metal-organic compounds
2-Chloro-1-ferrocenylethanol
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
In the title compound, [Fe(C5H5)(C7H8ClO)], the ferrocene cyclopentadiene rings are slightly staggered and inclined to one another at an angle of 0.79 (13)°. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds each form inversion dimers and these combine with an edge-to-face C—H⋯π hydrogen bond to stack the molecules along the b-axis direction.
CCDC reference: 1448937
Structure description
The title compound [Fe(C5H5)(C7H8ClO)], (1), Fig. 1, synthesized by the lithium aluminium hydride reduction of 2-chloro-1-ferrocenylethanone, is used in the synthesis of 1,2-dihydroxyethyl ferrocene (Schlögl & Egger, 1963). The two Cp rings of the ferrocene unit are slightly staggered with a mean C⋯Cg1⋯Cg2⋯C angle of 14.8 (3)° (Cg1 and Cg2 are the centroids of the substituted and unsubstituted Cp rings, respectively). The rings are almost coplanar with an angle of 0.79 (13)° between them. The methylene C atom lies close to the plane of the substituted Cp ring with the OH and CH2Cl units of the chloroethanol substituent pointing towards and away from the Fe atom, respectively. In the crystal, three molecules are linked via C—H⋯Cl hydrogen bonds (Table 1), forming two inversion dimers with a third inversion dimer resulting from C—H⋯O contacts. A C—H⋯π(ring) hydrogen bond completes the intermolecular interactions that combine to stack chains of molecules along the b axis, Fig. 2.
The structures of three other ferrocenylethanol derivatives are known (Glidewell et al., 1996; Pool et al., 1998). The Cambridge Structural Database (Groom & Allen, 2014) also reveals several 1-hydroxyferrocene compounds (Kowalski et al., 2012, 2013; Jary & Baumgartner, 1998; Niazimbetova et al., 1999). We have also recently reported the closely related derivative 2-chloro-1-ferrocenylethanone (McAdam & Simpson, 2016).
Synthesis and crystallization
The title compound was synthesized by a literature method (Schlögl & Egger, 1963). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.
Refinement
Crystal data, data collection and structure . High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low-angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final cycles.
details are summarized in Table 2
|
Structural data
CCDC reference: 1448937
The title compound was synthesized by a literature method (Schlögl & Egger, 1963). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.
High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final
cycles.The title compound was synthesized by a literature method (Schlögl & Egger, 1963). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.
High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low-angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final
cycles.The title compound C12H13ClFeO, (1), Fig. 1, synthesized by the lithium aluminium hydride reduction of 2-chloro-1-ferrocenylethanone, is used in the synthesis of 1,2-dihydroxyethyl ferrocene (Schlögl & Egger, 1963). The two Cp rings of the ferrocene unit are slightly staggered with a mean C···Cg1···Cg2···C angle of 14.8 (3)° (Cg1 and Cg2 are the centroids of the substituted and unsubstituted Cp rings, respectively). The rings are almost coplanar with an angle of 0.79 (13) ° between them. The methylene C atom lies close to the plane of the substituted Cp ring with the OH and CH2Cl units of the chloroethanol substituent pointing toward and away from the Fe atom, respectively. In the crystal, three molecules are linked via C—H···Cl hydrogen bonds (Table 1), forming two inversion dimers with a third inversion dimer resulting from C—H···O contacts. A C—H···π(ring) hydrogen bond completes the intermolecular interactions that combine to stack chains of molecules along the b axis, Fig. 2. The structures of three other ferrocenylethanol derivatives are known (Glidewell et al., 1996; Pool et al., (1998). The Cambridge Structural Database (Groom & Allen, 2014) also reveals several 1-hydroxyferrocene compounds (Kowalski et al., 2012, 2013; Jary & Baumgartner, 1998; Niazimbetova et al., 1999). We have also recently reported the closely related derivative 2-chloro-1-ferrocenylethanone (McAdam & Simpson, 2016).
Data collection: APEX2 (Bruker, 2011); cell
APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound, viewed along the b-axis direction. Hydrogen bonds are drawn as blue dashed lines. |
[Fe(C5H5)(C7H8ClO)] | F(000) = 544 |
Mr = 264.52 | Dx = 1.655 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0366 (4) Å | Cell parameters from 8579 reflections |
b = 7.6215 (5) Å | θ = 2.8–32.3° |
c = 23.0837 (14) Å | µ = 1.64 mm−1 |
β = 91.737 (3)° | T = 92 K |
V = 1061.55 (12) Å3 | Block, orange |
Z = 4 | 0.36 × 0.22 × 0.12 mm |
Bruker APEXII CCD area-detector diffractometer | 3355 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
ω scans | θmax = 33.5°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −9→9 |
Tmin = 0.805, Tmax = 1.000 | k = −9→11 |
19263 measured reflections | l = −35→35 |
3807 independent reflections |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0453P)2 + 1.2107P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3807 reflections | Δρmax = 1.11 e Å−3 |
140 parameters | Δρmin = −0.88 e Å−3 |
[Fe(C5H5)(C7H8ClO)] | V = 1061.55 (12) Å3 |
Mr = 264.52 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.0366 (4) Å | µ = 1.64 mm−1 |
b = 7.6215 (5) Å | T = 92 K |
c = 23.0837 (14) Å | 0.36 × 0.22 × 0.12 mm |
β = 91.737 (3)° |
Bruker APEXII CCD area-detector diffractometer | 3807 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | 3355 reflections with I > 2σ(I) |
Tmin = 0.805, Tmax = 1.000 | Rint = 0.027 |
19263 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 6 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 1.11 e Å−3 |
3807 reflections | Δρmin = −0.88 e Å−3 |
140 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.06729 (10) | 0.20675 (7) | 0.42483 (2) | 0.03633 (13) | |
C1 | 0.2756 (3) | 0.1647 (3) | 0.47986 (8) | 0.0272 (4) | |
H1A | 0.2822 | 0.0371 | 0.4878 | 0.033* | |
H1B | 0.4218 | 0.2016 | 0.4658 | 0.033* | |
C2 | 0.2281 (4) | 0.2618 (3) | 0.53529 (8) | 0.0292 (4) | |
H2 | 0.0824 | 0.2199 | 0.5494 | 0.035* | |
O2 | 0.2121 (5) | 0.4418 (2) | 0.52523 (8) | 0.0592 (6) | |
H2A | 0.337 (7) | 0.449 (6) | 0.511 (2) | 0.089* | |
C3 | 0.4036 (3) | 0.2173 (2) | 0.58031 (7) | 0.0194 (3) | |
C4 | 0.6268 (3) | 0.2814 (2) | 0.58528 (8) | 0.0246 (3) | |
H4 | 0.6924 | 0.3656 | 0.5608 | 0.029* | |
C5 | 0.7325 (3) | 0.1961 (3) | 0.63363 (9) | 0.0255 (4) | |
H5 | 0.8811 | 0.2141 | 0.6471 | 0.031* | |
C6 | 0.5779 (3) | 0.0800 (2) | 0.65812 (7) | 0.0217 (3) | |
H6 | 0.6054 | 0.0065 | 0.6908 | 0.026* | |
C7 | 0.3751 (3) | 0.0919 (2) | 0.62570 (7) | 0.0185 (3) | |
H7 | 0.2436 | 0.0280 | 0.6328 | 0.022* | |
Fe1 | 0.45990 (4) | 0.33245 (3) | 0.65905 (2) | 0.01497 (7) | |
C8 | 0.2107 (3) | 0.5095 (2) | 0.67295 (7) | 0.0200 (3) | |
H8 | 0.0782 | 0.5233 | 0.6501 | 0.024* | |
C9 | 0.4145 (3) | 0.5980 (2) | 0.66431 (7) | 0.0232 (3) | |
H9 | 0.4423 | 0.6809 | 0.6347 | 0.028* | |
C10 | 0.5702 (3) | 0.5403 (2) | 0.70817 (8) | 0.0240 (3) | |
H10 | 0.7197 | 0.5780 | 0.7129 | 0.029* | |
C11 | 0.4608 (3) | 0.4159 (2) | 0.74365 (7) | 0.0216 (3) | |
H11 | 0.5247 | 0.3564 | 0.7762 | 0.026* | |
C12 | 0.2397 (3) | 0.3966 (2) | 0.72168 (7) | 0.0190 (3) | |
H12 | 0.1302 | 0.3215 | 0.7369 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0448 (3) | 0.0318 (2) | 0.0313 (2) | 0.0146 (2) | −0.0173 (2) | −0.01182 (18) |
C1 | 0.0314 (9) | 0.0271 (9) | 0.0227 (8) | 0.0102 (7) | −0.0066 (7) | −0.0091 (6) |
C2 | 0.0397 (10) | 0.0277 (9) | 0.0199 (7) | 0.0173 (8) | −0.0021 (7) | −0.0005 (7) |
O2 | 0.1191 (15) | 0.0275 (8) | 0.0296 (7) | 0.0287 (9) | −0.0176 (9) | −0.0034 (6) |
C3 | 0.0251 (7) | 0.0162 (7) | 0.0168 (6) | 0.0066 (6) | −0.0008 (5) | −0.0021 (5) |
C4 | 0.0293 (8) | 0.0186 (7) | 0.0266 (8) | −0.0014 (6) | 0.0132 (7) | −0.0049 (6) |
C5 | 0.0155 (7) | 0.0283 (9) | 0.0327 (9) | 0.0017 (6) | 0.0008 (6) | −0.0135 (7) |
C6 | 0.0253 (7) | 0.0170 (7) | 0.0224 (7) | 0.0070 (6) | −0.0032 (6) | −0.0028 (6) |
C7 | 0.0187 (6) | 0.0131 (6) | 0.0236 (7) | 0.0002 (5) | −0.0016 (5) | −0.0040 (5) |
Fe1 | 0.01566 (11) | 0.01211 (11) | 0.01724 (11) | −0.00047 (7) | 0.00223 (7) | −0.00292 (7) |
C8 | 0.0238 (7) | 0.0178 (7) | 0.0182 (7) | 0.0059 (6) | −0.0008 (5) | −0.0024 (5) |
C9 | 0.0365 (9) | 0.0133 (7) | 0.0203 (7) | −0.0018 (6) | 0.0071 (6) | −0.0024 (5) |
C10 | 0.0230 (7) | 0.0205 (8) | 0.0286 (8) | −0.0046 (6) | 0.0026 (6) | −0.0097 (6) |
C11 | 0.0258 (7) | 0.0205 (7) | 0.0181 (7) | 0.0025 (6) | −0.0030 (6) | −0.0038 (6) |
C12 | 0.0219 (7) | 0.0188 (7) | 0.0164 (6) | 0.0002 (6) | 0.0049 (5) | −0.0007 (5) |
Cl1—C1 | 1.7893 (19) | C6—H6 | 0.9500 |
C1—C2 | 1.513 (3) | C7—Fe1 | 2.0475 (16) |
C1—H1A | 0.9900 | C7—H7 | 0.9500 |
C1—H1B | 0.9900 | Fe1—C9 | 2.0466 (17) |
C2—O2 | 1.395 (3) | Fe1—C10 | 2.0476 (17) |
C2—C3 | 1.500 (2) | Fe1—C12 | 2.0528 (15) |
C2—H2 | 1.0000 | Fe1—C8 | 2.0533 (16) |
O2—H2A | 0.83 (4) | Fe1—C11 | 2.0537 (16) |
C3—C7 | 1.433 (2) | C8—C9 | 1.423 (3) |
C3—C4 | 1.435 (3) | C8—C12 | 1.423 (2) |
C3—Fe1 | 2.0375 (16) | C8—H8 | 0.9500 |
C4—C5 | 1.426 (3) | C9—C10 | 1.430 (3) |
C4—Fe1 | 2.0422 (17) | C9—H9 | 0.9500 |
C4—H4 | 0.9500 | C10—C11 | 1.428 (3) |
C5—C6 | 1.416 (3) | C10—H10 | 0.9500 |
C5—Fe1 | 2.0472 (17) | C11—C12 | 1.421 (2) |
C5—H5 | 0.9500 | C11—H11 | 0.9500 |
C6—C7 | 1.418 (2) | C12—H12 | 0.9500 |
C6—Fe1 | 2.0521 (17) | ||
C2—C1—Cl1 | 111.45 (13) | C4—Fe1—C6 | 68.44 (7) |
C2—C1—H1A | 109.3 | C9—Fe1—C6 | 167.18 (8) |
Cl1—C1—H1A | 109.3 | C5—Fe1—C6 | 40.43 (8) |
C2—C1—H1B | 109.3 | C10—Fe1—C6 | 128.61 (7) |
Cl1—C1—H1B | 109.3 | C7—Fe1—C6 | 40.48 (7) |
H1A—C1—H1B | 108.0 | C3—Fe1—C12 | 129.56 (7) |
O2—C2—C3 | 112.43 (19) | C4—Fe1—C12 | 168.29 (8) |
O2—C2—C1 | 110.76 (17) | C9—Fe1—C12 | 68.39 (7) |
C3—C2—C1 | 109.13 (15) | C5—Fe1—C12 | 150.03 (8) |
O2—C2—H2 | 108.1 | C10—Fe1—C12 | 68.42 (7) |
C3—C2—H2 | 108.1 | C7—Fe1—C12 | 108.56 (7) |
C1—C2—H2 | 108.1 | C6—Fe1—C12 | 117.60 (7) |
C2—O2—H2A | 94 (3) | C3—Fe1—C8 | 108.61 (7) |
C7—C3—C4 | 107.59 (15) | C4—Fe1—C8 | 129.63 (7) |
C7—C3—C2 | 124.01 (17) | C9—Fe1—C8 | 40.61 (7) |
C4—C3—C2 | 128.34 (17) | C5—Fe1—C8 | 167.82 (8) |
C7—C3—Fe1 | 69.85 (9) | C10—Fe1—C8 | 68.45 (7) |
C4—C3—Fe1 | 69.59 (10) | C7—Fe1—C8 | 118.11 (7) |
C2—C3—Fe1 | 128.03 (12) | C6—Fe1—C8 | 150.92 (7) |
C5—C4—C3 | 107.72 (15) | C12—Fe1—C8 | 40.55 (6) |
C5—C4—Fe1 | 69.79 (10) | C3—Fe1—C11 | 167.74 (7) |
C3—C4—Fe1 | 69.23 (9) | C4—Fe1—C11 | 149.86 (8) |
C5—C4—H4 | 126.1 | C9—Fe1—C11 | 68.52 (7) |
C3—C4—H4 | 126.1 | C5—Fe1—C11 | 116.79 (7) |
Fe1—C4—H4 | 126.4 | C10—Fe1—C11 | 40.75 (7) |
C6—C5—C4 | 108.22 (15) | C7—Fe1—C11 | 128.91 (7) |
C6—C5—Fe1 | 69.97 (10) | C6—Fe1—C11 | 108.02 (7) |
C4—C5—Fe1 | 69.41 (10) | C12—Fe1—C11 | 40.50 (7) |
C6—C5—H5 | 125.9 | C8—Fe1—C11 | 68.21 (7) |
C4—C5—H5 | 125.9 | C9—C8—C12 | 108.14 (15) |
Fe1—C5—H5 | 126.3 | C9—C8—Fe1 | 69.44 (10) |
C5—C6—C7 | 108.56 (16) | C12—C8—Fe1 | 69.71 (9) |
C5—C6—Fe1 | 69.60 (10) | C9—C8—H8 | 125.9 |
C7—C6—Fe1 | 69.59 (9) | C12—C8—H8 | 125.9 |
C5—C6—H6 | 125.7 | Fe1—C8—H8 | 126.5 |
C7—C6—H6 | 125.7 | C8—C9—C10 | 107.92 (15) |
Fe1—C6—H6 | 126.7 | C8—C9—Fe1 | 69.95 (10) |
C6—C7—C3 | 107.91 (15) | C10—C9—Fe1 | 69.60 (10) |
C6—C7—Fe1 | 69.93 (9) | C8—C9—H9 | 126.0 |
C3—C7—Fe1 | 69.09 (9) | C10—C9—H9 | 126.0 |
C6—C7—H7 | 126.0 | Fe1—C9—H9 | 126.0 |
C3—C7—H7 | 126.0 | C11—C10—C9 | 107.76 (15) |
Fe1—C7—H7 | 126.5 | C11—C10—Fe1 | 69.86 (9) |
C3—Fe1—C4 | 41.17 (7) | C9—C10—Fe1 | 69.52 (10) |
C3—Fe1—C9 | 117.38 (7) | C11—C10—H10 | 126.1 |
C4—Fe1—C9 | 107.95 (7) | C9—C10—H10 | 126.1 |
C3—Fe1—C5 | 68.87 (7) | Fe1—C10—H10 | 126.1 |
C4—Fe1—C5 | 40.81 (8) | C12—C11—C10 | 108.04 (15) |
C9—Fe1—C5 | 128.99 (8) | C12—C11—Fe1 | 69.72 (9) |
C3—Fe1—C10 | 150.44 (8) | C10—C11—Fe1 | 69.40 (10) |
C4—Fe1—C10 | 116.66 (7) | C12—C11—H11 | 126.0 |
C9—Fe1—C10 | 40.88 (8) | C10—C11—H11 | 126.0 |
C5—Fe1—C10 | 107.50 (7) | Fe1—C11—H11 | 126.5 |
C3—Fe1—C7 | 41.06 (7) | C11—C12—C8 | 108.14 (15) |
C4—Fe1—C7 | 68.90 (7) | C11—C12—Fe1 | 69.78 (9) |
C9—Fe1—C7 | 151.11 (7) | C8—C12—Fe1 | 69.75 (9) |
C5—Fe1—C7 | 68.39 (7) | C11—C12—H12 | 125.9 |
C10—Fe1—C7 | 166.99 (7) | C8—C12—H12 | 125.9 |
C3—Fe1—C6 | 68.62 (7) | Fe1—C12—H12 | 126.1 |
Cl1—C1—C2—O2 | −57.5 (2) | C4—C5—C6—C7 | −0.22 (19) |
Cl1—C1—C2—C3 | 178.25 (14) | C5—C6—C7—C3 | −0.01 (19) |
O2—C2—C3—C7 | 136.5 (2) | C4—C3—C7—C6 | 0.23 (18) |
C1—C2—C3—C7 | −100.2 (2) | C2—C3—C7—C6 | 177.67 (15) |
O2—C2—C3—C4 | −46.6 (3) | C12—C8—C9—C10 | −0.31 (19) |
C1—C2—C3—C4 | 76.7 (2) | C8—C9—C10—C11 | 0.06 (19) |
C7—C3—C4—C5 | −0.36 (18) | C9—C10—C11—C12 | 0.21 (19) |
C2—C3—C4—C5 | −177.66 (16) | C10—C11—C12—C8 | −0.40 (19) |
C3—C4—C5—C6 | 0.36 (19) | C9—C8—C12—C11 | 0.44 (18) |
Cg2 is the centroid of the C8–C12 Cp ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.55 | 3.472 (3) | 164 |
C7—H7···Cl1ii | 0.95 | 2.89 | 3.6720 (17) | 141 |
C8—H8···Cl1iii | 0.95 | 2.81 | 3.5153 (17) | 132 |
C12—H12···Cg2iv | 0.95 | 2.88 | 3.6321 (17) | 137 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2. |
Cg2 is the centroid of the C8–C12 Cp ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.55 | 3.472 (3) | 164 |
C7—H7···Cl1ii | 0.95 | 2.89 | 3.6720 (17) | 141 |
C8—H8···Cl1iii | 0.95 | 2.81 | 3.5153 (17) | 132 |
C12—H12···Cg2iv | 0.95 | 2.88 | 3.6321 (17) | 137 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C7H8ClO)] |
Mr | 264.52 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 92 |
a, b, c (Å) | 6.0366 (4), 7.6215 (5), 23.0837 (14) |
β (°) | 91.737 (3) |
V (Å3) | 1061.55 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.64 |
Crystal size (mm) | 0.36 × 0.22 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2011) |
Tmin, Tmax | 0.805, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19263, 3807, 3355 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.777 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.094, 1.03 |
No. of reflections | 3807 |
No. of parameters | 140 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.11, −0.88 |
Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Acknowledgements
We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Glidewell, C., Klar, R. B., Lightfoot, P., Zakaria, C. M. & Ferguson, G. (1996). Acta Cryst. B52, 110–121. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Jary, W. G. & Baumgartner, J. (1998). Tetrahedron Asymmetry, 9, 2081–2085. CSD CrossRef CAS Google Scholar
Kowalski, K., Koceva-Chyła, A., Pieniążek, A., Bernasińska, J., Skiba, J., Rybarczyk-Pirek, A. J. & Jóźwiak, Z. (2012). J. Organomet. Chem. 700, 58–68. CSD CrossRef CAS Google Scholar
Kowalski, K., Skiba, J., Oehninger, L., Ott, I., Solecka, J., Rajnisz, A. & Therrien, B. (2013). Organometallics, 32, 5766–5773. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x152177. Google Scholar
Niazimbetova, Z. I., Evans, D. H., Guzei, I. A., Incarvito, C. D. & Rheingold, A. L. (1999). J. Electrochem. Soc. 146, 1492–1495. CSD CrossRef CAS Google Scholar
Pool, B. R., Sun, C.-C. & White, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 1269–1272. Google Scholar
Schlögl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376–392. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.