organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1-(2,5-Di­chloro­anilino)-5-methyl-1H-1,2,3-triazol-4-yl]methanol

aUniversidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduaçõ em Química, 24020-141 Niterói, RJ, Brazil, bUnidade Universitária de Farmácia, Fundaçõ Centro Universitário Estadual da Zona Oeste, 23070-200, Rio de Janeiro, RJ, Brazil, cFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, dDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, UK, and eCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 December 2015; accepted 20 December 2015; online 12 January 2016)

In the title compound, C10H10Cl2N4O, the hy­droxy group and benzene ring are disposed to opposite sides of the central 1,2,3-triazolyl ring. The dihedral angle between the five- and six-membered rings is 87.51 (12)°, and the C—O bond of the hy­droxy group lies almost normal to the plane of the 5-membered ring [N—C—C—O = −93.2 (2)°]. An intra­molecular amino-N—H⋯Cl hydrogen bond is noted. In the extended structure, supra­molecular layers in the ab plane are formed via hy­droxy-O—H⋯N(ring) and amine-N—H⋯O(hy­droxy) hydrogen bonds. The layers are connected along the c axis by ππ contacts between benzene rings [inter-centroid distance = 3.7789 (13) Å] and by C—Cl⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Triazole derivatives attract continuing inter­est as a result of their biological activities (Dehaen & Bakulev, 2014[Dehaen, W. & Bakulev, V. A. (2014). Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, Vol. 40. Berlin Heidleberg: Springer-Verlag.]). Diseases that have been evaluated recently include tuberculosis (Jordão et al., 2011[Jordão, A. K., Sathler, P. C., Ferreira, V. F., Campos, V. R., de Souza, M. C. B. V., Castro, H. C., Lannes, A., Lourenco, A., Rodrigues, C. R., Bello, M. L., Lourenco, M. C. S., Carvalho, G. S. L., Almeida, M. C. B. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 5605-5611.]), and the susceptibility of Cantagalo virus to 1,2,3-triazoles has also been investigated (Jordão et al., 2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C., Almeida, M. C., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]). These studies have provided a number of crystals enabling systematic studies of the influence of the electronegativity of aryl-bound substituents upon crystal packing patterns (Cunha et al., 2013[Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L., Tan, P. A., Bettens, R. P. A., Seth, S. K. & Tiekink, E. R. T. (2013). CrystEngComm, 15, 4917-4929.]; Seth et al., 2015[Seth, S. K., Lee, V. S., Yana, J., Zain, S. M., Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2015). CrystEngComm, 17, 2255-2266.]).

The central 1,2,3-triazolyl ring (r.m.s. deviation = 0.006 Å) in the title compound, Fig. 1[link], is flanked by C1-bound hy­droxy­methyl and N2-bound amino-2,5-di­chloro­benzene substituents which lie to opposite sides of the ring. The C—O grouping of the hydroxyl group lies almost normal to the ring with the N4—C1—C10—O1 torsion angle being −93.2 (2)°. The dihedral angle between the triazolyl and benzene rings is 87.51 (12)°, with the latter being almost perpendicular, forming a N2—N1—C4—C5 torsion angle of −8.9 (3)°. This alignment allows for the formation of an intra­molecular amino-N—H⋯Cl hydrogen bond, Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl2 0.87 (2) 2.67 (2) 2.9530 (19) 100 (2)
O1—H1O⋯N4i 0.84 (2) 2.01 (2) 2.836 (2) 169 (2)
N1—H1N⋯O1ii 0.87 (2) 2.01 (2) 2.848 (3) 165 (2)
C6—Cl1⋯Cg1iii 1.74 (1) 3.73 (1) 5.411 (3) 161 (1)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

In the mol­ecular packing, the hy­droxy group is pivotal in the hydrogen-bonding scheme, forming donor hy­droxy-O—H⋯N(ring) and acceptor amine-N—H⋯O(hy­droxy) inter­actions, Table 1[link]. The latter inter­actions assemble mol­ecules into dimers and these are in turn connected into supra­molecular layers in the ab plane by the former inter­actions. The connections between layers are afforded by inter-digitating benzene rings via ππ contacts [inter-centroid distance = 3.7789 (13) Å for symmetry operation 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z] and C—Cl⋯π inter­actions, Table 1[link] and Fig. 2[link].

[Figure 2]
Figure 2
A view of the unit cell contents of the title compound shown in projection down the b axis. The O—H⋯O, N—H⋯O, ππ and C—Cl⋯π inter­actions are shown as orange, blue, green and brown dashed lines, respectively.

Synthesis and crystallization

A solution of the desired 4-carbeth­oxy-triazole (Cunha et al., 2013[Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L., Tan, P. A., Bettens, R. P. A., Seth, S. K. & Tiekink, E. R. T. (2013). CrystEngComm, 15, 4917-4929.]) (1.00 mmol) in anhydrous THF (5 ml) was added dropwise to a suspension of LiAlH4 (2 mmol) in anhydrous THF (10 ml) under a nitro­gen atmosphere at 0°C. The reaction mixture was stirred at room temperature for 2 h, water (10 ml) was added, the aqueous layer acidified to pH 1 with 1 M HCl, and extracted with CH2Cl2 (3 ×). The organic extracts were combined, dried with Na2SO4, and concentrated under reduced pressure. The resulting residue was washed with hexa­ne/di­chloro­methane (3:1) and dried under vacuum. 44% yield. Crystals were obtained from the slow evaporation of its methanol solution. M.p. 197°C. IR (KBr) νmax (cm−1): 3184 (N—H); 3096 (O—H). 1H NMR (300 MHz, DMSO-d6) δ: 2.18 (s, 3H, CH3), 4.55 (d, 2H, J = 5.6 Hz, CH2OH), 5.19 (t, 1H, J = 5.6 Hz, CH2OH), 5.80 (d, 1H, J = 2.4 Hz, H5), 7.00 (dd, 1H, J = 2.4 & 8.5 Hz, H7), 7.50 (d, 1H, J = 8.5 Hz, H8), 10.21 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 6.8 (CH3), 54.8 (CH2), 112.4 (C5), 116.4 (C6), 121.5 (C7), 131.3 (C8), 132.0 (C9), 132.7 (C1or C2), 143.6 (C1 or C2), 143.7 (C4). Anal. calcd. For C10H10Cl2N4O: C, 43.98; H, 3.69; N, 20.51. Found: C, 44.01; H, 3.72; N, 20.09.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H10Cl2N4O
Mr 273.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 12.1802 (5), 7.3646 (4), 13.9001 (8)
β (°) 112.276 (3)
V3) 1153.81 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.26 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12461, 2645, 1963
Rint 0.062
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.06
No. of reflections 2645
No. of parameters 161
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.33, −0.40
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Structural commentary top

1,2,3-Triazoles derivatives attract continuing inter­est as a result of their biological activities (Dehaen & Bakulev, 2014). Diseases that have been evaluated recently include tuberculosis (Jordão et al., 2011), and the susceptibility of Cantagalo virus to 1,2,3-triazoles has also been investigated (Jordão et al., 2009). These studies have provided a number of crystals enabling systematic studies of the influence of the electronegativity of aryl-bound substituents upon crystal packing patterns (Cunha et al., 2013; Seth et al., 2015).

The central 1,2,3-triazolyl ring (r.m.s. deviation = 0.006 Å) in the title compound, Fig. 1, is flanked by C1-bound hy­droxy­methyl and N2-bound amino-2,5-di­chloro­benzene substituents which lie to opposite sides of the ring. The hydroxyl group lie almost normal to the ring with the N4—C1—C10—O1 torsion angle being -93.2 (2)°. The dihedral angle between the triazolyl and benzene rings is 87.51 (12)°, with the latter being almost perpendicular, forming a N2—N1—C4—C5 torsion angle of -8.9 (3)°. This alignment allows for the formation of an intra­molecular amino-N—H···Cl hydrogen bond, Table 1.

In the molecular packing, the hy­droxy group is pivotal in the hydrogen bonding scheme, forming donor hy­droxy-O—H···N(ring) and acceptor amine-N—H···O(hy­droxy) inter­actions, Table 1. The latter inter­actions assemble molecules into dimers and these are in turn connected into supra­molecular layers in the ab plane by the former inter­actions. The connections between layers are afforded by inter-digitating benzene rings via ππ contacts (inter-centroid distance = 3.7789 (13) Å for symmetry operation 1-x, -1/2+y, 3/2-z) and C—Cl···π inter­actions, Table 1 and Fig. 2.

Synthesis and crystallization top

A solution of the desired 4-carbeth­oxy-triazole (Cunha et al., 2013) (1.00 mmol) in anhydrous THF (5 ml) was added drop-wise to a suspension of LiAlH4 (2 mmol) in anhydrous THF (10 ml) under a nitro­gen atmosphere at 0°C. The reaction mixture was stirred at room temperature for 2 h, water (10 ml) was added, the aqueous layer acidified to pH 1 with 1 M HCl, and extracted with CHCl2 (3 ×). The organic extracts were combined, dried with Na2SO4, and concentrated under reduced pressure. The resulting residue was washed with hexane/di­chloro­methane (3:1) and dried under vacuum. 44% yield. Crystals were obtained from the slow evaporation of its methanol solution. M.pt: 197 °C. IR (KBr) νmax (cm-1): 3184 (N—H); 3096 (O—H). 1H NMR (300 MHz, DMSO-d6) δ: 2.18 (s, 3H, CH3), 4.55 (d, 2H, J = 5.6 Hz, CH2OH), 5.19 (t, 1H, J = 5.6 Hz, CH2OH), 5.80 (d, 1H, J = 2.4 Hz, H5), 7.00 (dd, 1H, J = 2.4 & 8.5 Hz, H7), 7.50 (d, 1H, J = 8.5 Hz, H8), 10.21 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 6.8 (CH3), 54.8 (CH2), 112.4 (C5), 116.4 (C6), 121.5 (C7), 131.3 (C8), 132.0 (C9), 132.7 (C1or C2), 143.6 (C1 or C2), 143.7 (C4). Anal. Calcd. For C10H10Cl2N4O: C, 43.98; H, 3.69; N, 20.51. Found: C, 44.01; H, 3.72; N, 20.09.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The oxygen and nitro­gen-bound H-atoms were located in a difference Fourier map but were refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.5Uequiv(O) or 1.2Uequiv(N).

Experimental top

A solution of the desired 4-carbethoxy-triazole (Cunha et al., 2013) (1.00 mmol) in anhydrous THF (5 ml) was added dropwise to a suspension of LiAlH4 (2 mmol) in anhydrous THF (10 ml) under a nitrogen atmosphere at 0°C. The reaction mixture was stirred at room temperature for 2 h, water (10 ml) was added, the aqueous layer acidified to pH 1 with 1 M HCl, and extracted with CHCl2 (3 ×). The organic extracts were combined, dried with Na2SO4, and concentrated under reduced pressure. The resulting residue was washed with hexane/dichloromethane (3:1) and dried under vacuum. 44% yield. Crystals were obtained from the slow evaporation of its methanol solution. M.p. 197°C. IR (KBr) νmax (cm-1): 3184 (N—H); 3096 (O—H). 1H NMR (300 MHz, DMSO-d6) δ: 2.18 (s, 3H, CH3), 4.55 (d, 2H, J = 5.6 Hz, CH2OH), 5.19 (t, 1H, J = 5.6 Hz, CH2OH), 5.80 (d, 1H, J = 2.4 Hz, H5), 7.00 (dd, 1H, J = 2.4 & 8.5 Hz, H7), 7.50 (d, 1H, J = 8.5 Hz, H8), 10.21 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 6.8 (CH3), 54.8 (CH2), 112.4 (C5), 116.4 (C6), 121.5 (C7), 131.3 (C8), 132.0 (C9), 132.7 (C1or C2), 143.6 (C1 or C2), 143.7 (C4). Anal. calcd. For C10H10Cl2N4O: C, 43.98; H, 3.69; N, 20.51. Found: C, 44.01; H, 3.72; N, 20.09.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

1,2,3-Triazoles derivatives attract continuing interest as a result of their biological activities (Dehaen & Bakulev, 2014). Diseases that have been evaluated recently include tuberculosis (Jordão et al., 2011), and the susceptibility of Cantagalo virus to 1,2,3-triazoles has also been investigated (Jordão et al., 2009). These studies have provided a number of crystals enabling systematic studies of the influence of the electronegativity of aryl-bound substituents upon crystal packing patterns (Cunha et al., 2013; Seth et al., 2015).

The central 1,2,3-triazolyl ring (r.m.s. deviation = 0.006 Å) in the title compound, Fig. 1, is flanked by C1-bound hydroxymethyl and N2-bound amino-2,5-dichlorobenzene substituents which lie to opposite sides of the ring. The C—O grouping of the hydroxyl group lies almost normal to the ring with the N4—C1—C10—O1 torsion angle being -93.2 (2)°. The dihedral angle between the triazolyl and benzene rings is 87.51 (12)°, with the latter being almost perpendicular, forming a N2—N1—C4—C5 torsion angle of -8.9 (3)°. This alignment allows for the formation of an intramolecular amino-N—H···Cl hydrogen bond, Table 1.

In the molecular packing, the hydroxy group is pivotal in the hydrogen-bonding scheme, forming donor hydroxy-O—H···N(ring) and acceptor amine-N—H···O(hydroxy) interactions, Table 1. The latter interactions assemble molecules into dimers and these are in turn connected into supramolecular layers in the ab plane by the former interactions. The connections between layers are afforded by inter-digitating benzene rings via ππ contacts [inter-centroid distance = 3.7789 (13) Å for symmetry operation 1 - x, -1/2 + y, 3/2 - z] and C—Cl···π interactions, Table 1 and Fig. 2.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit cell contents of the title compound shown in projection down the b axis. The O—H···O, N—H···O, ππ and C—Cl···π interactions are shown as orange, blue, green and brown dashed lines, respectively.
[1-(2,5-Dichloroanilino)-5-methyl-1H-1,2,3-triazol-4-yl]methanol top
Crystal data top
C10H10Cl2N4OF(000) = 560
Mr = 273.12Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 12.1802 (5) ÅCell parameters from 2686 reflections
b = 7.3646 (4) Åθ = 2.9–27.5°
c = 13.9001 (8) ŵ = 0.55 mm1
β = 112.276 (3)°T = 120 K
V = 1153.81 (11) Å3Block, colourless
Z = 40.26 × 0.18 × 0.16 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
2645 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ & ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.768, Tmax = 1.000l = 1817
12461 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.5445P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.33 e Å3
2645 reflectionsΔρmin = 0.40 e Å3
161 parameters
Crystal data top
C10H10Cl2N4OV = 1153.81 (11) Å3
Mr = 273.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1802 (5) ŵ = 0.55 mm1
b = 7.3646 (4) ÅT = 120 K
c = 13.9001 (8) Å0.26 × 0.18 × 0.16 mm
β = 112.276 (3)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
2645 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1963 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 1.000Rint = 0.062
12461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043161 parameters
wR(F2) = 0.1172 restraints
S = 1.06Δρmax = 0.33 e Å3
2645 reflectionsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37932 (5)0.38765 (8)0.87969 (5)0.02943 (19)
Cl20.68215 (5)0.39438 (8)0.60698 (4)0.02549 (18)
O11.07381 (14)0.3879 (2)1.25648 (13)0.0289 (4)
H1O1.098 (2)0.319 (3)1.3086 (16)0.043*
N10.78023 (15)0.4396 (3)0.83509 (14)0.0188 (4)
H1N0.8125 (19)0.503 (3)0.8004 (17)0.023*
N20.82967 (15)0.4789 (2)0.94015 (13)0.0163 (4)
N30.83152 (15)0.6498 (2)0.97786 (14)0.0190 (4)
N40.87624 (15)0.6334 (2)1.07929 (14)0.0190 (4)
C10.90092 (17)0.4551 (3)1.10644 (16)0.0177 (5)
C20.87186 (17)0.3534 (3)1.01696 (17)0.0175 (5)
C30.8799 (2)0.1582 (3)0.99578 (19)0.0249 (5)
H3A0.80160.11360.95020.037*
H3B0.90700.09061.06140.037*
H3C0.93640.14100.96170.037*
C40.65537 (18)0.4209 (3)0.79153 (16)0.0164 (4)
C50.58710 (19)0.4161 (3)0.85238 (17)0.0190 (5)
H50.62340.42820.92580.023*
C60.46531 (19)0.3934 (3)0.80412 (18)0.0195 (5)
C70.40899 (19)0.3747 (3)0.69811 (18)0.0227 (5)
H70.32520.36150.66700.027*
C80.4772 (2)0.3757 (3)0.63790 (18)0.0231 (5)
H80.44040.36140.56470.028*
C90.59873 (19)0.3976 (3)0.68423 (17)0.0185 (5)
C100.94792 (19)0.3937 (3)1.21697 (17)0.0211 (5)
H10A0.92150.47821.25920.025*
H10B0.91640.27151.22160.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0241 (3)0.0385 (4)0.0300 (4)0.0026 (2)0.0151 (3)0.0009 (3)
Cl20.0269 (3)0.0356 (4)0.0139 (3)0.0017 (2)0.0077 (2)0.0017 (2)
O10.0178 (8)0.0412 (11)0.0218 (9)0.0036 (7)0.0011 (7)0.0160 (7)
N10.0197 (9)0.0277 (10)0.0083 (9)0.0043 (7)0.0045 (7)0.0016 (7)
N20.0177 (8)0.0190 (10)0.0111 (9)0.0001 (7)0.0041 (7)0.0008 (7)
N30.0193 (9)0.0213 (10)0.0143 (10)0.0011 (7)0.0038 (7)0.0008 (7)
N40.0195 (9)0.0230 (10)0.0128 (10)0.0006 (7)0.0043 (7)0.0009 (7)
C10.0149 (10)0.0225 (11)0.0155 (11)0.0018 (8)0.0055 (8)0.0003 (9)
C20.0147 (10)0.0228 (12)0.0151 (11)0.0004 (8)0.0060 (8)0.0020 (9)
C30.0324 (13)0.0213 (12)0.0226 (13)0.0030 (9)0.0122 (10)0.0026 (10)
C40.0161 (10)0.0163 (10)0.0142 (11)0.0004 (8)0.0030 (8)0.0005 (8)
C50.0211 (11)0.0224 (12)0.0114 (11)0.0003 (8)0.0037 (9)0.0013 (8)
C60.0193 (11)0.0182 (11)0.0224 (12)0.0003 (8)0.0095 (9)0.0004 (9)
C70.0170 (11)0.0217 (12)0.0242 (13)0.0011 (8)0.0020 (9)0.0015 (9)
C80.0248 (12)0.0238 (12)0.0143 (11)0.0000 (9)0.0002 (9)0.0013 (9)
C90.0232 (11)0.0176 (11)0.0146 (11)0.0014 (8)0.0070 (9)0.0002 (8)
C100.0201 (11)0.0281 (13)0.0140 (11)0.0008 (9)0.0055 (9)0.0014 (9)
Geometric parameters (Å, º) top
Cl1—C61.742 (2)C3—H3A0.9800
Cl2—C91.736 (2)C3—H3B0.9800
O1—C101.420 (3)C3—H3C0.9800
O1—H1O0.839 (10)C4—C51.393 (3)
N1—N21.383 (2)C4—C91.396 (3)
N1—C41.414 (3)C5—C61.387 (3)
N1—H1N0.866 (10)C5—H50.9500
N2—C21.357 (3)C6—C71.376 (3)
N2—N31.361 (3)C7—C81.385 (3)
N3—N41.310 (3)C7—H70.9500
N4—C11.368 (3)C8—C91.382 (3)
C1—C21.378 (3)C8—H80.9500
C1—C101.492 (3)C10—H10A0.9900
C2—C31.478 (3)C10—H10B0.9900
C10—O1—H1O109 (2)C9—C4—N1119.01 (18)
N2—N1—C4116.08 (16)C6—C5—C4119.0 (2)
N2—N1—H1N111.5 (16)C6—C5—H5120.5
C4—N1—H1N117.1 (16)C4—C5—H5120.5
C2—N2—N3112.40 (17)C7—C6—C5122.5 (2)
C2—N2—N1124.87 (18)C7—C6—Cl1118.26 (16)
N3—N2—N1122.50 (17)C5—C6—Cl1119.24 (17)
N4—N3—N2105.56 (16)C6—C7—C8118.48 (19)
N3—N4—C1110.12 (17)C6—C7—H7120.8
N4—C1—C2108.56 (19)C8—C7—H7120.8
N4—C1—C10122.24 (19)C9—C8—C7120.1 (2)
C2—C1—C10129.2 (2)C9—C8—H8120.0
N2—C2—C1103.36 (18)C7—C8—H8120.0
N2—C2—C3122.65 (19)C8—C9—C4121.3 (2)
C1—C2—C3134.0 (2)C8—C9—Cl2119.02 (17)
C2—C3—H3A109.5C4—C9—Cl2119.63 (16)
C2—C3—H3B109.5O1—C10—C1110.11 (17)
H3A—C3—H3B109.5O1—C10—H10A109.6
C2—C3—H3C109.5C1—C10—H10A109.6
H3A—C3—H3C109.5O1—C10—H10B109.6
H3B—C3—H3C109.5C1—C10—H10B109.6
C5—C4—C9118.58 (19)H10A—C10—H10B108.2
C5—C4—N1122.34 (19)
C4—N1—N2—C293.4 (2)N2—N1—C4—C9174.27 (18)
C4—N1—N2—N380.6 (2)C9—C4—C5—C61.7 (3)
C2—N2—N3—N40.6 (2)N1—C4—C5—C6178.6 (2)
N1—N2—N3—N4175.36 (16)C4—C5—C6—C70.2 (3)
N2—N3—N4—C11.0 (2)C4—C5—C6—Cl1179.89 (16)
N3—N4—C1—C21.0 (2)C5—C6—C7—C81.1 (3)
N3—N4—C1—C10177.30 (18)Cl1—C6—C7—C8178.78 (17)
N3—N2—C2—C10.0 (2)C6—C7—C8—C90.9 (3)
N1—N2—C2—C1174.61 (17)C7—C8—C9—C40.7 (3)
N3—N2—C2—C3179.43 (18)C7—C8—C9—Cl2178.92 (17)
N1—N2—C2—C36.0 (3)C5—C4—C9—C82.0 (3)
N4—C1—C2—N20.6 (2)N1—C4—C9—C8178.94 (19)
C10—C1—C2—N2177.57 (19)C5—C4—C9—Cl2177.60 (16)
N4—C1—C2—C3178.7 (2)N1—C4—C9—Cl20.6 (3)
C10—C1—C2—C33.1 (4)N4—C1—C10—O193.2 (2)
N2—N1—C4—C58.9 (3)C2—C1—C10—O188.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.87 (2)2.67 (2)2.9530 (19)100 (2)
O1—H1O···N4i0.84 (2)2.01 (2)2.836 (2)169 (2)
N1—H1N···O1ii0.87 (2)2.01 (2)2.848 (3)165 (2)
C6—Cl1···Cg1iii1.74 (1)3.73 (1)5.411 (3)161 (1)
Symmetry codes: (i) x+2, y1/2, z+5/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.87 (2)2.67 (2)2.9530 (19)100.2 (17)
O1—H1O···N4i0.84 (2)2.01 (2)2.836 (2)169 (2)
N1—H1N···O1ii0.87 (2)2.01 (2)2.848 (3)165 (2)
C6—Cl1···Cg1iii1.742 (2)3.7326 (12)5.411 (3)161.12 (8)
Symmetry codes: (i) x+2, y1/2, z+5/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H10Cl2N4O
Mr273.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.1802 (5), 7.3646 (4), 13.9001 (8)
β (°) 112.276 (3)
V3)1153.81 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.768, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12461, 2645, 1963
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.06
No. of reflections2645
No. of parameters161
No. of restraints2
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

This work was supported by the Brazilian agency FAPERJ. Fellowships granted to Universidade Federal Fluminense by FAPERJ, CAPES and CNPq-PIBIC are gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L., Tan, P. A., Bettens, R. P. A., Seth, S. K. & Tiekink, E. R. T. (2013). CrystEngComm, 15, 4917–4929.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehaen, W. & Bakulev, V. A. (2014). Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, Vol. 40. Berlin Heidleberg: Springer-Verlag.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C., Almeida, M. C., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783.  Web of Science PubMed Google Scholar
First citationJordão, A. K., Sathler, P. C., Ferreira, V. F., Campos, V. R., de Souza, M. C. B. V., Castro, H. C., Lannes, A., Lourenco, A., Rodrigues, C. R., Bello, M. L., Lourenco, M. C. S., Carvalho, G. S. L., Almeida, M. C. B. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 5605–5611.  Web of Science PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeth, S. K., Lee, V. S., Yana, J., Zain, S. M., Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2015). CrystEngComm, 17, 2255–2266.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds