organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-3-Allyl-5-(3-meth­­oxy­benzyl­­idene)-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 24 December 2015; accepted 11 January 2016; online 16 January 2016)

In the title compound, C14H13NO2S2, the rhodanine ring and the 3-meth­oxy­benzyl­idene ring are nearly coplanar, as indicated by the dihedral angle of 1.77 (6)° between their planes. The allyl group is nearly perpendicular to the rhodanine ring, with a dihedral angle of 83.64 (19)°. An intra­molecular C—H⋯S inter­action forms an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing 2-thioxo­thia­zolidin-4-one (rhodanine) and its derivatives have been reported to exhibit a broad spectrum of biological activities, acting as anti­diabetic, anti­cancer, anti­tubercular, anti-HIV and anti­parasitic agents (Murugan et al., 2009[Murugan, R., Anbazhagan, S. & Sriman Narayanan, S. (2009). Eur. J. Med. Chem. 44, 3272-3279.]; Chandrappa et al., 2009[Chandrappa, S., Kavitha, C. V., Shahabuddin, M. S., Vinaya, K., Ananda Kumar, C. S., Ranganatha, S. R., Raghavan, S. C. & Rangappa, K. S. (2009). Bioorg. Med. Chem. 17, 2576-2584.]; Mallikarjuna et al., 2009[Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739-4746.]; Murugesan et al., 2011[Murugesan, V., Tiwari, V. S., Saxena, R., Tripathi, R., Paranjape, R., Kulkarni, S., Makwana, N., Suryawanshi, R. & Katti, S. B. (2011). Bioorg. Med. Chem. 19, 6919-6926.]; Zhang et al., 2009[Zhang, X., Li, X., Li, D., Qu, G., Wang, J., Loiseau, P. M. & Fan, X. (2009). Bioorg. Med. Chem. Lett. 19, 6280-6283.]). The unusual biological activity displayed by many rhodanine-based mol­ecules has made them attractive synthetic targets.

The mol­ecule of the title compound is build up from a rhodanine ring (S1/N1/C8–C10) linked to an allyl group (C11–C13) at the nitro­gen atom and to a 3-meth­oxy­benzyl­idene ring (C1–C6) as shown in Fig. 1[link]. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds (Table 1[link]), forming an inversion dimer as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1 0.93 2.55 3.2497 (17) 133
C13—H13A⋯O2i 0.93 2.57 3.441 (2) 157
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2]
Figure 2
A crystal packing diagram of the title compound, showing the hydrogen bonds as dashed lines.

Synthesis and crystallization

To a solution of 3-allyl­rhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (3-meth­oxy­benzyl­idene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h until the reaction was completed (TLC) and a yellow spot (TLC Rf = 0.3, using hexa­ne/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexa­ne/ethyl acetate (1:9) as eluent. The title compound was recrystallized from ethanol (yield 78%, m.p. 364 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection (0 0 1) was affected by the beam-stop and was removed during refinement.

Table 2
Experimental details

Crystal data
Chemical formula C14H13NO2S2
Mr 291.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.9841 (14), 8.3241 (18), 13.116 (3)
α, β, γ (°) 89.276 (9), 75.614 (9), 72.095 (10)
V3) 701.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.31 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.479, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28065, 4522, 3618
Rint 0.029
(sin θ/λ)max−1) 0.729
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.02
No. of reflections 4522
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Compounds containing 2-thioxothiazolidin-4-one (rhodanine) and its derivatives have been reported to exhibit a broad spectrum of biological activities, such as antidiabetic, anticancer, antitubercular, anti-HIV and antiparasitic agents (Murugan et al., 2009; Chandrappa et al., 2009; Mallikarjuna et al., 2009; Murugesan et al., 2011; Zhang et al., 2009). The unusual biological activity displayed by many rhodanine-based molecules has made them attractive synthetic targets.

The molecule of the title compound is build up from a rhodanine ring (S1/N1/C8–C10) linked to an allyl group (C11–C13) at the nitrogen atom and to a 3-methoxybenzylidene ring (C1–C6) as shown in Fig. 1. In the crystal, molecules are linked by a pair of C—H···O hydrogen bonds (Table 2), forming an inversion dimer as shown in Fig. 2.

Experimental top

To a solution of 3-allylrhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (3-methoxybenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane/ethyl acetate (1:9) as eluent. The title compound was recrystallized from ethanol (yield 78%, m.p. 364 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The reflection (0 0 1) affected by the beam-stop was removed during refinement.

Structure description top

Compounds containing 2-thioxothiazolidin-4-one (rhodanine) and its derivatives have been reported to exhibit a broad spectrum of biological activities, acting as antidiabetic, anticancer, antitubercular, anti-HIV and antiparasitic agents (Murugan et al., 2009; Chandrappa et al., 2009; Mallikarjuna et al., 2009; Murugesan et al., 2011; Zhang et al., 2009). The unusual biological activity displayed by many rhodanine-based molecules has made them attractive synthetic targets.

The molecule of the title compound is build up from a rhodanine ring (S1/N1/C8–C10) linked to an allyl group (C11–C13) at the nitrogen atom and to a 3-methoxybenzylidene ring (C1–C6) as shown in Fig. 1. In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds (Table 1), forming an inversion dimer as shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, showing the hydrogen bonds as dashed lines.
(Z)-3-Allyl-5-(3-methoxybenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C14H13NO2S2F(000) = 304
Mr = 291.37Dx = 1.380 Mg m3
Triclinic, P1Melting point: 364 K
a = 6.9841 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3241 (18) ÅCell parameters from 4522 reflections
c = 13.116 (3) Åθ = 2.6–31.2°
α = 89.276 (9)°µ = 0.38 mm1
β = 75.614 (9)°T = 296 K
γ = 72.095 (10)°Block, colourless
V = 701.2 (3) Å30.31 × 0.27 × 0.21 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
4522 independent reflections
Radiation source: fine-focus sealed tube3618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 31.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.479, Tmax = 0.746k = 1212
28065 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4522 reflectionsΔρmax = 0.30 e Å3
172 parametersΔρmin = 0.26 e Å3
Crystal data top
C14H13NO2S2γ = 72.095 (10)°
Mr = 291.37V = 701.2 (3) Å3
Triclinic, P1Z = 2
a = 6.9841 (14) ÅMo Kα radiation
b = 8.3241 (18) ŵ = 0.38 mm1
c = 13.116 (3) ÅT = 296 K
α = 89.276 (9)°0.31 × 0.27 × 0.21 mm
β = 75.614 (9)°
Data collection top
Bruker X8 APEX
diffractometer
4522 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3618 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.746Rint = 0.029
28065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4522 reflectionsΔρmin = 0.26 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6784 (2)0.92899 (16)0.26792 (11)0.0453 (3)
C20.8814 (2)0.88347 (19)0.27837 (12)0.0528 (3)
H20.98460.90930.22740.063*
C30.9283 (2)0.8002 (2)0.36440 (12)0.0555 (3)
H31.06410.77000.37110.067*
C40.7776 (2)0.76011 (19)0.44141 (11)0.0512 (3)
H40.81220.70420.49930.061*
C50.57287 (19)0.80427 (16)0.43169 (10)0.0410 (2)
C60.52494 (19)0.88990 (16)0.34378 (10)0.0418 (3)
H60.38950.92050.33650.050*
C70.40267 (19)0.76903 (16)0.50824 (10)0.0431 (3)
H70.27370.81060.49320.052*
C80.40122 (19)0.68638 (16)0.59698 (10)0.0408 (2)
C90.2049 (2)0.66565 (17)0.66206 (10)0.0450 (3)
C100.4403 (2)0.52824 (16)0.76057 (10)0.0434 (3)
C110.0714 (2)0.53236 (19)0.82335 (12)0.0520 (3)
H11A0.12860.42230.84860.062*
H11B0.02730.52270.78510.062*
C120.0422 (2)0.65574 (19)0.91596 (12)0.0533 (3)
H120.16120.63900.95900.064*
C130.0068 (3)0.7842 (2)0.94329 (14)0.0677 (4)
H13A0.12440.80670.90300.081*
H13B0.07570.85381.00310.081*
C140.4469 (3)1.0541 (2)0.16012 (13)0.0616 (4)
H14A0.44811.11170.09620.092*
H14B0.41240.95250.15290.092*
H14C0.34521.12650.21780.092*
N10.24062 (17)0.57615 (14)0.75017 (9)0.0435 (2)
O10.03559 (17)0.71622 (17)0.64424 (9)0.0660 (3)
O20.64706 (17)1.01213 (16)0.18002 (9)0.0643 (3)
S10.60384 (5)0.59150 (4)0.65517 (3)0.04671 (11)
S20.52699 (7)0.42768 (6)0.85588 (3)0.06213 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (6)0.0469 (6)0.0453 (6)0.0068 (5)0.0083 (5)0.0009 (5)
C20.0346 (6)0.0607 (8)0.0560 (8)0.0105 (5)0.0042 (5)0.0015 (6)
C30.0317 (6)0.0695 (9)0.0612 (9)0.0085 (6)0.0135 (6)0.0020 (7)
C40.0391 (6)0.0636 (8)0.0488 (7)0.0090 (6)0.0162 (5)0.0004 (6)
C50.0352 (5)0.0458 (6)0.0395 (6)0.0076 (4)0.0110 (4)0.0062 (5)
C60.0332 (5)0.0470 (6)0.0422 (6)0.0077 (4)0.0100 (4)0.0035 (5)
C70.0354 (5)0.0534 (7)0.0409 (6)0.0113 (5)0.0135 (5)0.0028 (5)
C80.0349 (5)0.0488 (6)0.0392 (6)0.0105 (5)0.0132 (4)0.0048 (5)
C90.0406 (6)0.0549 (7)0.0441 (6)0.0171 (5)0.0166 (5)0.0017 (5)
C100.0416 (6)0.0445 (6)0.0449 (6)0.0107 (5)0.0161 (5)0.0023 (5)
C110.0508 (7)0.0571 (8)0.0593 (8)0.0288 (6)0.0195 (6)0.0116 (6)
C120.0428 (7)0.0607 (8)0.0539 (8)0.0159 (6)0.0095 (6)0.0197 (6)
C130.0682 (10)0.0646 (9)0.0590 (9)0.0200 (8)0.0030 (8)0.0032 (7)
C140.0578 (9)0.0692 (9)0.0569 (9)0.0132 (7)0.0219 (7)0.0129 (7)
N10.0412 (5)0.0495 (6)0.0440 (5)0.0169 (4)0.0150 (4)0.0016 (4)
O10.0423 (5)0.0990 (9)0.0671 (7)0.0278 (5)0.0264 (5)0.0233 (6)
O20.0462 (6)0.0820 (8)0.0585 (6)0.0147 (5)0.0103 (5)0.0227 (6)
S10.03460 (15)0.0597 (2)0.04389 (18)0.00911 (13)0.01372 (12)0.00062 (13)
S20.0570 (2)0.0726 (3)0.0594 (2)0.01587 (19)0.02600 (18)0.01825 (18)
Geometric parameters (Å, º) top
C1—O21.3668 (17)C9—N11.4001 (17)
C1—C61.3860 (18)C10—N11.3685 (17)
C1—C21.3920 (19)C10—S21.6335 (14)
C2—C31.373 (2)C10—S11.7494 (14)
C2—H20.9300C11—N11.4639 (17)
C3—C41.385 (2)C11—C121.487 (2)
C3—H30.9300C11—H11A0.9700
C4—C51.4008 (18)C11—H11B0.9700
C4—H40.9300C12—C131.298 (2)
C5—C61.4050 (18)C12—H120.9300
C5—C71.4564 (18)C13—H13A0.9300
C6—H60.9300C13—H13B0.9300
C7—C81.3441 (19)C14—O21.422 (2)
C7—H70.9300C14—H14A0.9600
C8—C91.4827 (18)C14—H14B0.9600
C8—S11.7445 (13)C14—H14C0.9600
C9—O11.2079 (16)
O2—C1—C6124.67 (12)N1—C10—S2127.52 (11)
O2—C1—C2115.21 (13)N1—C10—S1110.74 (10)
C6—C1—C2120.12 (13)S2—C10—S1121.74 (8)
C3—C2—C1119.57 (13)N1—C11—C12114.59 (11)
C3—C2—H2120.2N1—C11—H11A108.6
C1—C2—H2120.2C12—C11—H11A108.6
C2—C3—C4121.39 (13)N1—C11—H11B108.6
C2—C3—H3119.3C12—C11—H11B108.6
C4—C3—H3119.3H11A—C11—H11B107.6
C3—C4—C5119.69 (14)C13—C12—C11127.06 (14)
C3—C4—H4120.2C13—C12—H12116.5
C5—C4—H4120.2C11—C12—H12116.5
C4—C5—C6118.87 (12)C12—C13—H13A120.0
C4—C5—C7124.13 (12)C12—C13—H13B120.0
C6—C5—C7117.00 (11)H13A—C13—H13B120.0
C1—C6—C5120.35 (12)O2—C14—H14A109.5
C1—C6—H6119.8O2—C14—H14B109.5
C5—C6—H6119.8H14A—C14—H14B109.5
C8—C7—C5130.67 (12)O2—C14—H14C109.5
C8—C7—H7114.7H14A—C14—H14C109.5
C5—C7—H7114.7H14B—C14—H14C109.5
C7—C8—C9120.39 (11)C10—N1—C9116.48 (11)
C7—C8—S1130.08 (10)C10—N1—C11123.16 (12)
C9—C8—S1109.53 (9)C9—N1—C11120.32 (11)
O1—C9—N1123.01 (13)C1—O2—C14118.75 (12)
O1—C9—C8126.62 (13)C8—S1—C1092.87 (6)
N1—C9—C8110.37 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S10.932.553.2497 (17)133
C13—H13A···O2i0.932.573.441 (2)157
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S10.932.553.2497 (17)133
C13—H13A···O2i0.932.573.441 (2)157
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO2S2
Mr291.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9841 (14), 8.3241 (18), 13.116 (3)
α, β, γ (°)89.276 (9), 75.614 (9), 72.095 (10)
V3)701.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.31 × 0.27 × 0.21
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.479, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
28065, 4522, 3618
Rint0.029
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.02
No. of reflections4522
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrappa, S., Kavitha, C. V., Shahabuddin, M. S., Vinaya, K., Ananda Kumar, C. S., Ranganatha, S. R., Raghavan, S. C. & Rangappa, K. S. (2009). Bioorg. Med. Chem. 17, 2576–2584.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746.  CrossRef PubMed Google Scholar
First citationMurugan, R., Anbazhagan, S. & Sriman Narayanan, S. (2009). Eur. J. Med. Chem. 44, 3272–3279.  CSD CrossRef PubMed Google Scholar
First citationMurugesan, V., Tiwari, V. S., Saxena, R., Tripathi, R., Paranjape, R., Kulkarni, S., Makwana, N., Suryawanshi, R. & Katti, S. B. (2011). Bioorg. Med. Chem. 19, 6919–6926.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Li, X., Li, D., Qu, G., Wang, J., Loiseau, P. M. & Fan, X. (2009). Bioorg. Med. Chem. Lett. 19, 6280–6283.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds