1989) (0.53 g, 2.0 mmol) and K[3,5 − tBu2dp] (Zheng et al., 2006) (1.04 g, 4.4 mmol) was added 30 ml tetrahydrofuran via a syringe. After the solution had been stirred for 48 h, the volatile components were removed in high vacuum. The resulting residue was extracted with ether (3 × 10 ml). The solvent was reduced to about 10 ml and then the solution was kept at 253 K to give the title compound as deep-red crystals (0.88 g, 75%). M.p. 453 K (dep.). 1H NMR (C6D6, 296 K): δ = 1.15 (d, 18 H, CH3), 1.65 (d, 18 H, CH3), 1.19 (d, 2 H, CH2), 3.39 (d, 2 H, CH), 3.62 (t, 2 H, = CH), 4.83 (t, 2 H, = CH) p.p.m.; 13C{1H} NMR (C6D6, 296 K): δ = 31.80 (d, 3JCP = 6.25 Hz, CH3), 33.94 (d, 3JCP = 301.25 Hz, CH3), 50.92 (s, CH), 58.63 (s, CH2), 59.49, 60.26 (s, = CH), 181.81 (d, 2JCP = 62.13 CCH3), 185.24 (d, 1JCP = 63.50 Hz, PCN) p.p.m.; 31P{1H} NMR (C6D6, 296 K): δ = 67.79 (s), 114.75 (s) p.p.m.; MS(EI) m/z (%): 588 ([M+], 100); IR (KBr, Nujol mull, cm−1): 1463(s), 1377(s), 1291(m), 1086(w), 779(w), 718(m); Analysis calculated for C27H44RuP2N4: C 55.18; H 7.55; N 9.53. Found: C 55.31; H, 7.61; N, 9.67.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. One of the tert-butyl groups (C18/C19/C20) was refined as disordered over two sets of sites with an occupancy ratio of 0.719 (6):0.281 (6).

Structure description top

The molecular structure of the title compound which incorporates a bicyclo­[2.2.1]hepta-2,5-diene (NBD) ligand, [(η4-NBD)Ru(η2-3,5 − tBu2dp)2], is illustrated in Fig. 1. The two 1,2,4-diazaphospholide (dp) ligands are coordinated to the ruthenium(II) atom with nearly perfect η2 geometry, with Ru—N bond lengths ranging from 2.071 (3) to 2.135 (3) Å. The N—Ru—N angles within each η2-1,2,4-diazaphospholide ligand are 37.10 (11) and 37.44 (11)°. The N—N bonds of the dp ligands are oriented with respect to the RuII so as to suggest σ-donation of the in-plane nitrogen atom lone pairs to the metal atom while the coordinating bicyclo­[2.2.1]hepta-2,5-diene ligand is in a π-bonding mode with η4-coordination. This may be evidenced by the CC bond lengths [C21C22 1.395 (5); C26C27 1.400 (5) Å] and Ru—C bonds [Ru1—C21 2.124 (4); Ru1—C22 2.133 (3) Å]. The bond angles (N1/N2-centroid)—Ru—(C26/C27-centroid) and (N3/N4-centroid)—Ru—(C21/C22-centroid) are 76.6 and 80.0°, respectively, suggesting a psuedo-tetrahedral arrangement of the ligands around RuII, although the coordination is highly distorted from the expected octahedral arrangement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the minor disorder component have been omitted for clarity.
(η4-Bicyclo[2.2.1]hepta-2,5-diene)bis(η2-3,5-di-tert-butyl-1,2,4-diazaphospholido)ruthenium top
Crystal data top
[Ru(C10H18N2P)2(C7H8)]Z = 2
Mr = 587.67F(000) = 616
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Melting point: 453 K
a = 10.922 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.661 (5) ÅCell parameters from 894 reflections
c = 13.641 (6) Åθ = 2.8–25.9°
α = 86.619 (5)°µ = 0.64 mm1
β = 79.750 (5)°T = 293 K
γ = 62.441 (5)°Block, colourless
V = 1515.2 (11) Å30.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
5438 independent reflections
Radiation source: fine-focus sealed tube4323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.910, Tmax = 0.938k = 1414
6963 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
5438 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.73 e Å3
36 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ru(C10H18N2P)2(C7H8)]γ = 62.441 (5)°
Mr = 587.67V = 1515.2 (11) Å3
Triclinic, P1Z = 2
a = 10.922 (5) ÅMo Kα radiation
b = 11.661 (5) ŵ = 0.64 mm1
c = 13.641 (6) ÅT = 293 K
α = 86.619 (5)°0.15 × 0.12 × 0.10 mm
β = 79.750 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4323 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.938Rint = 0.022
6963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04136 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.73 e Å3
5438 reflectionsΔρmin = 0.29 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.97741 (3)0.75701 (3)0.69344 (2)0.04137 (11)
P10.64266 (12)1.08096 (10)0.55908 (8)0.0570 (3)
P20.74186 (13)0.68084 (12)0.96868 (8)0.0676 (3)
N10.8569 (3)0.8730 (3)0.5912 (2)0.0471 (7)
N20.8111 (3)0.9430 (3)0.6770 (2)0.0483 (7)
N30.8358 (3)0.7021 (3)0.7873 (2)0.0499 (7)
N40.9151 (3)0.7239 (3)0.8407 (2)0.0507 (8)
C10.7819 (4)0.9295 (3)0.5202 (3)0.0462 (8)
C20.8208 (5)0.8601 (4)0.4197 (3)0.0555 (10)
C30.9706 (5)0.8301 (5)0.3733 (3)0.0777 (14)
H3A0.99490.78660.30990.117*
H3B1.03370.77550.41650.117*
H3C0.97750.90930.36430.117*
C40.7207 (5)0.9482 (4)0.3512 (3)0.0724 (13)
H4A0.74470.90530.28750.109*
H4B0.72811.02720.34270.109*
H4C0.62630.96740.38030.109*
C50.8029 (7)0.7370 (4)0.4348 (4)0.0942 (18)
H5A0.82730.69260.37170.141*
H5B0.70720.75980.46260.141*
H5C0.86300.68150.47930.141*
C60.6988 (4)1.0549 (3)0.6753 (3)0.0478 (9)
C70.6301 (4)1.1376 (4)0.7697 (3)0.0573 (10)
C80.7348 (6)1.1659 (5)0.8091 (4)0.1039 (19)
H8A0.68991.21840.86900.156*
H8B0.76921.21120.76000.156*
H8C0.81161.08600.82320.156*
C90.5068 (6)1.2648 (5)0.7496 (4)0.1033 (19)
H9A0.46411.31650.81000.155*
H9B0.43921.24740.72600.155*
H9C0.53961.31080.70000.155*
C100.5777 (6)1.0641 (5)0.8472 (4)0.0978 (18)
H10A0.53371.11550.90770.147*
H10B0.65530.98420.86020.147*
H10C0.51101.04630.82260.147*
C110.8812 (4)0.7183 (4)0.9387 (3)0.0535 (9)
C120.9547 (5)0.7475 (4)1.0109 (3)0.0688 (12)
C130.9391 (6)0.6801 (5)1.1093 (3)0.0919 (17)
H13A0.84150.71101.13590.138*
H13B0.98370.69911.15610.138*
H13C0.98250.58831.09720.138*
C140.8812 (7)0.8946 (5)1.0312 (5)0.126 (3)
H14A0.78370.92311.05720.188*
H14B0.89010.93770.97020.188*
H14C0.92380.91491.07870.188*
C151.1085 (6)0.6987 (6)0.9697 (4)0.0981 (18)
H15A1.15260.71831.01660.147*
H15B1.11880.74010.90800.147*
H15C1.15190.60680.95810.147*
C160.7396 (4)0.6784 (4)0.8408 (3)0.0530 (9)
C170.6415 (5)0.6519 (4)0.7904 (4)0.0709 (12)
C211.1543 (4)0.5732 (3)0.6960 (3)0.0544 (10)
H211.14890.50040.73270.065*
C221.1300 (4)0.5984 (3)0.5981 (3)0.0539 (10)
H221.10570.54520.56030.065*
C231.2215 (4)0.6608 (4)0.5502 (3)0.0586 (10)
H231.23960.66200.47730.070*
C241.3504 (4)0.5920 (5)0.6037 (3)0.0735 (12)
H24A1.40400.50030.58710.088*
H24B1.41110.63300.59310.088*
C251.2607 (4)0.6204 (4)0.7078 (3)0.0613 (11)
H251.31010.58900.76480.074*
C261.1641 (4)0.7663 (4)0.7051 (3)0.0551 (10)
H261.16560.82960.74840.066*
C271.1412 (4)0.7915 (4)0.6065 (3)0.0518 (9)
H271.12430.87390.57490.062*
C180.7298 (8)0.5446 (8)0.7118 (7)0.112 (3)0.719 (6)
H18A0.77350.46350.74390.168*0.719 (6)
H18B0.80070.56280.67260.168*0.719 (6)
H18C0.67100.53980.66930.168*0.719 (6)
C190.5422 (10)0.7740 (8)0.7461 (9)0.122 (3)0.719 (6)
H19A0.46210.82240.79580.184*0.719 (6)
H19B0.51230.75210.69110.184*0.719 (6)
H19C0.58900.82540.72310.184*0.719 (6)
C200.5612 (9)0.5975 (10)0.8662 (7)0.121 (3)0.719 (6)
H20A0.61930.54740.91370.181*0.719 (6)
H20B0.53670.54330.83200.181*0.719 (6)
H20C0.47750.66760.90020.181*0.719 (6)
C18'0.4912 (16)0.740 (2)0.8434 (19)0.122 (3)0.281 (6)
H18D0.47680.70880.90910.182*0.281 (6)
H18E0.42520.73830.80610.182*0.281 (6)
H18F0.47790.82660.84810.182*0.281 (6)
C20'0.629 (3)0.723 (2)0.6899 (15)0.120 (4)0.281 (6)
H20D0.71650.68100.64500.181*0.281 (6)
H20E0.60690.81130.70130.181*0.281 (6)
H20F0.55630.71980.66150.181*0.281 (6)
C19'0.667 (3)0.5115 (16)0.790 (2)0.119 (3)0.281 (6)
H19D0.68450.47630.85470.179*0.281 (6)
H19E0.74760.46190.74090.179*0.281 (6)
H19F0.58670.50810.77510.179*0.281 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.04163 (19)0.04155 (17)0.03939 (17)0.01768 (13)0.00559 (12)0.00448 (11)
P10.0529 (7)0.0499 (6)0.0562 (6)0.0147 (5)0.0079 (5)0.0067 (5)
P20.0661 (8)0.0777 (8)0.0537 (7)0.0345 (7)0.0081 (5)0.0034 (6)
N10.0462 (18)0.0443 (16)0.0436 (17)0.0146 (14)0.0053 (14)0.0077 (13)
N20.0420 (18)0.0479 (17)0.0447 (17)0.0121 (15)0.0038 (13)0.0096 (13)
N30.0477 (19)0.064 (2)0.0451 (17)0.0300 (17)0.0102 (14)0.0027 (14)
N40.053 (2)0.0606 (19)0.0447 (18)0.0307 (17)0.0105 (14)0.0001 (14)
C10.050 (2)0.0460 (19)0.044 (2)0.0233 (18)0.0073 (16)0.0017 (16)
C20.068 (3)0.055 (2)0.046 (2)0.028 (2)0.0159 (19)0.0010 (17)
C30.064 (3)0.098 (4)0.055 (3)0.023 (3)0.004 (2)0.024 (2)
C40.083 (3)0.087 (3)0.052 (2)0.039 (3)0.024 (2)0.008 (2)
C50.163 (6)0.070 (3)0.071 (3)0.066 (4)0.040 (3)0.008 (2)
C60.044 (2)0.0405 (19)0.051 (2)0.0156 (17)0.0005 (16)0.0010 (16)
C70.054 (3)0.045 (2)0.060 (2)0.0163 (19)0.0055 (19)0.0100 (18)
C80.095 (4)0.117 (5)0.100 (4)0.049 (4)0.005 (3)0.056 (3)
C90.100 (4)0.064 (3)0.090 (4)0.005 (3)0.002 (3)0.015 (3)
C100.121 (5)0.073 (3)0.074 (3)0.040 (3)0.037 (3)0.016 (3)
C110.061 (3)0.052 (2)0.042 (2)0.022 (2)0.0072 (18)0.0043 (17)
C120.084 (3)0.075 (3)0.051 (2)0.036 (3)0.020 (2)0.005 (2)
C130.108 (4)0.111 (4)0.045 (3)0.036 (4)0.021 (3)0.004 (3)
C140.180 (7)0.079 (4)0.129 (5)0.048 (4)0.082 (5)0.010 (3)
C150.107 (5)0.154 (5)0.066 (3)0.081 (4)0.033 (3)0.002 (3)
C160.043 (2)0.051 (2)0.062 (2)0.0209 (19)0.0056 (18)0.0002 (18)
C170.056 (3)0.076 (3)0.093 (3)0.039 (3)0.019 (2)0.006 (3)
C210.051 (2)0.0396 (19)0.061 (2)0.0114 (18)0.0076 (19)0.0028 (17)
C220.057 (3)0.0381 (19)0.057 (2)0.0144 (18)0.0014 (19)0.0144 (17)
C230.047 (2)0.062 (2)0.053 (2)0.015 (2)0.0001 (18)0.0096 (19)
C240.045 (3)0.077 (3)0.079 (3)0.016 (2)0.001 (2)0.005 (2)
C250.045 (2)0.068 (3)0.061 (3)0.016 (2)0.0107 (19)0.001 (2)
C260.047 (2)0.061 (2)0.062 (2)0.029 (2)0.0069 (18)0.0069 (19)
C270.044 (2)0.057 (2)0.056 (2)0.0276 (19)0.0017 (17)0.0047 (18)
C180.091 (5)0.106 (5)0.163 (7)0.055 (4)0.037 (5)0.040 (5)
C190.088 (6)0.110 (5)0.182 (8)0.039 (5)0.076 (5)0.008 (5)
C200.089 (5)0.123 (5)0.175 (7)0.063 (4)0.038 (4)0.003 (5)
C18'0.085 (5)0.119 (5)0.179 (7)0.051 (5)0.055 (5)0.001 (5)
C20'0.087 (7)0.114 (7)0.180 (9)0.043 (6)0.079 (7)0.010 (7)
C19'0.092 (5)0.113 (5)0.172 (7)0.056 (5)0.038 (5)0.020 (5)
Geometric parameters (Å, º) top
Ru1—N12.071 (3)C13—H13B0.9600
Ru1—N42.077 (3)C13—H13C0.9600
Ru1—N22.121 (3)C14—H14A0.9600
Ru1—C212.124 (4)C14—H14B0.9600
Ru1—C262.125 (4)C14—H14C0.9600
Ru1—C222.133 (3)C15—H15A0.9600
Ru1—N32.135 (3)C15—H15B0.9600
Ru1—C272.150 (4)C15—H15C0.9600
P1—C11.747 (4)C16—C171.520 (6)
P1—C61.760 (4)C17—C191.507 (7)
P2—C111.745 (4)C17—C181.523 (7)
P2—C161.751 (4)C17—C19'1.527 (15)
N1—C11.324 (4)C17—C201.535 (7)
N1—N21.346 (4)C17—C18'1.541 (15)
N2—C61.316 (4)C17—C20'1.551 (15)
N3—C161.298 (5)C21—C221.395 (5)
