organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Methyl-2-[(6-methyl­pyridin-2-yl)amino]­pyridinium chloride chloro­form monosolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: mklass@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 December 2015; accepted 22 December 2015; online 12 January 2016)

In the title solvated mol­ecular salt, C12H14N3+·Cl·CHCl3, the aromatic rings of the cation are nearly coplanar [dihedral angle = 6.30 (5)°] and an intra­molecular N—H⋯N hydrogen bond occurs. In the crystal, the chloride ion accepts an N—H⋯Cl hydrogen bond from the cation and a C—H⋯Cl inter­action from the solvent mol­ecule. These trimeric units are linked by cation-to-anion C—H⋯Cl inter­actions into chains that propagate in the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is shown in Fig. 1[link]. The hydrogen bonding (Table 1[link]) in the crystal structure is illustrated in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N1 0.88 1.92 2.602 (2) 133
N2—H2N⋯Cl1 0.88 2.20 3.0771 (15) 177
C5—H5⋯Cl2i 0.95 2.92 3.7969 (19) 154
C13—H13⋯Cl1 1.00 2.42 3.396 (2) 164
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 1]
Figure 1
Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bonding is shown as dashed lines.
[Figure 2]
Figure 2
Crystal structure of the title compound with view along the crystallographic a axis. Hydrogen bonding is shown as dashed lines.

For the related crystal structures of 2-(pyridin-1-ylamino)­pyridinium iodide chloro­form monosolvatesolvate, of 2-(pyridin-1-ylamino)­pyridinium chloride dihydrate and of 2-(pyridin-1-ylamino)­pyridinium chloride monohydrate, see: Chernychev et al. (2014[Chernychev, A. N., Morozov, D., Mutanen, J., Kukushkin, V. Y., Groenhof, G. & Haukka, M. (2014). J. Mater. Chem. C2, 8285-8294.]) and Bock et al. (1998[Bock, H., Schödel, H., Van, T. T. H., Dienelt, R. & Gluth, M. (1998). J. Prakt. Chem. 340, 722-732.]), respectively.

Synthesis and crystallization

Bis-(6-methylpyridin-2-yl)amine was synthesized according to the procedure given by Silberg et al. (2001[Silberg, J., Schareina, T., Kempe, R., Wurst, K. & Buchmeiser, M. R. (2001). J. Organomet. Chem. 622, 6-18.]). The compound was dissolved in dilute hydro­chloric acid and extracted with di­chloro­methane. After solvent removal it was recrystallized from chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H12N3+·Cl·CH3Cl
Mr 355.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 7.0474 (3), 9.7775 (5), 12.8695 (6)
α, β, γ (°) 71.744 (3), 89.177 (4), 72.582 (4)
V3) 800.44 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.14 × 0.10 × 0.06
 
Data collection
Diffractometer Stoe IPDS2 diffractometer
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.802, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 11648, 3487, 2885
Rint 0.029
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.07
No. of reflections 3487
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.50
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and Crystallization top

Bis-(6-methyl-pyridin-2-yl)amine was synthesized according to the procedure given by Silberg et al. (2001). The compound was dissolved in dilute hydro­chloric acid and extracted with di­chloro­methane. After solvent removal it was recrystallized from chloro­form solution.

Refinement top

The C—H H and the N—H H atom attached to N3 atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Ueq(H) = 1.2 Ueq(C,N) (1.5 for methyl H atoms and the N—H H atom) using a riding model with C—H = 0.95 Å for aromatic, C—H = 0.98 Å for methyl and N—H = 0.88 Å for the N—H H atom. The N—H H atom attached to N2 was located in difference map, its bond lengths set to an ideal value of N—H = 0.88 Å and finally it was refined isotropic with Ueq(H) = 1.2 Ueq(N) using a riding model.

Related literature top

For the related crystal structures of 2-(pyridin-1yl–amino)pyridinium iodide chloroform solvate, of 2-(pyridin-1yl–amino)pyridinium chloride dihydrate and of 2-(pyridin-1yl–amino)pyridinium chloride monohydrate solvate, see: Chernychev et al. (2014) and Bock et al. (1998), respectively.

Experimental top

Bis-(6-methyl-pyridin-2-yl)amine was synthesized according to the procedure given by Silberg et al. (2001). The compound was dissolved in dilute hydrochloric acid and extracted with dichloromethane. After solvent removal it was recrystallized from chloroform solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound is shown in Fig. 1. The hydrogen bonding (Table 1) in the crystal structure is illustrated in Fig. 2.

For the related crystal structures of 2-(pyridin-1yl–amino)pyridinium iodide chloroform solvate, of 2-(pyridin-1yl–amino)pyridinium chloride dihydrate and of 2-(pyridin-1yl–amino)pyridinium chloride monohydrate solvate, see: Chernychev et al. (2014) and Bock et al. (1998), respectively.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the crystallographic a axis. Hydrogen bonding is shown as dashed lines.
6-Methyl-2-[(6-methylpyridin-2-yl)amino]pyridinium chloride chloroform monosolvate top
Crystal data top
C12H12N3+·Cl·CH3ClZ = 2
Mr = 355.08F(000) = 364
Triclinic, P1Dx = 1.473 Mg m3
a = 7.0474 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7775 (5) ÅCell parameters from 11648 reflections
c = 12.8695 (6) Åθ = 1.7–27.0°
α = 71.744 (3)°µ = 0.73 mm1
β = 89.177 (4)°T = 170 K
γ = 72.582 (4)°Block, colorless
V = 800.44 (7) Å30.14 × 0.10 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2885 reflections with I > 2σ(I)
ω scanRint = 0.029
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe, 2008)
θmax = 27.0°, θmin = 1.7°
Tmin = 0.802, Tmax = 0.941h = 99
11648 measured reflectionsk = 1212
3487 independent reflectionsl = 1416
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1904P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.37 e Å3
3487 reflectionsΔρmin = 0.50 e Å3
184 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.012 (4)
Crystal data top
C12H12N3+·Cl·CH3Clγ = 72.582 (4)°
Mr = 355.08V = 800.44 (7) Å3
Triclinic, P1Z = 2
a = 7.0474 (3) ÅMo Kα radiation
b = 9.7775 (5) ŵ = 0.73 mm1
c = 12.8695 (6) ÅT = 170 K
α = 71.744 (3)°0.14 × 0.10 × 0.06 mm
β = 89.177 (4)°
Data collection top
Stoe IPDS-2
diffractometer
3487 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe, 2008)
2885 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.941Rint = 0.029
11648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3487 reflectionsΔρmin = 0.50 e Å3
184 parameters
Special details top

Experimental. X-RED and X-SHAPE (STOE, 2008)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2170 (2)0.56775 (18)0.42537 (14)0.0307 (3)
N10.1363 (2)0.62988 (15)0.50101 (12)0.0311 (3)
C20.0123 (2)0.77434 (18)0.46826 (15)0.0329 (4)
C30.0301 (3)0.85842 (19)0.35861 (16)0.0375 (4)
H30.11690.95980.33650.045*
C40.0558 (3)0.7931 (2)0.28052 (16)0.0382 (4)
H40.02820.85010.20460.046*
C50.1808 (3)0.6459 (2)0.31318 (15)0.0347 (4)
H50.24010.59930.26100.042*
C60.0711 (3)0.8329 (2)0.55911 (17)0.0401 (4)
H6A0.15840.77590.59790.060*
H6B0.14800.94050.52840.060*
H6C0.03860.82080.61060.060*
N20.3428 (2)0.41937 (15)0.46120 (12)0.0324 (3)
H2N0.39630.38120.41020.049*
C70.3893 (2)0.32334 (18)0.56621 (14)0.0313 (3)
N30.3260 (2)0.37459 (15)0.64998 (12)0.0318 (3)
H3N0.25600.47060.63500.038*
C80.3655 (3)0.2848 (2)0.75685 (15)0.0355 (4)
C90.4732 (3)0.1354 (2)0.78009 (16)0.0398 (4)
H90.50210.07040.85410.048*
C100.5407 (3)0.0785 (2)0.69463 (17)0.0403 (4)
H100.61450.02550.71090.048*
C110.5014 (3)0.17111 (19)0.58816 (16)0.0363 (4)
H110.54920.13310.53010.044*
C120.2855 (3)0.3610 (2)0.83920 (16)0.0458 (4)
H12A0.31300.28570.91290.069*
H12B0.14100.40920.82270.069*
H12C0.34980.43800.83620.069*
Cl10.53676 (8)0.27483 (5)0.28940 (4)0.04733 (15)
C130.8018 (3)0.2797 (2)0.06653 (17)0.0480 (5)
H130.70650.29780.12270.058*
Cl20.74696 (8)0.44562 (6)0.04674 (4)0.05151 (16)
Cl31.04500 (10)0.23050 (10)0.12560 (6)0.0780 (2)
Cl40.77072 (12)0.13078 (7)0.02606 (6)0.0723 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (8)0.0325 (8)0.0352 (9)0.0113 (6)0.0055 (7)0.0147 (7)
N10.0294 (7)0.0312 (7)0.0359 (7)0.0096 (5)0.0065 (6)0.0154 (6)
C20.0285 (8)0.0302 (8)0.0432 (10)0.0098 (6)0.0051 (7)0.0157 (7)
C30.0335 (9)0.0324 (8)0.0453 (10)0.0100 (7)0.0010 (7)0.0111 (7)
C40.0387 (9)0.0394 (9)0.0355 (9)0.0142 (7)0.0002 (7)0.0089 (7)
C50.0360 (9)0.0390 (9)0.0328 (9)0.0137 (7)0.0062 (7)0.0147 (7)
C60.0390 (9)0.0353 (9)0.0512 (11)0.0103 (7)0.0107 (8)0.0226 (8)
N20.0344 (7)0.0325 (7)0.0325 (7)0.0080 (6)0.0078 (6)0.0160 (6)
C70.0281 (8)0.0330 (8)0.0365 (9)0.0108 (6)0.0058 (7)0.0152 (7)
N30.0317 (7)0.0306 (7)0.0348 (7)0.0094 (5)0.0061 (6)0.0133 (6)
C80.0327 (8)0.0396 (9)0.0360 (9)0.0145 (7)0.0045 (7)0.0116 (7)
C90.0381 (9)0.0383 (9)0.0392 (10)0.0121 (7)0.0003 (8)0.0070 (8)
C100.0364 (9)0.0323 (8)0.0499 (11)0.0077 (7)0.0013 (8)0.0128 (8)
C110.0314 (8)0.0346 (8)0.0451 (10)0.0074 (7)0.0024 (7)0.0186 (8)
C120.0497 (11)0.0521 (11)0.0367 (10)0.0149 (9)0.0095 (8)0.0168 (9)
Cl10.0594 (3)0.0437 (3)0.0439 (3)0.0157 (2)0.0212 (2)0.0220 (2)
C130.0480 (11)0.0542 (11)0.0368 (10)0.0102 (9)0.0081 (8)0.0135 (9)
Cl20.0574 (3)0.0499 (3)0.0397 (3)0.0087 (2)0.0098 (2)0.0119 (2)
Cl30.0540 (4)0.1047 (5)0.0553 (4)0.0188 (3)0.0076 (3)0.0035 (3)
Cl40.0938 (5)0.0535 (3)0.0663 (4)0.0184 (3)0.0004 (4)0.0188 (3)
Geometric parameters (Å, º) top
C1—N11.337 (2)C7—C111.399 (2)
C1—N21.388 (2)N3—C81.359 (2)
C1—C51.391 (2)N3—H3N0.8800
N1—C21.355 (2)C8—C91.366 (3)
C2—C31.376 (3)C8—C121.491 (3)
C2—C61.496 (3)C9—C101.398 (3)
C3—C41.392 (3)C9—H90.9500
C3—H30.9500C10—C111.363 (3)
C4—C51.377 (3)C10—H100.9500
C4—H40.9500C11—H110.9500
C5—H50.9500C12—H12A0.9800
C6—H6A0.9800C12—H12B0.9800
C6—H6B0.9800C12—H12C0.9800
C6—H6C0.9800C13—Cl31.749 (2)
N2—C71.360 (2)C13—Cl21.751 (2)
N2—H2N0.8800C13—Cl41.763 (2)
C7—N31.343 (2)C13—H131.0000
N1—C1—N2118.11 (15)C7—N3—C8122.93 (15)
N1—C1—C5122.75 (15)C7—N3—H3N118.5
N2—C1—C5119.14 (15)C8—N3—H3N118.5
C1—N1—C2119.32 (15)N3—C8—C9118.58 (17)
N1—C2—C3121.07 (16)N3—C8—C12115.71 (16)
N1—C2—C6115.17 (16)C9—C8—C12125.71 (18)
C3—C2—C6123.76 (16)C8—C9—C10119.86 (18)
C2—C3—C4119.17 (16)C8—C9—H9120.1
C2—C3—H3120.4C10—C9—H9120.1
C4—C3—H3120.4C11—C10—C9120.55 (17)
C5—C4—C3120.08 (17)C11—C10—H10119.7
C5—C4—H4120.0C9—C10—H10119.7
C3—C4—H4120.0C10—C11—C7118.61 (17)
C4—C5—C1117.60 (16)C10—C11—H11120.7
C4—C5—H5121.2C7—C11—H11120.7
C1—C5—H5121.2C8—C12—H12A109.5
C2—C6—H6A109.5C8—C12—H12B109.5
C2—C6—H6B109.5H12A—C12—H12B109.5
H6A—C6—H6B109.5C8—C12—H12C109.5
C2—C6—H6C109.5H12A—C12—H12C109.5
H6A—C6—H6C109.5H12B—C12—H12C109.5
H6B—C6—H6C109.5Cl3—C13—Cl2111.00 (12)
C7—N2—C1127.70 (14)Cl3—C13—Cl4110.30 (12)
C7—N2—H2N115.6Cl2—C13—Cl4109.85 (12)
C1—N2—H2N116.7Cl3—C13—H13108.5
N3—C7—N2119.76 (15)Cl2—C13—H13108.5
N3—C7—C11119.47 (16)Cl4—C13—H13108.5
N2—C7—C11120.77 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N10.881.922.602 (2)133
N2—H2N···Cl10.882.203.0771 (15)177
C5—H5···Cl2i0.952.923.7969 (19)154
C13—H13···Cl11.002.423.396 (2)164
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N10.881.922.602 (2)133
N2—H2N···Cl10.882.203.0771 (15)177
C5—H5···Cl2i0.952.923.7969 (19)154
C13—H13···Cl11.002.423.396 (2)164
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12N3+·Cl·CH3Cl
Mr355.08
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)7.0474 (3), 9.7775 (5), 12.8695 (6)
α, β, γ (°)71.744 (3), 89.177 (4), 72.582 (4)
V3)800.44 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.14 × 0.10 × 0.06
Data collection
DiffractometerStoe IPDS2
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe, 2008)
Tmin, Tmax0.802, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11648, 3487, 2885
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.07
No. of reflections3487
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.50

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the DFG (SFB 677 Function by Switching). We gratefully acknowledge financial support by the State of Schleswig–Holstein.

References

First citationBock, H., Schödel, H., Van, T. T. H., Dienelt, R. & Gluth, M. (1998). J. Prakt. Chem. 340, 722–732.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChernychev, A. N., Morozov, D., Mutanen, J., Kukushkin, V. Y., Groenhof, G. & Haukka, M. (2014). J. Mater. Chem. C2, 8285–8294.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilberg, J., Schareina, T., Kempe, R., Wurst, K. & Buchmeiser, M. R. (2001). J. Organomet. Chem. 622, 6–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds