organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4-(3-chloro­phen­yl)-2-methyl-6-phenyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aPG and Research Dept of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 020, India, and bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 December 2015; accepted 25 January 2016; online 28 January 2016)

In the title compound, C24H24ClNO4, the di­hydro­pyridine ring adopts a flattened boat conformation. The plane of the pyridine ring subtends dihedral angles of 74.54 (6) and 85.69 (5)° with those of the phenyl and chloro­phenyl rings, respectively. The dihedral angle between the planes of the chloro­phenyl and phenyl rings is 72.20 (7)°. In the crystal, mol­ecules are linked into [100] C(6) chains by N—H⋯O hydrogen bonds. The chains are cross-linked by weak C—H⋯O inter­actions to generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic compounds containing pyridine rings are associated with diverse pharmacological properties such as anti­microbial (Patel et al., 2011[Patel, N. B., Agravat, S. N. & Shaikh, F. M. (2011). Med. Chem. Res. 20, 1033-1041.]), anti­cancer (Srivastava & Pandeya 2011[Srivastava, A. & Pandeya, S. N. (2011). Int. J. Curr. Pharm. Rev. Res. 4, 5-8.]), anti­convulsant (Paronikyan et al., 2002[Paronikyan, E. G., Noravyan, A. S., Dzhagatspanyan, I. A., Nazaryan, I. M. & Paronikyan, R. G. (2002). Pharm. Chem. J. 36, 465-467.]) and anti­mycobacterial activities (Mamolo et al., 2004[Mamolo, M. G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E. & Scialino, G. (2004). ARKIVOC, 5, 231-250.]). As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

The geometric parameters of the title mol­ecule (Fig. 1[link]) agree well with reported similar structure (Steiger et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. E70, o791-o792.]; Wang et al., 2013[Wang, K., Wang, Y., Yao, M. & Xu, D. (2013). Acta Cryst. E69, o785.]). The pyridine ring makes dihedral angles of 74.54 (6) and 85.69 (5)° with the phenyl and chloro­phenyl rings, respectively. The dihedral angle between chloro­phenyl and phenyl rings is 72.20 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

In the crystal, mol­ecules are linked into [100] C(6) chains by N—H⋯O hydrogen bonds. The chains are cross-linked by weak C—H⋯O inter­actions to generate a three-dimensional network (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.20 3.037 (3) 166
C24—H24B⋯O2i 0.96 2.51 3.365 (3) 148
C2—H2⋯O4ii 0.93 2.59 3.330 (3) 137
C1—H1A⋯O4iii 0.93 2.53 3.412 (3) 159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+1, -y, -z.
[Figure 2]
Figure 2
The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

To an ethano­lic solution of ammonium acetate ­(1.92 g, 0.025 M), ethyl benzoyl­acetate (4.32 ml, 0.025 M) was added followed by 3-chloro benzaldehyde (3.51 g, 0.025 M) and ethyl aceto­acetate (3.18ml, 0.025 M). The reaction mixture was taken in a round-bottom flask and refluxed for 24 h at 80° C and allowed to cool. The turbid solution obtained was kept over a magnetic stirrer and stirred for four h. The precipitate obtained was filtered, dried and recrystallized using absolute ethanol to obtain yellow blocks with a melting point of 160° C and a yield of 70%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H24ClNO4
Mr 425.89
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 7.621 (5), 10.753 (5), 13.138 (5)
α, β, γ (°) 92.102 (5), 93.806 (5), 91.275 (5)
V3) 1073.2 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.23 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.958, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 15576, 4480, 3491
Rint 0.022
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.02
No. of reflections 4480
No. of parameters 274
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To an ethanolic solution of ammonium acetate(1.92 g, 0.025 M), ethyl benzoylacetate (4.32 ml, 0.025 M) was added followed by 3-chloro benzaldehyde (3.51 g, 0.025 M) and ethyl acetoacetate (3.18 ml, 0.025 M). The reaction mixture was taken in a rund-bottom flask and refluxed for 24 h at 80° C and allowed to cool. The turbid solution obtained was kept over a magnetic stirrer and stirred for four hours. The precipitate obtained was filtered, dried and recrystallized using absolute ethanol to obtain yellow blocks with a melting point of 160° C and a yield of 70%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Heterocyclic compounds containing pyridine rings are associated with diverse pharmacological properties such as antimicrobial (Patel et al., 2011), anticancer (Srivastava & Pandeya 2011) anticonvulsant (Paronikyan et al., 2002) and antimycobacterial activities (Mamolo et al., 2004). As part of our stuides in this area, we now report the synthesis and structure of the title compound.