N3—N41.341 (4)C21—C251.534 (5)
N4—C111.328 (5)C21—H210.9800
C1—C21.523 (5)C22—C231.529 (5)
C2—C31.526 (6)C22—H220.9800
C2—C41.529 (5)C23—C271.530 (5)
C2—C51.534 (6)C23—C241.551 (6)
C3—H3A0.9600C23—H230.9800
C3—H3B0.9600C24—C251.532 (6)
C3—H3C0.9600C24—H24A0.9700
C4—H4A0.9600C24—H24B0.9700
C4—H4B0.9600C25—C261.534 (5)
C4—H4C0.9600C25—H250.9800
C5—H5A0.9600C26—C271.400 (5)
C5—H5B0.9600C26—H260.9800
C5—H5C0.9600C27—H270.9800
C6—C71.512 (5)C18—H18A0.9600
C7—C81.515 (6)C18—H18B0.9600
C7—C101.519 (6)C18—H18C0.9600
C7—C91.525 (6)C19—H19A0.9600
C8—H8A0.9600C19—H19B0.9600
C8—H8B0.9600C19—H19C0.9600
C8—H8C0.9600C20—H20A0.9600
C9—H9A0.9600C20—H20B0.9600
C9—H9B0.9600C20—H20C0.9600
C9—H9C0.9600C18'—H18D0.9600
C10—H10A0.9600C18'—H18E0.9600
C10—H10B0.9600C18'—H18F0.9600
C10—H10C0.9600C20'—H20D0.9600
C11—C121.518 (5)C20'—H20E0.9600
C12—C151.509 (7)C20'—H20F0.9600
C12—C131.537 (6)C19'—H19D0.9600
C12—C141.539 (6)C19'—H19E0.9600
C13—H13A0.9600C19'—H19F0.9600
N1—Ru1—N4129.37 (12)H14A—C14—H14B109.5
N1—Ru1—N237.44 (11)C12—C14—H14C109.5
N4—Ru1—N2100.08 (12)H14A—C14—H14C109.5
N1—Ru1—C21138.29 (14)H14B—C14—H14C109.5
N4—Ru1—C2185.52 (14)C12—C15—H15A109.5
N2—Ru1—C21174.32 (13)C12—C15—H15B109.5
N1—Ru1—C26118.31 (14)H15A—C15—H15B109.5
N4—Ru1—C26100.32 (14)C12—C15—H15C109.5
N2—Ru1—C26111.66 (14)H15A—C15—H15C109.5
C21—Ru1—C2666.04 (15)H15B—C15—H15C109.5
N1—Ru1—C22100.09 (13)N3—C16—C17119.9 (4)
N4—Ru1—C22119.54 (14)N3—C16—P2112.6 (3)
N2—Ru1—C22137.02 (13)C17—C16—P2127.5 (3)
C21—Ru1—C2238.25 (14)C19—C17—C16110.1 (5)
C26—Ru1—C2278.78 (15)C19—C17—C18112.0 (7)
N1—Ru1—N3102.47 (12)C16—C17—C18108.4 (4)
N4—Ru1—N337.10 (11)C19—C17—C19'134.1 (10)
N2—Ru1—N390.76 (12)C16—C17—C19'115.7 (9)
C21—Ru1—N394.32 (14)C18—C17—C19'50.5 (11)
C26—Ru1—N3136.30 (13)C19—C17—C20111.1 (6)
C22—Ru1—N3110.33 (14)C16—C17—C20109.6 (4)
N1—Ru1—C2784.55 (14)C18—C17—C20105.6 (5)
N4—Ru1—C27138.47 (14)C19'—C17—C2055.6 (11)
N2—Ru1—C2796.30 (14)C19—C17—C18'57.0 (10)
C21—Ru1—C2778.73 (16)C16—C17—C18'106.9 (9)
C26—Ru1—C2738.23 (15)C18—C17—C18'144.6 (9)
C22—Ru1—C2765.62 (15)C19'—C17—C18'109.8 (14)
N3—Ru1—C27172.61 (13)C20—C17—C18'58.8 (10)
C1—P1—C687.57 (17)C19—C17—C20'40.4 (9)
C11—P2—C1687.69 (18)C16—C17—C20'107.5 (9)
C1—N1—N2114.3 (3)C18—C17—C20'75.5 (11)
C1—N1—Ru1170.7 (3)C19'—C17—C20'118.1 (15)
N2—N1—Ru173.30 (18)C20—C17—C20'140.1 (9)
C6—N2—N1114.1 (3)C18'—C17—C20'96.7 (14)
C6—N2—Ru1173.2 (3)C22—C21—C25106.1 (4)
N1—N2—Ru169.26 (17)C22—C21—Ru171.2 (2)
C16—N3—N4114.0 (3)C25—C21—Ru198.0 (2)
C16—N3—Ru1174.2 (3)C22—C21—H21122.9
N4—N3—Ru169.12 (19)C25—C21—H21122.9
C11—N4—N3114.6 (3)Ru1—C21—H21122.9
C11—N4—Ru1170.1 (3)C21—C22—C23106.2 (3)
N3—N4—Ru173.79 (19)C21—C22—Ru170.5 (2)
N1—C1—C2119.9 (3)C23—C22—Ru198.2 (2)
N1—C1—P1112.0 (3)C21—C22—H22122.9
C2—C1—P1128.1 (3)C23—C22—H22122.9
C1—C2—C3109.5 (3)Ru1—C22—H22122.9
C1—C2—C4108.9 (3)C22—C23—C2798.7 (3)
C3—C2—C4109.3 (4)C22—C23—C24101.6 (3)
C1—C2—C5108.9 (3)C27—C23—C24101.5 (3)
C3—C2—C5111.9 (4)C22—C23—H23117.3
C4—C2—C5108.3 (4)C27—C23—H23117.3
C2—C3—H3A109.5C24—C23—H23117.3
C2—C3—H3B109.5C25—C24—C2393.6 (3)
H3A—C3—H3B109.5C25—C24—H24A113.0
C2—C3—H3C109.5C23—C24—H24A113.0
H3A—C3—H3C109.5C25—C24—H24B113.0
H3B—C3—H3C109.5C23—C24—H24B113.0
C2—C4—H4A109.5H24A—C24—H24B110.4
C2—C4—H4B109.5C24—C25—C21101.8 (3)
H4A—C4—H4B109.5C24—C25—C26102.1 (3)
C2—C4—H4C109.5C21—C25—C2698.0 (3)
H4A—C4—H4C109.5C24—C25—H25117.3
H4B—C4—H4C109.5C21—C25—H25117.3
C2—C5—H5A109.5C26—C25—H25117.3
C2—C5—H5B109.5C27—C26—C25106.0 (3)
H5A—C5—H5B109.5C27—C26—Ru171.8 (2)
C2—C5—H5C109.5C25—C26—Ru197.9 (2)
H5A—C5—H5C109.5C27—C26—H26122.8
H5B—C5—H5C109.5C25—C26—H26122.8
N2—C6—C7119.1 (3)Ru1—C26—H26122.8
N2—C6—P1112.0 (3)C26—C27—C23106.1 (3)
C7—C6—P1128.7 (3)C26—C27—Ru169.9 (2)
C6—C7—C8110.3 (4)C23—C27—Ru197.5 (2)
C6—C7—C10108.5 (3)C26—C27—H27123.2
C8—C7—C10109.2 (4)C23—C27—H27123.2
C6—C7—C9110.2 (4)Ru1—C27—H27123.2
C8—C7—C9109.2 (4)C17—C18—H18A109.5
C10—C7—C9109.4 (4)C17—C18—H18B109.5
C7—C8—H8A109.5H18A—C18—H18B109.5
C7—C8—H8B109.5C17—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C7—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5C17—C19—H19A109.5
H8B—C8—H8C109.5C17—C19—H19B109.5
C7—C9—H9A109.5H19A—C19—H19B109.5
C7—C9—H9B109.5C17—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
C7—C9—H9C109.5H19B—C19—H19C109.5
H9A—C9—H9C109.5C17—C20—H20A109.5
H9B—C9—H9C109.5C17—C20—H20B109.5
C7—C10—H10A109.5H20A—C20—H20B109.5
C7—C10—H10B109.5C17—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C7—C10—H10C109.5H20B—C20—H20C109.5
H10A—C10—H10C109.5C17—C18'—H18D109.5
H10B—C10—H10C109.5C17—C18'—H18E109.5
N4—C11—C12121.8 (4)H18D—C18'—H18E109.5
N4—C11—P2111.1 (3)C17—C18'—H18F109.5
C12—C11—P2127.0 (3)H18D—C18'—H18F109.5
C15—C12—C11111.1 (4)H18E—C18'—H18F109.5
C15—C12—C13109.2 (4)C17—C20'—H20D109.5
C11—C12—C13108.5 (4)C17—C20'—H20E109.5
C15—C12—C14111.2 (5)H20D—C20'—H20E109.5
C11—C12—C14108.1 (4)C17—C20'—H20F109.5
C13—C12—C14108.8 (4)H20D—C20'—H20F109.5
C12—C13—H13A109.5H20E—C20'—H20F109.5
C12—C13—H13B109.5C17—C19'—H19D109.5
H13A—C13—H13B109.5C17—C19'—H19E109.5
C12—C13—H13C109.5H19D—C19'—H19E109.5
H13A—C13—H13C109.5C17—C19'—H19F109.5
H13B—C13—H13C109.5H19D—C19'—H19F109.5
C12—C14—H14A109.5H19E—C19'—H19F109.5
C12—C14—H14B109.5
N4—Ru1—N1—C1100.0 (17)Ru1—N3—C16—C1759 (3)
N2—Ru1—N1—C1145.6 (18)N4—N3—C16—P20.4 (4)
C21—Ru1—N1—C140.3 (18)Ru1—N3—C16—P2122 (3)
C26—Ru1—N1—C1125.2 (17)C11—P2—C16—N30.7 (3)
C22—Ru1—N1—C142.6 (17)C11—P2—C16—C17179.6 (4)
N3—Ru1—N1—C171.1 (17)N3—C16—C17—C1970.2 (7)
C27—Ru1—N1—C1106.6 (17)P2—C16—C17—C19110.2 (6)
N4—Ru1—N1—N245.6 (2)N3—C16—C17—C1852.6 (6)
C21—Ru1—N1—N2174.1 (2)P2—C16—C17—C18127.0 (5)
C26—Ru1—N1—N289.2 (2)N3—C16—C17—C19'106.9 (14)
C22—Ru1—N1—N2171.8 (2)P2—C16—C17—C19'72.7 (14)
N3—Ru1—N1—N274.5 (2)N3—C16—C17—C20167.3 (5)
C27—Ru1—N1—N2107.8 (2)P2—C16—C17—C2012.3 (6)
C1—N1—N2—C60.6 (5)N3—C16—C17—C18'130.4 (12)
Ru1—N1—N2—C6173.6 (3)P2—C16—C17—C18'50.0 (12)
C1—N1—N2—Ru1174.3 (3)N3—C16—C17—C20'27.5 (12)
N1—Ru1—N2—C6121 (2)P2—C16—C17—C20'152.9 (11)
N4—Ru1—N2—C625 (2)N1—Ru1—C21—C223.6 (3)
C21—Ru1—N2—C6164 (2)N4—Ru1—C21—C22153.9 (2)
C26—Ru1—N2—C6131 (2)N2—Ru1—C21—C2235.5 (14)
C22—Ru1—N2—C6133 (2)C26—Ru1—C21—C22102.7 (3)
N3—Ru1—N2—C611 (2)N3—Ru1—C21—C22117.8 (2)
C27—Ru1—N2—C6167 (2)C27—Ru1—C21—C2264.7 (2)
N4—Ru1—N2—N1145.86 (19)N1—Ru1—C21—C25108.0 (3)
C21—Ru1—N2—N143.7 (14)N4—Ru1—C21—C25101.7 (2)
C26—Ru1—N2—N1108.7 (2)N2—Ru1—C21—C2568.9 (14)
C22—Ru1—N2—N111.8 (3)C26—Ru1—C21—C251.7 (2)
N3—Ru1—N2—N1109.7 (2)C22—Ru1—C21—C25104.4 (3)
C27—Ru1—N2—N172.5 (2)N3—Ru1—C21—C25137.8 (2)
N1—Ru1—N3—C1618 (3)C27—Ru1—C21—C2539.7 (2)
N4—Ru1—N3—C16123 (3)C25—C21—C22—C230.1 (4)
N2—Ru1—N3—C1617 (3)Ru1—C21—C22—C2393.2 (2)
C21—Ru1—N3—C16160 (3)C25—C21—C22—Ru193.1 (3)
C26—Ru1—N3—C16141 (3)N1—Ru1—C22—C21177.6 (2)
C22—Ru1—N3—C16124 (3)N4—Ru1—C22—C2130.3 (3)
C27—Ru1—N3—C16180 (100)N2—Ru1—C22—C21175.2 (2)
N1—Ru1—N3—N4141.70 (19)C26—Ru1—C22—C2165.3 (2)
N2—Ru1—N3—N4105.8 (2)N3—Ru1—C22—C2170.1 (3)
C21—Ru1—N3—N476.7 (2)C27—Ru1—C22—C21103.2 (3)
C26—Ru1—N3—N417.4 (3)N1—Ru1—C22—C2378.1 (2)
C22—Ru1—N3—N4112.4 (2)N4—Ru1—C22—C23134.6 (2)
C27—Ru1—N3—N456.9 (10)N2—Ru1—C22—C2370.8 (3)
C16—N3—N4—C110.4 (5)C21—Ru1—C22—C23104.3 (3)
Ru1—N3—N4—C11174.4 (3)C26—Ru1—C22—C2339.0 (2)
C16—N3—N4—Ru1174.7 (3)N3—Ru1—C22—C23174.4 (2)
N1—Ru1—N4—C1197.4 (16)C27—Ru1—C22—C231.1 (2)
N2—Ru1—N4—C1171.2 (16)C21—C22—C23—C2770.6 (3)
C21—Ru1—N4—C11107.9 (16)Ru1—C22—C23—C271.5 (3)
C26—Ru1—N4—C1143.2 (16)C21—C22—C23—C2433.1 (4)
C22—Ru1—N4—C11126.1 (16)Ru1—C22—C23—C24105.1 (3)
N3—Ru1—N4—C11148.9 (17)C22—C23—C24—C2550.5 (4)
C27—Ru1—N4—C1140.5 (17)C27—C23—C24—C2550.9 (4)
N1—Ru1—N4—N351.5 (2)C23—C24—C25—C2150.5 (4)
N2—Ru1—N4—N377.7 (2)C23—C24—C25—C2650.4 (4)
C21—Ru1—N4—N3103.2 (2)C22—C21—C25—C2433.7 (4)
C26—Ru1—N4—N3167.9 (2)Ru1—C21—C25—C24106.4 (3)
C22—Ru1—N4—N385.0 (2)C22—C21—C25—C2670.5 (3)
C27—Ru1—N4—N3170.6 (2)Ru1—C21—C25—C262.2 (3)
N2—N1—C1—C2179.1 (3)C24—C25—C26—C2732.9 (4)
Ru1—N1—C1—C235.5 (19)C21—C25—C26—C2771.1 (4)
N2—N1—C1—P10.1 (4)C24—C25—C26—Ru1106.1 (3)
Ru1—N1—C1—P1143.5 (16)C21—C25—C26—Ru12.2 (3)
C6—P1—C1—N10.3 (3)N1—Ru1—C26—C2730.9 (3)
C6—P1—C1—C2178.6 (4)N4—Ru1—C26—C27177.0 (2)
N1—C1—C2—C358.8 (5)N2—Ru1—C26—C2771.7 (2)
P1—C1—C2—C3122.4 (4)C21—Ru1—C26—C27102.6 (3)
N1—C1—C2—C4178.2 (3)C22—Ru1—C26—C2764.6 (2)
P1—C1—C2—C43.0 (5)N3—Ru1—C26—C27172.4 (2)
N1—C1—C2—C563.9 (5)N1—Ru1—C26—C25135.2 (2)
P1—C1—C2—C5114.9 (4)N4—Ru1—C26—C2578.6 (2)
N1—N2—C6—C7175.0 (3)N2—Ru1—C26—C25176.1 (2)
Ru1—N2—C6—C757 (2)C21—Ru1—C26—C251.7 (2)
N1—N2—C6—P10.8 (4)C22—Ru1—C26—C2539.7 (2)
Ru1—N2—C6—P1119 (2)N3—Ru1—C26—C2568.1 (3)
C1—P1—C6—N20.6 (3)C27—Ru1—C26—C25104.3 (3)
C1—P1—C6—C7174.7 (4)C25—C26—C27—C231.0 (4)
N2—C6—C7—C856.7 (5)Ru1—C26—C27—C2392.2 (3)
P1—C6—C7—C8128.3 (4)C25—C26—C27—Ru193.3 (3)
N2—C6—C7—C1062.9 (5)C22—C23—C27—C2669.8 (4)
P1—C6—C7—C10112.1 (4)C24—C23—C27—C2634.0 (4)
N2—C6—C7—C9177.3 (4)C22—C23—C27—Ru11.4 (3)
P1—C6—C7—C97.7 (5)C24—C23—C27—Ru1105.2 (3)
N3—N4—C11—C12176.7 (4)N1—Ru1—C27—C26153.0 (2)
Ru1—N4—C11—C1229.8 (18)N4—Ru1—C27—C264.4 (3)
N3—N4—C11—P20.9 (4)N2—Ru1—C27—C26117.4 (2)
Ru1—N4—C11—P2147.8 (15)C21—Ru1—C27—C2665.4 (2)
C16—P2—C11—N40.9 (3)C22—Ru1—C27—C26103.3 (3)
C16—P2—C11—C12176.5 (4)N3—Ru1—C27—C2645.2 (10)
N4—C11—C12—C1536.6 (6)N1—Ru1—C27—C23102.6 (2)
P2—C11—C12—C15146.2 (4)N4—Ru1—C27—C23108.9 (3)
N4—C11—C12—C13156.6 (4)N2—Ru1—C27—C23138.2 (2)
P2—C11—C12—C1326.2 (5)C21—Ru1—C27—C2339.0 (2)
N4—C11—C12—C1485.6 (5)C26—Ru1—C27—C23104.4 (3)
P2—C11—C12—C1491.6 (5)C22—Ru1—C27—C231.1 (2)
N4—N3—C16—C17180.0 (3)N3—Ru1—C27—C2359.2 (10)

Experimental details

Crystal data
Chemical formula[Ru(C10H18N2P)2(C7H8)]
Mr587.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.922 (5), 11.661 (5), 13.641 (6)
α, β, γ (°)86.619 (5), 79.750 (5), 62.441 (5)
V3)1515.2 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.910, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
6963, 5438, 4323
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.00
No. of reflections5438
No. of parameters335
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC; grant No. 21272143).

References

First citationAlbers, M. O., Singleton, E. & Yates, J. E. (1989). Inorg. Synth. 26, 249–258.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, W., Zhang, G. & Fan, K. (2006). Organometallics, 25, 1548–1550.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds