inorganic compounds
The 5.78Pb1.22F12Cl2
BaaInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at
The title compound, hexabarium lead(II) dodecafluoride dichloride, is a 7F12Cl2–Ba7F12Cl2 and crystallizes isotypically with the ordered modification of the parent compounds in the P-6. The coordination polyhedra of the three different metal sites are distorted tricapped trigonal prisms with F7Cl2 coordination sets for two of these sites (Wyckoff positions 3k and 3j, each with m..), and the remaining site being exclusively coordinated by fluoride ions (1a, -6..). By sharing faces, a three-dimensional structure is accomplished. The three metal sites have remarkably different occupancies by the two types of metal ions. Whereas the site on the 3k position shows only a minor incorporation of Pb2+ [occupancy ratio Ba:Pb = 0.93 (4):0.07 (4)], the 3j site shows the highest amount of incorporated Pb2+ [Ba:Pb = 0.71 (5):29 (5)]. The occupancy ratio with respect to the 1a site is Ba:Pb = 0.86 (5):0.14 (5).
in the system PbKeywords: crystal structure; solid solution; Ba7F12Cl2 structure type; tricapped trigonal–prismatic coordination.
CCDC reference: 1443101
Structure description
The current study provides indications as to which of the three metal sites of the Ba7F12Cl2 structure is preferentially substituted in solid solutions of the type Ba7-xMxF12Cl2 (M = divalent metal with ionic radius comparable to Ba2+) and hence could help to better understand spectroscopic data of europium-doped Ba7F12Cl2 phosphors (Hagemann et al., 2015). The isotypic ordered parent phases Pb7F12Cl2 and Ba7F12Cl2 were first reported by Aurivillius (1976) and Es-Sakhi et al. (1998), respectively. For a review of crystal–chemical peculiarities in the system BaF2/BaCl2, including the ordered (space group P) and disordered modifications (space group P63) of Ba7F12Cl2, see: Hagemann et al. (2012). The of the title compound is shown in Fig. 1. Selected bond lengths are given in Table 1.
Synthesis and crystallization
BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration. Unit-cell determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.
Refinement
The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)]. Crystal data, data collection and structure details are summarized in Table 2.
|
Structural data
CCDC reference: 1443101
10.1107/S241431461502427X/hb4002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S241431461502427X/hb4002Isup2.hkl
BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration.
determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 Å and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)].
BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration. Unit-cell determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.
The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)]. Crystal data, data collection and structure
details are summarized in Table 2.The current study provides indications as to which of the three metal sites of the Ba7F12Cl2 structure is preferentially substituted in solid solutions of the type Ba7-xMxF12Cl2 (M = divalent metal with ionic radius comparable to Ba2+) and hence could help to better understand spectroscopic data of europium-doped Ba7F12Cl2 phosphors (Hagemann et al., 2015). The isotypic ordered parent phases Pb7F12Cl2 and Ba7F12Cl2 were first reported by Aurivillius (1976) and Es-Sakhi et al. (1998), respectively. For a review of crystal–chemical peculiarities in the system BaF2/BaCl2, including the ordered (space group P6) and disordered modifications (space group P63) of Ba7F12Cl2, see: Hagemann et al. (2012). Selected bond lengths are given in Table 1.
Data collection: PW1100 Operation Software (Philips, 1980); cell
PW1100 Operation Software (Philips, 1980); data reduction: PW1100 Operation Software (Philips, 1980); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The crystal structure of the title compound in a projection along [001]. Displacement ellipsoids are drawn at the 97% probability level. |
Ba5.78Pb1.22F12Cl2 | Dx = 5.542 Mg m−3 |
Mr = 1345.45 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6 | Cell parameters from 25 reflections |
Hall symbol: P -6 | θ = 5.4–10.9° |
a = 10.5878 (15) Å | µ = 27.00 mm−1 |
c = 4.1528 (8) Å | T = 293 K |
V = 403.17 (16) Å3 | Needle, colourless |
Z = 1 | 0.50 × 0.02 × 0.02 mm |
F(000) = 566 |
Philips PW100 diffractometer | 766 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.145 |
Graphite monochromator | θmax = 30.0°, θmin = 3.9° |
θ/2θ scans | h = −14→14 |
Absorption correction: numerical (HABITUS; Herrendorf, 1997) | k = −14→14 |
Tmin = 0.204, Tmax = 0.888 | l = 0→5 |
2616 measured reflections | 3 standard reflections every 120 min |
877 independent reflections | intensity decay: 0.3% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0538P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.057 | (Δ/σ)max < 0.001 |
wR(F2) = 0.127 | Δρmax = 4.03 e Å−3 |
S = 1.05 | Δρmin = −4.13 e Å−3 |
877 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
48 parameters | Extinction coefficient: 0.0019 (6) |
0 restraints | Absolute structure: Flack (1983), 466 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.55 (5) |
Ba5.78Pb1.22F12Cl2 | Z = 1 |
Mr = 1345.45 | Mo Kα radiation |
Hexagonal, P6 | µ = 27.00 mm−1 |
a = 10.5878 (15) Å | T = 293 K |
c = 4.1528 (8) Å | 0.50 × 0.02 × 0.02 mm |
V = 403.17 (16) Å3 |
Philips PW100 diffractometer | 766 reflections with I > 2σ(I) |
Absorption correction: numerical (HABITUS; Herrendorf, 1997) | Rint = 0.145 |
Tmin = 0.204, Tmax = 0.888 | 3 standard reflections every 120 min |
2616 measured reflections | intensity decay: 0.3% |
877 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.127 | Δρmax = 4.03 e Å−3 |
S = 1.05 | Δρmin = −4.13 e Å−3 |
877 reflections | Absolute structure: Flack (1983), 466 Friedel pairs |
48 parameters | Absolute structure parameter: 0.55 (5) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.28701 (11) | 0.40001 (12) | 0.5000 | 0.0144 (4) | 0.93 (4) |
Pb1 | 0.28701 (11) | 0.40001 (12) | 0.5000 | 0.0144 (4) | 0.07 (4) |
Ba2 | 0.41287 (11) | 0.10688 (12) | 0.0000 | 0.0192 (4) | 0.71 (5) |
Pb2 | 0.41287 (11) | 0.10688 (12) | 0.0000 | 0.0192 (4) | 0.29 (5) |
Ba3 | 0.0000 | 0.0000 | 0.0000 | 0.0269 (8) | 0.86 (5) |
Pb3 | 0.0000 | 0.0000 | 0.0000 | 0.0269 (8) | 0.14 (5) |
Cl1 | 0.3333 | 0.6667 | 0.0000 | 0.019 (2) | |
Cl2 | 0.6667 | 0.3333 | 0.5000 | 0.022 (2) | |
F1 | 0.0449 (14) | 0.4338 (13) | 0.5000 | 0.024 (4) | |
F2 | 0.2156 (17) | 0.1209 (18) | 0.5000 | 0.038 (5) | |
F3 | 0.1191 (14) | 0.2771 (16) | 0.0000 | 0.024 (3) | |
F4 | 0.4344 (16) | 0.3763 (16) | 0.0000 | 0.020 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0111 (6) | 0.0125 (6) | 0.0194 (7) | 0.0058 (5) | 0.000 | 0.000 |
Pb1 | 0.0111 (6) | 0.0125 (6) | 0.0194 (7) | 0.0058 (5) | 0.000 | 0.000 |
Ba2 | 0.0131 (6) | 0.0148 (6) | 0.0254 (7) | 0.0037 (4) | 0.000 | 0.000 |
Pb2 | 0.0131 (6) | 0.0148 (6) | 0.0254 (7) | 0.0037 (4) | 0.000 | 0.000 |
Ba3 | 0.0137 (8) | 0.0137 (8) | 0.0533 (16) | 0.0068 (4) | 0.000 | 0.000 |
Pb3 | 0.0137 (8) | 0.0137 (8) | 0.0533 (16) | 0.0068 (4) | 0.000 | 0.000 |
Cl1 | 0.019 (3) | 0.019 (3) | 0.020 (5) | 0.0094 (14) | 0.000 | 0.000 |
Cl2 | 0.016 (2) | 0.016 (2) | 0.033 (7) | 0.0078 (12) | 0.000 | 0.000 |
F1 | 0.020 (6) | 0.010 (6) | 0.047 (10) | 0.010 (5) | 0.000 | 0.000 |
F2 | 0.036 (9) | 0.016 (7) | 0.055 (12) | 0.009 (7) | 0.000 | 0.000 |
F3 | 0.012 (6) | 0.026 (7) | 0.032 (8) | 0.009 (5) | 0.000 | 0.000 |
F4 | 0.022 (7) | 0.028 (7) | 0.019 (8) | 0.018 (6) | 0.000 | 0.000 |
Ba1—F3 | 2.618 (8) | Ba3—F2iii | 2.870 (11) |
Ba1—F3i | 2.618 (8) | Ba3—F2vi | 2.870 (11) |
Ba1—F2 | 2.659 (16) | Ba3—Pb2vi | 3.9297 (12) |
Ba1—F1ii | 2.670 (12) | Ba3—Ba2vi | 3.9297 (12) |
Ba1—F4i | 2.683 (8) | Cl1—Ba1ix | 3.3374 (10) |
Ba1—F4 | 2.683 (8) | Cl1—Ba1x | 3.3374 (10) |
Ba1—F1 | 2.760 (14) | Cl1—Ba1ii | 3.3375 (10) |
Ba1—Cl1i | 3.3375 (10) | Cl1—Ba1xi | 3.3375 (10) |
Ba1—Cl1 | 3.3375 (10) | Cl1—Ba1iii | 3.3375 (10) |
Ba1—Ba1i | 4.1528 (8) | Cl2—Ba2xii | 3.2921 (9) |
Ba1—Ba1iii | 4.1528 (8) | Cl2—Ba2iv | 3.2921 (9) |
Ba1—Pb1i | 4.1528 (8) | Cl2—Ba2i | 3.2922 (9) |
Ba2—F4iv | 2.531 (15) | Cl2—Ba2xiii | 3.2922 (9) |
Ba2—F1v | 2.559 (7) | Cl2—Ba2xiv | 3.2922 (9) |
Ba2—F1vi | 2.559 (7) | F1—Pb2vii | 2.559 (7) |
Ba2—F3vi | 2.560 (13) | F1—Ba2vii | 2.559 (7) |
Ba2—F4 | 2.746 (14) | F1—Pb2xv | 2.559 (7) |
Ba2—F2iii | 3.001 (11) | F1—Ba2xv | 2.559 (7) |
Ba2—F2 | 3.001 (11) | F1—Pb1x | 2.670 (12) |
Ba2—Cl2 | 3.2922 (9) | F1—Ba1x | 2.670 (12) |
Ba2—Cl2iii | 3.2922 (9) | F2—Ba3i | 2.870 (11) |
Ba2—Ba3 | 3.9297 (12) | F2—Ba2i | 3.001 (11) |
Ba2—Pb2i | 4.1528 (8) | F3—Pb2vii | 2.560 (13) |
Ba3—F3vii | 2.549 (15) | F3—Ba2vii | 2.560 (13) |
Ba3—F3 | 2.549 (15) | F3—Ba1iii | 2.618 (8) |
Ba3—F3vi | 2.549 (15) | F3—Pb1iii | 2.618 (8) |
Ba3—F2 | 2.870 (11) | F4—Pb2xiv | 2.531 (15) |
Ba3—F2v | 2.870 (11) | F4—Ba2xiv | 2.531 (15) |
Ba3—F2viii | 2.870 (11) | F4—Pb1iii | 2.683 (8) |
Ba3—F2vii | 2.870 (11) | F4—Ba1iii | 2.683 (8) |
F3—Ba1—F3i | 105.0 (5) | F3vii—Ba3—F2vi | 69.4 (4) |
F3—Ba1—F2 | 72.7 (4) | F3—Ba3—F2vi | 133.7 (2) |
F3i—Ba1—F2 | 72.7 (4) | F3vi—Ba3—F2vi | 70.2 (4) |
F3—Ba1—F1ii | 127.5 (2) | F2—Ba3—F2vi | 73.4 (4) |
F3i—Ba1—F1ii | 127.5 (2) | F2v—Ba3—F2vi | 92.7 (5) |
F2—Ba1—F1ii | 120.7 (4) | F2viii—Ba3—F2vi | 139.61 (17) |
F3—Ba1—F4i | 148.1 (4) | F2vii—Ba3—F2vi | 73.4 (4) |
F3i—Ba1—F4i | 67.8 (4) | F2iii—Ba3—F2vi | 139.61 (17) |
F2—Ba1—F4i | 75.6 (3) | Ba1ix—Cl1—Ba1x | 76.95 (3) |
F1ii—Ba1—F4i | 68.0 (3) | Ba1ix—Cl1—Ba1ii | 133.912 (9) |
F3—Ba1—F4 | 67.8 (4) | Ba1x—Cl1—Ba1ii | 85.38 (2) |
F3i—Ba1—F4 | 148.1 (4) | Ba1ix—Cl1—Ba1xi | 85.38 (2) |
F2—Ba1—F4 | 75.6 (3) | Ba1x—Cl1—Ba1xi | 133.912 (9) |
F1ii—Ba1—F4 | 68.0 (3) | Ba1ii—Cl1—Ba1xi | 76.95 (3) |
F4i—Ba1—F4 | 101.4 (4) | Ba1ix—Cl1—Ba1iii | 85.38 (2) |
F3—Ba1—F1 | 67.7 (3) | Ba1x—Cl1—Ba1iii | 133.911 (9) |
F3i—Ba1—F1 | 67.7 (3) | Ba1ii—Cl1—Ba1iii | 133.909 (9) |
F2—Ba1—F1 | 112.2 (4) | Ba1xi—Cl1—Ba1iii | 85.38 (2) |
F1ii—Ba1—F1 | 127.1 (4) | Ba1ix—Cl1—Ba1 | 133.911 (10) |
F4i—Ba1—F1 | 129.3 (2) | Ba1x—Cl1—Ba1 | 85.38 (2) |
F4—Ba1—F1 | 129.3 (2) | Ba1ii—Cl1—Ba1 | 85.38 (2) |
F3—Ba1—Cl1i | 133.6 (3) | Ba1xi—Cl1—Ba1 | 133.909 (9) |
F3i—Ba1—Cl1i | 72.7 (3) | Ba1iii—Cl1—Ba1 | 76.95 (3) |
F2—Ba1—Cl1i | 141.26 (4) | Ba2xii—Cl2—Ba2iv | 78.21 (3) |
F1ii—Ba1—Cl1i | 70.1 (2) | Ba2xii—Cl2—Ba2 | 134.340 (9) |
F4i—Ba1—Cl1i | 75.6 (3) | Ba2iv—Cl2—Ba2 | 84.45 (2) |
F4—Ba1—Cl1i | 135.6 (3) | Ba2xii—Cl2—Ba2i | 84.45 (2) |
F1—Ba1—Cl1i | 69.12 (19) | Ba2iv—Cl2—Ba2i | 134.340 (9) |
F3—Ba1—Cl1 | 72.7 (3) | Ba2—Cl2—Ba2i | 78.21 (3) |
F3i—Ba1—Cl1 | 133.6 (3) | Ba2xii—Cl2—Ba2xiii | 84.45 (2) |
F2—Ba1—Cl1 | 141.26 (4) | Ba2iv—Cl2—Ba2xiii | 134.339 (9) |
F1ii—Ba1—Cl1 | 70.1 (2) | Ba2—Cl2—Ba2xiii | 134.337 (9) |
F4i—Ba1—Cl1 | 135.6 (3) | Ba2i—Cl2—Ba2xiii | 84.45 (2) |
F4—Ba1—Cl1 | 75.6 (3) | Ba2xii—Cl2—Ba2xiv | 134.339 (9) |
F1—Ba1—Cl1 | 69.12 (19) | Ba2iv—Cl2—Ba2xiv | 84.45 (2) |
Cl1i—Ba1—Cl1 | 76.95 (3) | Ba2—Cl2—Ba2xiv | 84.450 (19) |
F4iv—Ba2—F1v | 72.1 (3) | Ba2i—Cl2—Ba2xiv | 134.337 (9) |
F4iv—Ba2—F1vi | 72.1 (3) | Ba2xiii—Cl2—Ba2xiv | 78.20 (3) |
F1v—Ba2—F1vi | 108.5 (5) | Pb2vii—F1—Ba2vii | 0.00 (10) |
F4iv—Ba2—F3vi | 115.8 (4) | Pb2vii—F1—Pb2xv | 108.5 (5) |
F1v—Ba2—F3vi | 71.7 (3) | Ba2vii—F1—Pb2xv | 108.5 (5) |
F1vi—Ba2—F3vi | 71.7 (3) | Pb2vii—F1—Ba2xv | 108.5 (5) |
F4iv—Ba2—F4 | 126.1 (5) | Ba2vii—F1—Ba2xv | 108.5 (5) |
F1v—Ba2—F4 | 125.7 (2) | Pb2xv—F1—Ba2xv | 0.00 (10) |
F1vi—Ba2—F4 | 125.7 (2) | Pb2vii—F1—Pb1x | 109.6 (3) |
F3vi—Ba2—F4 | 118.2 (4) | Ba2vii—F1—Pb1x | 109.6 (3) |
F4iv—Ba2—F2iii | 135.8 (2) | Pb2xv—F1—Pb1x | 109.6 (3) |
F1v—Ba2—F2iii | 67.5 (3) | Ba2xv—F1—Pb1x | 109.6 (3) |
F1vi—Ba2—F2iii | 137.7 (4) | Pb2vii—F1—Ba1x | 109.6 (3) |
F3vi—Ba2—F2iii | 67.1 (4) | Ba2vii—F1—Ba1x | 109.6 (3) |
F4—Ba2—F2iii | 69.3 (4) | Pb2xv—F1—Ba1x | 109.6 (3) |
F4iv—Ba2—F2 | 135.8 (2) | Ba2xv—F1—Ba1x | 109.6 (3) |
F1v—Ba2—F2 | 137.7 (4) | Pb1x—F1—Ba1x | 0.00 (5) |
F1vi—Ba2—F2 | 67.5 (3) | Pb2vii—F1—Ba1 | 108.1 (3) |
F3vi—Ba2—F2 | 67.1 (4) | Ba2vii—F1—Ba1 | 108.1 (3) |
F4—Ba2—F2 | 69.3 (4) | Pb2xv—F1—Ba1 | 108.1 (3) |
F2iii—Ba2—F2 | 87.6 (4) | Ba2xv—F1—Ba1 | 108.1 (3) |
F4iv—Ba2—Cl2 | 70.5 (2) | Pb1x—F1—Ba1 | 112.9 (4) |
F1v—Ba2—Cl2 | 139.3 (3) | Ba1x—F1—Ba1 | 112.9 (4) |
F1vi—Ba2—Cl2 | 74.6 (3) | Ba1—F2—Ba3 | 102.5 (4) |
F3vi—Ba2—Cl2 | 140.896 (13) | Ba1—F2—Ba3i | 102.5 (4) |
F4—Ba2—Cl2 | 68.3 (2) | Ba3—F2—Ba3i | 92.7 (5) |
F2iii—Ba2—Cl2 | 137.3 (3) | Ba1—F2—Ba2i | 103.7 (4) |
F2—Ba2—Cl2 | 82.1 (3) | Ba3—F2—Ba2i | 153.7 (6) |
F4iv—Ba2—Cl2iii | 70.5 (2) | Ba3i—F2—Ba2i | 83.99 (13) |
F1v—Ba2—Cl2iii | 74.6 (3) | Ba1—F2—Ba2 | 103.7 (4) |
F1vi—Ba2—Cl2iii | 139.3 (3) | Ba3—F2—Ba2 | 83.99 (13) |
F3vi—Ba2—Cl2iii | 140.896 (13) | Ba3i—F2—Ba2 | 153.7 (6) |
F4—Ba2—Cl2iii | 68.3 (2) | Ba2i—F2—Ba2 | 87.6 (4) |
F2iii—Ba2—Cl2iii | 82.1 (3) | Ba3—F3—Pb2vii | 100.6 (5) |
F2—Ba2—Cl2iii | 137.3 (3) | Ba3—F3—Ba2vii | 100.6 (5) |
Cl2—Ba2—Cl2iii | 78.21 (3) | Pb2vii—F3—Ba2vii | 0.000 (6) |
F3vii—Ba3—F3 | 120.0 | Ba3—F3—Ba1 | 113.2 (4) |
F3vii—Ba3—F3vi | 120.0 | Pb2vii—F3—Ba1 | 112.6 (4) |
F3—Ba3—F3vi | 120.0 | Ba2vii—F3—Ba1 | 112.6 (4) |
F3vii—Ba3—F2 | 133.7 (2) | Ba3—F3—Ba1iii | 113.2 (4) |
F3—Ba3—F2 | 70.2 (4) | Pb2vii—F3—Ba1iii | 112.6 (4) |
F3vi—Ba3—F2 | 69.4 (4) | Ba2vii—F3—Ba1iii | 112.6 (4) |
F3vii—Ba3—F2v | 69.4 (4) | Ba1—F3—Ba1iii | 105.0 (5) |
F3—Ba3—F2v | 133.7 (2) | Ba3—F3—Pb1iii | 113.2 (4) |
F3vi—Ba3—F2v | 70.2 (4) | Pb2vii—F3—Pb1iii | 112.6 (4) |
F2—Ba3—F2v | 139.61 (17) | Ba2vii—F3—Pb1iii | 112.6 (4) |
F3vii—Ba3—F2viii | 70.2 (4) | Ba1—F3—Pb1iii | 105.0 (5) |
F3—Ba3—F2viii | 69.4 (4) | Ba1iii—F3—Pb1iii | 0.00 (6) |
F3vi—Ba3—F2viii | 133.7 (2) | Pb2xiv—F4—Ba2xiv | 0.00 (5) |
F2—Ba3—F2viii | 139.61 (17) | Pb2xiv—F4—Pb1iii | 110.1 (4) |
F2v—Ba3—F2viii | 73.4 (4) | Ba2xiv—F4—Pb1iii | 110.1 (4) |
F3vii—Ba3—F2vii | 70.2 (4) | Pb2xiv—F4—Ba1iii | 110.1 (4) |
F3—Ba3—F2vii | 69.4 (4) | Ba2xiv—F4—Ba1iii | 110.1 (4) |
F3vi—Ba3—F2vii | 133.7 (2) | Pb1iii—F4—Ba1iii | 0.00 (5) |
F2—Ba3—F2vii | 73.4 (4) | Pb2xiv—F4—Ba1 | 110.1 (4) |
F2v—Ba3—F2vii | 139.61 (17) | Ba2xiv—F4—Ba1 | 110.1 (4) |
F2viii—Ba3—F2vii | 92.7 (5) | Pb1iii—F4—Ba1 | 101.4 (4) |
F3vii—Ba3—F2iii | 133.7 (2) | Ba1iii—F4—Ba1 | 101.4 (4) |
F3—Ba3—F2iii | 70.2 (4) | Pb2xiv—F4—Ba2 | 113.9 (5) |
F3vi—Ba3—F2iii | 69.4 (4) | Ba2xiv—F4—Ba2 | 113.9 (5) |
F2—Ba3—F2iii | 92.7 (5) | Pb1iii—F4—Ba2 | 110.3 (4) |
F2v—Ba3—F2iii | 73.4 (4) | Ba1iii—F4—Ba2 | 110.3 (4) |
F2viii—Ba3—F2iii | 73.4 (4) | Ba1—F4—Ba2 | 110.3 (4) |
F2vii—Ba3—F2iii | 139.61 (17) |
Symmetry codes: (i) x, y, z+1; (ii) −y+1, x−y+1, z; (iii) x, y, z−1; (iv) −y+1, x−y, z; (v) −x+y, −x, z−1; (vi) −x+y, −x, z; (vii) −y, x−y, z; (viii) −y, x−y, z−1; (ix) −x+y, −x+1, z−1; (x) −x+y, −x+1, z; (xi) −y+1, x−y+1, z−1; (xii) −y+1, x−y, z+1; (xiii) −x+y+1, −x+1, z+1; (xiv) −x+y+1, −x+1, z; (xv) −y, x−y, z+1. |
Ba1—F3 | 2.618 (8) | Ba2—F3ii | 2.560 (13) |
Ba1—F2 | 2.659 (16) | Ba2—F4 | 2.746 (14) |
Ba1—F4 | 2.683 (8) | Ba2—F2 | 3.001 (11) |
Ba1—F1 | 2.760 (14) | Ba2—Cl2 | 3.2922 (9) |
Ba1—Cl1 | 3.3375 (10) | Ba3—F3 | 2.549 (15) |
Ba2—F4i | 2.531 (15) | Ba3—F2 | 2.870 (11) |
Ba2—F1ii | 2.559 (7) |
Symmetry codes: (i) −y+1, x−y, z; (ii) −x+y, −x, z. |
Experimental details
Crystal data | |
Chemical formula | Ba5.78Pb1.22F12Cl2 |
Mr | 1345.45 |
Crystal system, space group | Hexagonal, P6 |
Temperature (K) | 293 |
a, c (Å) | 10.5878 (15), 4.1528 (8) |
V (Å3) | 403.17 (16) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 27.00 |
Crystal size (mm) | 0.50 × 0.02 × 0.02 |
Data collection | |
Diffractometer | Philips PW100 |
Absorption correction | Numerical (HABITUS; Herrendorf, 1997) |
Tmin, Tmax | 0.204, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2616, 877, 766 |
Rint | 0.145 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.127, 1.05 |
No. of reflections | 877 |
No. of parameters | 48 |
Δρmax, Δρmin (e Å−3) | 4.03, −4.13 |
Absolute structure | Flack (1983), 466 Friedel pairs |
Absolute structure parameter | 0.55 (5) |
Computer programs: PW1100 Operation Software (Philips, 1980), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006), publCIF (Westrip, 2010).
Acknowledgements
The author thanks Professor H. Völlenkle for measurement time and introduction to the PW1100 four-circle diffractometer.
References
Aurivillius, B. (1976). Chem. Scr. 10, 206–209. CAS Google Scholar
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Es-Sakhi, B., Gravereau, P. & Fouassier, C. (1998). Powder Diffr. 13, 152–156. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hagemann, H., Bill, H., Rey, J. M., Kubel, F., Calame, L. & Lovy, D. (2015). J. Phys. Chem. C, 119, 141–147. Web of Science CrossRef CAS Google Scholar
Hagemann, H., D'Anna, V., Lawson Daku, M. & Kubel, F. (2012). Cryst. Growth Des. 12, 1124–1131. Web of Science CrossRef CAS Google Scholar
Herrendorf, W. (1997). HABITUS. University of Giessen, Germany. Google Scholar
Philips (1980). PW1100 Operation Software. Philips, Eindhoven, The Netherlands. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.