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Steiger et al., 2014; Wang et al., 2013). The pyridine ring makes a dihedral angles of 74.54 (6) and 85.69 (5)° with the phenyl and chlorophenyl rings, respectively. The dihedral angle between chlorophenyl and phenyl rings is 72.20 (7)°.

In the crystal, molecules are linked into [100] C(6) chains by N—H···O hydrogen bonds. The chains are cross-linked by weak C—H···O interactions to generate a three-dimensional network (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Diethyl 4-(3-chlorophenyl)-2-methyl-6-phenyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C24H24ClNO4Z = 2
Mr = 425.89F(000) = 448
Triclinic, P1Dx = 1.318 Mg m3
a = 7.621 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.753 (5) ÅCell parameters from 4480 reflections
c = 13.138 (5) Åθ = 1.6–26.6°
α = 92.102 (5)°µ = 0.21 mm1
β = 93.806 (5)°T = 295 K
γ = 91.275 (5)°Block, yellow
V = 1073.2 (10) Å30.23 × 0.17 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4480 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 26.6°, θmin = 1.6°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.958, Tmax = 0.977l = 1616
15576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.5427P]
where P = (Fo2 + 2Fc2)/3
4480 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H24ClNO4γ = 91.275 (5)°
Mr = 425.89V = 1073.2 (10) Å3
Triclinic, P1Z = 2
a = 7.621 (5) ÅMo Kα radiation
b = 10.753 (5) ŵ = 0.21 mm1
c = 13.138 (5) ÅT = 295 K
α = 92.102 (5)°0.23 × 0.17 × 0.11 mm
β = 93.806 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4480 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3491 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.977Rint = 0.022
15576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
4480 reflectionsΔρmin = 0.25 e Å3
274 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5155 (3)0.40545 (18)0.16421 (16)0.0429 (4)
H1A0.49980.36710.09960.051*
C20.5597 (3)0.53110 (19)0.17448 (19)0.0537 (5)
H20.57050.57740.11670.064*
C30.5876 (3)0.58753 (18)0.2697 (2)0.0570 (6)
H30.61590.67210.27650.068*
C40.5737 (3)0.51907 (19)0.35468 (19)0.0550 (6)
H40.59640.55690.41920.066*
C50.5261 (3)0.39396 (18)0.34544 (16)0.0436 (4)
H50.51520.34830.40350.052*
C60.4948 (2)0.33704 (15)0.24965 (14)0.0322 (4)
C70.4397 (2)0.20311 (15)0.23494 (13)0.0307 (4)
C80.2751 (2)0.15345 (15)0.23497 (13)0.0311 (4)
C90.1176 (2)0.22663 (16)0.24928 (14)0.0354 (4)
C100.0044 (3)0.4246 (2)0.2929 (2)0.0683 (7)
H10A0.06960.38960.34250.082*
H10B0.06610.43260.22930.082*
C110.0763 (4)0.5464 (3)0.3303 (4)0.1272 (17)
H11A0.14550.53740.39320.191*
H11B0.01840.60160.34160.191*
H11C0.14890.58020.28050.191*
C120.2418 (2)0.01385 (14)0.21610 (13)0.0310 (4)
H120.13040.00210.17480.037*
C130.2234 (2)0.05196 (15)0.31574 (13)0.0316 (4)
C140.0581 (2)0.08508 (16)0.34641 (14)0.0354 (4)
H140.04230.06880.30540.042*
C150.0437 (2)0.14221 (16)0.43803 (15)0.0389 (4)
C160.1879 (3)0.16631 (19)0.50181 (16)0.0476 (5)
H160.17560.20340.56390.057*
C170.3521 (3)0.1338 (2)0.47086 (17)0.0497 (5)
H170.45180.14930.51270.060*
C180.3702 (2)0.07876 (18)0.37911 (15)0.0421 (4)
H180.48210.05920.35920.051*
C190.3864 (2)0.04154 (15)0.15517 (13)0.0316 (4)
C200.3488 (2)0.15654 (16)0.09419 (14)0.0384 (4)
C210.1295 (3)0.3022 (2)0.0290 (2)0.0740 (8)
H21A0.18470.37440.05810.089*
H21B0.16860.29330.03920.089*
C220.0614 (4)0.3180 (3)0.0247 (3)0.0959 (11)
H22A0.09850.32840.09240.144*
H22B0.09640.39030.01750.144*
H22C0.11480.24580.00350.144*
C230.5485 (2)0.01250 (15)0.15995 (13)0.0310 (4)
C240.7087 (2)0.03756 (18)0.11409 (15)0.0416 (4)
H24A0.74280.11230.14710.062*
H24B0.80300.02330.12330.062*
H24C0.68280.05580.04250.062*
N10.57631 (18)0.12722 (13)0.20987 (11)0.0336 (3)
H10.68270.15260.22610.040*
O10.15107 (17)0.34518 (12)0.27709 (14)0.0575 (4)
O20.03089 (16)0.18390 (12)0.23772 (13)0.0522 (4)
O30.17836 (19)0.19126 (13)0.09204 (13)0.0574 (4)
O40.4528 (2)0.21604 (13)0.04750 (12)0.0564 (4)
Cl10.16512 (7)0.18564 (5)0.47366 (5)0.05796 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (10)0.0393 (10)0.0461 (11)0.0009 (8)0.0064 (8)0.0001 (8)
C20.0526 (12)0.0374 (10)0.0728 (15)0.0013 (9)0.0114 (11)0.0135 (10)
C30.0515 (12)0.0284 (9)0.0907 (18)0.0044 (8)0.0097 (12)0.0068 (11)
C40.0566 (13)0.0428 (11)0.0636 (14)0.0034 (9)0.0037 (10)0.0215 (10)
C50.0472 (11)0.0390 (10)0.0441 (11)0.0009 (8)0.0036 (9)0.0045 (8)
C60.0238 (8)0.0297 (8)0.0434 (10)0.0017 (6)0.0049 (7)0.0023 (7)
C70.0290 (8)0.0278 (8)0.0352 (9)0.0026 (6)0.0026 (7)0.0031 (7)
C80.0284 (8)0.0270 (8)0.0377 (9)0.0018 (6)0.0031 (7)0.0022 (7)
C90.0289 (8)0.0303 (8)0.0475 (11)0.0008 (7)0.0059 (7)0.0003 (7)
C100.0391 (11)0.0388 (11)0.128 (2)0.0119 (9)0.0172 (13)0.0155 (13)
C110.0606 (17)0.0581 (17)0.259 (5)0.0115 (14)0.015 (2)0.065 (2)
C120.0255 (8)0.0268 (8)0.0401 (10)0.0006 (6)0.0003 (7)0.0030 (7)
C130.0303 (8)0.0254 (8)0.0389 (10)0.0004 (6)0.0051 (7)0.0044 (7)
C140.0294 (8)0.0324 (9)0.0438 (10)0.0015 (7)0.0017 (7)0.0039 (7)
C150.0361 (9)0.0322 (9)0.0487 (11)0.0044 (7)0.0114 (8)0.0056 (8)
C160.0517 (12)0.0473 (11)0.0447 (11)0.0029 (9)0.0068 (9)0.0084 (9)
C170.0402 (10)0.0580 (12)0.0509 (12)0.0014 (9)0.0024 (9)0.0135 (10)
C180.0302 (9)0.0469 (11)0.0496 (11)0.0008 (8)0.0032 (8)0.0064 (9)
C190.0341 (8)0.0263 (8)0.0341 (9)0.0037 (7)0.0019 (7)0.0011 (7)
C200.0427 (10)0.0312 (9)0.0408 (10)0.0011 (8)0.0014 (8)0.0020 (8)
C210.0586 (14)0.0497 (13)0.110 (2)0.0095 (11)0.0022 (14)0.0384 (14)
C220.0627 (16)0.0712 (18)0.148 (3)0.0094 (14)0.0013 (18)0.0498 (19)
C230.0328 (8)0.0283 (8)0.0322 (9)0.0066 (6)0.0022 (7)0.0000 (7)
C240.0352 (9)0.0406 (10)0.0490 (11)0.0076 (8)0.0059 (8)0.0063 (8)
N10.0236 (7)0.0311 (7)0.0457 (9)0.0014 (5)0.0025 (6)0.0065 (6)
O10.0303 (7)0.0326 (7)0.1100 (13)0.0042 (5)0.0156 (7)0.0153 (7)
O20.0259 (6)0.0417 (7)0.0881 (11)0.0017 (5)0.0035 (6)0.0091 (7)
O30.0468 (8)0.0430 (8)0.0802 (11)0.0074 (6)0.0055 (7)0.0257 (7)
O40.0597 (9)0.0408 (8)0.0683 (10)0.0025 (7)0.0141 (8)0.0208 (7)
Cl10.0443 (3)0.0612 (3)0.0697 (4)0.0131 (2)0.0221 (2)0.0033 (3)
Geometric parameters (Å, º) top
C1—C61.380 (3)C13—C141.390 (2)
C1—C21.385 (3)C13—C181.392 (3)
C1—H1A0.9300C14—C151.381 (3)
C2—C31.372 (3)C14—H140.9300
C2—H20.9300C15—C161.373 (3)
C3—C41.368 (3)C15—Cl11.747 (2)
C3—H30.9300C16—C171.383 (3)
C4—C51.384 (3)C16—H160.9300
C4—H40.9300C17—C181.376 (3)
C5—C61.383 (3)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—C71.493 (2)C19—C231.350 (2)
C7—C81.353 (2)C19—C201.461 (2)
C7—N11.386 (2)C20—O41.214 (2)
C8—C91.469 (2)C20—O31.341 (2)
C8—C121.525 (2)C21—O31.454 (2)
C9—O21.210 (2)C21—C221.458 (4)
C9—O11.328 (2)C21—H21A0.9700
C10—O11.443 (2)C21—H21B0.9700
C10—C111.464 (3)C22—H22A0.9600
C10—H10A0.9700C22—H22B0.9600
C10—H10B0.9700C22—H22C0.9600
C11—H11A0.9600C23—N11.381 (2)
C11—H11B0.9600C23—C241.499 (2)
C11—H11C0.9600C24—H24A0.9600
C12—C191.523 (2)C24—H24B0.9600
C12—C131.524 (2)C24—H24C0.9600
C12—H120.9800N1—H10.8600
C6—C1—C2120.19 (19)C15—C14—C13119.76 (16)
C6—C1—H1A119.9C15—C14—H14120.1
C2—C1—H1A119.9C13—C14—H14120.1
C3—C2—C1120.2 (2)C16—C15—C14122.18 (17)
C3—C2—H2119.9C16—C15—Cl1118.95 (16)
C1—C2—H2119.9C14—C15—Cl1118.87 (14)
C4—C3—C2119.85 (19)C15—C16—C17117.91 (19)
C4—C3—H3120.1C15—C16—H16121.0
C2—C3—H3120.1C17—C16—H16121.0
C3—C4—C5120.5 (2)C18—C17—C16121.02 (18)
C3—C4—H4119.7C18—C17—H17119.5
C5—C4—H4119.7C16—C17—H17119.5
C6—C5—C4119.9 (2)C17—C18—C13120.86 (17)
C6—C5—H5120.1C17—C18—H18119.6
C4—C5—H5120.1C13—C18—H18119.6
C1—C6—C5119.33 (17)C23—C19—C20120.41 (16)
C1—C6—C7118.40 (16)C23—C19—C12120.59 (15)
C5—C6—C7122.26 (17)C20—C19—C12118.97 (15)
C8—C7—N1119.19 (15)O4—C20—O3121.31 (17)
C8—C7—C6127.54 (15)O4—C20—C19126.59 (17)
N1—C7—C6113.00 (14)O3—C20—C19112.08 (15)
C7—C8—C9124.08 (15)O3—C21—C22108.2 (2)
C7—C8—C12120.59 (14)O3—C21—H21A110.1
C9—C8—C12115.31 (14)C22—C21—H21A110.1
O2—C9—O1122.04 (16)O3—C21—H21B110.1
O2—C9—C8123.68 (16)C22—C21—H21B110.1
O1—C9—C8114.28 (14)H21A—C21—H21B108.4
O1—C10—C11107.45 (19)C21—C22—H22A109.5
O1—C10—H10A110.2C21—C22—H22B109.5
C11—C10—H10A110.2H22A—C22—H22B109.5
O1—C10—H10B110.2C21—C22—H22C109.5
C11—C10—H10B110.2H22A—C22—H22C109.5
H10A—C10—H10B108.5H22B—C22—H22C109.5
C10—C11—H11A109.5C19—C23—N1119.27 (15)
C10—C11—H11B109.5C19—C23—C24126.90 (16)
H11A—C11—H11B109.5N1—C23—C24113.82 (15)
C10—C11—H11C109.5C23—C24—H24A109.5
H11A—C11—H11C109.5C23—C24—H24B109.5
H11B—C11—H11C109.5H24A—C24—H24B109.5
C19—C12—C13111.77 (13)C23—C24—H24C109.5
C19—C12—C8110.17 (13)H24A—C24—H24C109.5
C13—C12—C8111.45 (14)H24B—C24—H24C109.5
C19—C12—H12107.8C23—N1—C7122.66 (14)
C13—C12—H12107.8C23—N1—H1118.7
C8—C12—H12107.8C7—N1—H1118.7
C14—C13—C18118.24 (17)C9—O1—C10118.31 (15)
C14—C13—C12120.53 (15)C20—O3—C21115.18 (16)
C18—C13—C12121.22 (15)
C6—C1—C2—C31.7 (3)C13—C14—C15—C161.0 (3)
C1—C2—C3—C40.7 (3)C13—C14—C15—Cl1178.77 (13)
C2—C3—C4—C52.1 (3)C14—C15—C16—C171.3 (3)
C3—C4—C5—C61.0 (3)Cl1—C15—C16—C17178.49 (16)
C2—C1—C6—C52.8 (3)C15—C16—C17—C180.1 (3)
C2—C1—C6—C7177.45 (17)C16—C17—C18—C131.3 (3)
C4—C5—C6—C11.5 (3)C14—C13—C18—C171.6 (3)
C4—C5—C6—C7178.78 (18)C12—C13—C18—C17177.41 (18)
C1—C6—C7—C896.3 (2)C13—C12—C19—C2397.89 (18)
C5—C6—C7—C883.9 (2)C8—C12—C19—C2326.6 (2)
C1—C6—C7—N177.6 (2)C13—C12—C19—C2080.00 (19)
C5—C6—C7—N1102.10 (19)C8—C12—C19—C20155.52 (15)
N1—C7—C8—C9173.11 (16)C23—C19—C20—O43.2 (3)
C6—C7—C8—C90.5 (3)C12—C19—C20—O4174.65 (18)
N1—C7—C8—C124.9 (3)C23—C19—C20—O3175.15 (16)
C6—C7—C8—C12178.51 (16)C12—C19—C20—O37.0 (2)
C7—C8—C9—O2171.24 (19)C20—C19—C23—N1173.75 (15)
C12—C8—C9—O26.8 (3)C12—C19—C23—N18.4 (2)
C7—C8—C9—O19.2 (3)C20—C19—C23—C244.9 (3)
C12—C8—C9—O1172.68 (16)C12—C19—C23—C24172.92 (16)
C7—C8—C12—C1924.8 (2)C19—C23—N1—C715.4 (2)
C9—C8—C12—C19153.40 (15)C24—C23—N1—C7163.49 (16)
C7—C8—C12—C1399.91 (18)C8—C7—N1—C2317.2 (3)
C9—C8—C12—C1381.93 (18)C6—C7—N1—C23157.34 (15)
C19—C12—C13—C14135.33 (16)O2—C9—O1—C100.5 (3)
C8—C12—C13—C14100.91 (17)C8—C9—O1—C10179.9 (2)
C19—C12—C13—C1845.7 (2)C11—C10—O1—C9175.7 (3)
C8—C12—C13—C1878.08 (19)O4—C20—O3—C211.1 (3)
C18—C13—C14—C150.4 (2)C19—C20—O3—C21177.43 (19)
C12—C13—C14—C15178.58 (15)C22—C21—O3—C20173.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.203.037 (3)166
C24—H24B···O2i0.962.513.365 (3)148
C2—H2···O4ii0.932.593.330 (3)137
C1—H1A···O4iii0.932.533.412 (3)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.203.037 (3)166
C24—H24B···O2i0.962.513.365 (3)148
C2—H2···O4ii0.932.593.330 (3)137
C1—H1A···O4iii0.932.533.412 (3)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H24ClNO4
Mr425.89
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.621 (5), 10.753 (5), 13.138 (5)
α, β, γ (°)92.102 (5), 93.806 (5), 91.275 (5)
V3)1073.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.23 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15576, 4480, 3491
Rint0.022
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.02
No. of reflections4480
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thankful to the college management and the Principal for their support and the necessary facilities provided.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMamolo, M. G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E. & Scialino, G. (2004). ARKIVOC, 5, 231–250.  Google Scholar
First citationParonikyan, E. G., Noravyan, A. S., Dzhagatspanyan, I. A., Nazaryan, I. M. & Paronikyan, R. G. (2002). Pharm. Chem. J. 36, 465–467.  CrossRef CAS Google Scholar
First citationPatel, N. B., Agravat, S. N. & Shaikh, F. M. (2011). Med. Chem. Res. 20, 1033–1041.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A. & Pandeya, S. N. (2011). Int. J. Curr. Pharm. Rev. Res. 4, 5–8.  Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. E70, o791–o792.  CrossRef IUCr Journals Google Scholar
First citationWang, K., Wang, Y., Yao, M. & Xu, D. (2013). Acta Cryst. E69, o785.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds