organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Di­methyl­amino-1-(2-eth­­oxy-2-oxoeth­yl)-3-methyl-4,5-di­hydro­imidazolium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 4 January 2016; accepted 18 January 2016; online 23 January 2016)

In the crystal structure of the title salt, C10H20N3O2+·C24H20B, the C—N bond lengths in the cation are 1.327 (3), 1.339 (3) and 1.342 (3) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms, indicating only a slight deviation from a trigonal–planar geometry. The positive charge is delocalized in the CN3 plane. The eth­oxy group is disordered over two orientations, with an occupancy ratio of 0.60 (1):0.40 (1). C—H⋯π inter­actions are present between the guanidinium H atoms and the phenyl C atoms of the tetra­phenyl­borate ions. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supra­molecular pattern along the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

By the reaction of N,N,N′,N′-tetra­methyl­chloro­formamidinium chloride (Tiritiris & Kantlehner, 2008[Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.]) with N-methyl-1,2-ethanedi­amine, a mixture consisting of two guanidinium dichlorides and one bis­guanidinium dichloride was obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the cyclic guanidine 1-methyl-2-di­methyl­amino-1H-4,5-di­hydro­imidazole emerged as one of the products (Tiritiris & Kantlehner, 2013[Tiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300-307.]). By alkyl­ation of the free nitro­gen atom of the resulting guanidine base, various cyclic guanidinium salts can be obtained. The title salt is the first di­hydro­imidazole derivative in our series; it has been structurally characterized after anion exchange with sodium tetra­phenyl­borate.

The bond lengths in the cation of the title salt are in very good agreement with those in a similar compound, 2-dimethyl­amino-1-(2-eth­oxy-2-oxoeth­yl)-3-methyl-3,4,5,6-tetra­hydro­pyrimidin-1-ium tetra­phenyl­borate (Tiritiris & Kantlehner, 2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2002.]). Prominent bond parameters in the dihydroimidazolium ion are: C1—N1 = 1.327 (3) Å, C1—N2 = 1.339 (3) Å and C1—N3 = 1.342 (3) Å, indicating partial double-bond character (Fig. 1[link]). The N—C1—N angles are: 124.52 (18)° (N1—C1—N2), 123.02 (19)° (N2—C1—N3) and 112.45 (18)° (N1—C1—N3), indicating only a slight deviation from an ideal trigonal–planar surrounding of the carbon centre by the three nitro­gen atoms. The positive charge is completely delocalized in the CN3 plane. The eth­oxy group is disordered over two orientations, with an occupancy ratio of 0.60 (1):0.40 (1).

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity. Only the major orientation of the disordered eth­oxy group is shown.

The bond lengths and angles in the tetra­phenyl­borate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetra­phenyl­borates (Behrens et al., 2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). C—H⋯π inter­actions between the guanidinium hydrogen atoms of the –N(CH3)2 and –CH2 groups and the phenyl carbon atoms of the tetra­phenyl­borate ion are also present (Fig. 2[link]), ranging from 2.77 to 2.96 Å (Table 1[link]). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded. This leads to the formation of a two-dimensional supra­molecular pattern in the ac plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C23–C28 and C29–C34 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7BCg1i 0.99 2.77 3.694 (3) 155
C6—H6ACg2ii 0.99 2.96 3.870 (3) 153
C4—H4BCg3iii 0.98 2.79 3.758 (3) 169
C3—H3BCg3 0.98 2.94 3.868 (3) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 2]
Figure 2
C—H⋯π inter­actions (brown dashed lines) between the H atoms of the guanidinium ion and the phenyl C atoms (centroids) of the tetra­phenyl­borate ion.
[Figure 3]
Figure 3
C—H⋯π inter­actions (brown dashed lines) showing the two-dimensional supra­molecular architecture in the ac plane.

Synthesis and crystallization

The title compound was obtained by reaction of 1-methyl-2-di­methyl­amino-1H-4,5-di­hydro­imidazole (Tiritiris & Kant­lehner, 2013[Tiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300-307.]) with bromo­acetic acid ethyl ester in aceto­nitrile at room temperature. After evaporation of the solvent the crude 2-di­methyl­amino-1-(2-eth­oxy-2-oxoeth­yl)-3-methyl-4,5-di­hydro­imidazolium bromide (I) was washed with diethyl ether and dried in vacuo. 1.0 g (3.4 mmol) of (I) was dissolved in 20 ml aceto­nitrile and 1.16 g (3.4 mmol) of sodium tetra­phenyl­borate in 20 ml aceto­nitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated aceto­nitrile solution after several days at 273 K, forming colorless single crystals. Yield: 1.44 g (79%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms O2, C9 and C10 of the eth­oxy group are disordered over two sets of sites (O2A, C9A and C10A; O2B, C9B and C10B) with refined occupancies of 0.60 (1):0.40 (1), 0.58 (1):0.42 (1) and 0.59 (1):0.41 (1).

Table 2
Experimental details

Crystal data
Chemical formula C10H20N3O2+·C24H20B
Mr 533.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.3033 (6), 10.3598 (4), 20.2825 (9)
β (°) 105.468 (2)
V3) 2896.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.23 × 0.12
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 12960, 7012, 4502
Rint 0.071
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.148, 1.04
No. of reflections 7012
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.26
Computer programs: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Comment top

By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-1,2-ethanediamine, a mixture consisting of two guanidinium dichlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the cyclic guanidine 1-methyl-2-dimethylamino-1H-4,5-dihydroimidazole emerges as one of the products (Tiritiris & Kantlehner, 2013). By alkylation of the free nitrogen atom of the obtained guanidine base, various cyclic guanidinium salts can be obtained. The here presented title salt is the first dihydroimidazole derivative in our series, which has been structurally characterized after anion exchange with sodium tetraphenylborate. The crystal structure analysis reveals, that the bond lengths in the cation are in very good agreement with the data obtained from the structure analysis of a similar compound, 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.327 (3) Å, C1–N2 = 1.339 (3) Å and C1–N3 = 1.342 (3) Å, indicating partial double-bond character (Fig. 1). The N–C1–N angles are: 124.52 (18)° (N1–C1–N2), 123.02 (19)° (N2–C1–N3) and 112.45 (18)° (N1–C1–N3), indicating only a slight deviation from an ideal trigonal-planar surrounding of the carbon centre by the three nitrogen atoms. The positive charge is completely delocalized in the CN3 plane. The ethoxy group is disordered over two orientations, with an occupancy ratio of 0.60 (1):0.40 (1). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C—H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids: Cg1 = C17–C22, Cg2 = C23–C28 and Cg3 = C29–C34) of the tetraphenylborate ion are also present (Fig. 2), ranging from 2.77 to 2.96 Å (Tab. 2). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ac plane (Fig. 3).

Related literature top

For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner, 2008a. For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al., 2012. For the crystal structure of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner, 2012a. For the synthesis of 1-methyl-2-dimethylamino-1H-4,5-dihydroimidazole, see: Tiritiris & Kantlehner, 2013.

Experimental top

The title compound was obtained by reaction of 1-methyl-2-dimethylamino-1H-4,5-dihydroimidazole (Tiritiris & Kantlehner, 2013) with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-4,5-dihydroimidazolium bromide (I) was washed with diethyl ether and dried in vacuo. 1.0 g (3.4 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.16 g (3.4 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colorless single crystals. Yield: 1.44 g (79%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The atoms O2, C9 and C10 of the ethoxy group are disordered over two sets of sites (O2A, C9A and C10A; O2B, C9B and C10B) with refined occupancies of 0.60 (1):0.40 (1), 0.58 (1):0.42 (1) and 0.59 (1):0.41 (1).

Structure description top

By reaction of N,N,N',N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methyl-1,2-ethanediamine, a mixture consisting of two guanidinium dichlorides and one bisguanidinium dichloride was obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the cyclic guanidine 1-methyl-2-dimethylamino-1H-4,5-dihydroimidazole emerged as one of the products (Tiritiris & Kantlehner, 2013). By alkylation of the free nitrogen atom of the obtained guanidine base, various cyclic guanidinium salts can be obtained. The here presented title salt is the first dihydroimidazole derivative in our series; it has been structurally characterized after anion exchange with sodium tetraphenylborate. The bond lengths in the cation are in very good agreement with the data obtained from the structure analysis of a similar compound, 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). Prominent bond parameters in the guanidinium ion are: C1—N1 = 1.327 (3) Å, C1—N2 = 1.339 (3) Å and C1—N3 = 1.342 (3) Å, indicating partial double-bond character (Fig. 1). The N—C1—N angles are: 124.52 (18)° (N1–C1–N2), 123.02 (19)° (N2–C1–N3) and 112.45 (18)° (N1–C1–N3), indicating only a slight deviation from an ideal trigonal-planar surrounding of the carbon centre by the three nitrogen atoms. The positive charge is completely delocalized in the CN3 plane. The ethoxy group is disordered over two orientations, with an occupancy ratio of 0.60 (1):0.40 (1).

The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C—H···π interactions between the guanidinium hydrogen atoms of the –N(CH3)2 and –CH2 groups and the phenyl carbon atoms of the tetraphenylborate ion are also present (Fig. 2), ranging from 2.77 to 2.96 Å (Table 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ac plane (Fig. 3).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity. Only the major orientation of the disordered ethoxy group is shown.
[Figure 2] Fig. 2. C—H···π interactions (brown dashed lines) between the H atoms of the guanidinium ion and the phenyl C atoms (centroids) of the tetraphenylborate ion.
[Figure 3] Fig. 3. C—H···π interactions (brown dashed lines) showing the two-dimensional supramolecular architecture along the ac plane.
2-Dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-4,5-dihydroimidazolium tetraphenylborate top
Crystal data top
C10H20N3O2+·C24H20BF(000) = 1144
Mr = 533.50Dx = 1.223 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3033 (6) ÅCell parameters from 7075 reflections
b = 10.3598 (4) Åθ = 0.4–28.3°
c = 20.2825 (9) ŵ = 0.08 mm1
β = 105.468 (2)°T = 100 K
V = 2896.6 (2) Å3Block, colorless
Z = 40.30 × 0.23 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4502 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 28.2°, θmin = 3.0°
φ scans, and ω scansh = 1818
12960 measured reflectionsk = 1313
7012 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.4901P]
where P = (Fo2 + 2Fc2)/3
7012 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H20N3O2+·C24H20BV = 2896.6 (2) Å3
Mr = 533.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3033 (6) ŵ = 0.08 mm1
b = 10.3598 (4) ÅT = 100 K
c = 20.2825 (9) Å0.30 × 0.23 × 0.12 mm
β = 105.468 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4502 reflections with I > 2σ(I)
12960 measured reflectionsRint = 0.071
7012 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
7012 reflectionsΔρmin = 0.26 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.15751 (13)0.85761 (17)0.14856 (9)0.0214 (4)
N20.22801 (13)0.67062 (17)0.11579 (9)0.0218 (4)
N30.25859 (13)0.74356 (18)0.22959 (9)0.0224 (4)
C10.21433 (14)0.7544 (2)0.16263 (10)0.0195 (4)
C20.32486 (16)0.6191 (2)0.11954 (12)0.0276 (5)
H2A0.37230.65790.15850.041*
H2B0.34240.63980.07720.041*
H2C0.32460.52520.12540.041*
C30.15055 (17)0.6305 (2)0.05694 (11)0.0261 (5)
H3A0.08830.66280.06180.039*
H3B0.14860.53600.05430.039*
H3C0.16260.66560.01510.039*
C40.12980 (18)0.9223 (2)0.08231 (11)0.0284 (5)
H4A0.16230.88070.05110.043*
H4B0.14911.01330.08810.043*
H4C0.05940.91650.06320.043*
C50.16176 (18)0.9309 (2)0.21168 (11)0.0271 (5)
H5A0.09650.93910.21940.032*
H5B0.18891.01820.20960.032*
C60.22867 (16)0.8499 (2)0.26790 (11)0.0259 (5)
H6A0.28540.90080.29340.031*
H6B0.19370.81670.30040.031*
C70.29159 (16)0.6205 (2)0.26243 (11)0.0250 (5)
H7A0.27270.55030.22840.030*
H7B0.25930.60470.29920.030*
C80.40090 (18)0.6179 (2)0.29273 (14)0.0376 (6)
O10.45299 (12)0.70977 (17)0.30205 (9)0.0374 (4)
O2A0.42497 (19)0.5050 (3)0.3209 (3)0.0239 (13)0.60 (1)
O2B0.4324 (3)0.4853 (4)0.2830 (4)0.0219 (18)0.40 (1)
C9A0.5210 (4)0.4881 (5)0.3677 (2)0.0252 (14)0.58 (1)
H9A0.51920.41630.39960.030*0.578 (13)
H9B0.53970.56760.39510.030*0.578 (13)
C9B0.5365 (7)0.4603 (6)0.3073 (4)0.029 (2)0.42 (1)
H9C0.57270.53310.29430.035*0.422 (13)
H9D0.55260.38100.28540.035*0.422 (13)
C10A0.5954 (5)0.4591 (4)0.3294 (3)0.0309 (15)0.59 (1)
H10A0.57330.38630.29840.046*0.589 (12)
H10B0.65730.43720.36200.046*0.589 (12)
H10C0.60410.53520.30290.046*0.589 (12)
C10B0.5659 (7)0.4445 (8)0.3820 (4)0.029 (2)0.41 (1)
H10D0.55090.52360.40370.043*0.411 (12)
H10E0.63570.42760.39730.043*0.411 (12)
H10F0.53050.37180.39480.043*0.411 (12)
B10.22231 (17)0.2365 (2)0.06717 (11)0.0184 (5)
C110.12514 (14)0.2878 (2)0.12493 (10)0.0180 (4)
C120.09364 (15)0.2303 (2)0.18964 (10)0.0202 (4)
H120.12540.15420.19840.024*
C130.01801 (15)0.2796 (2)0.24152 (10)0.0224 (5)
H130.00100.23730.28460.027*
C140.02973 (15)0.3908 (2)0.23034 (11)0.0233 (5)
H140.08170.42480.26540.028*
C150.00054 (16)0.4511 (2)0.16742 (11)0.0235 (5)
H150.03280.52700.15900.028*
C160.07592 (16)0.4010 (2)0.11641 (11)0.0219 (4)
H160.09570.44540.07400.026*
C170.23750 (15)0.0801 (2)0.07090 (10)0.0198 (4)
C180.32987 (17)0.0230 (2)0.05127 (12)0.0276 (5)
H180.38520.07770.03950.033*
C190.34389 (18)0.1098 (2)0.04832 (12)0.0301 (5)
H190.40780.14380.03460.036*
C200.26550 (17)0.1927 (2)0.06516 (11)0.0254 (5)
H200.27480.28350.06340.030*
C210.17262 (16)0.1403 (2)0.08472 (10)0.0225 (5)
H210.11780.19580.09640.027*
C220.15955 (16)0.0067 (2)0.08722 (10)0.0204 (4)
H220.09540.02670.10050.024*
C230.31026 (14)0.3182 (2)0.08575 (10)0.0200 (4)
C240.34530 (15)0.4359 (2)0.05523 (11)0.0216 (4)
H240.32250.46600.01810.026*
C250.41212 (16)0.5108 (2)0.07703 (11)0.0250 (5)
H250.43460.58970.05440.030*
C260.44602 (16)0.4705 (2)0.13184 (12)0.0269 (5)
H260.49090.52180.14740.032*
C270.41315 (16)0.3543 (2)0.16324 (12)0.0300 (5)
H270.43610.32510.20050.036*
C280.34649 (15)0.2798 (2)0.14064 (11)0.0243 (5)
H280.32490.20050.16310.029*
C290.21625 (15)0.25991 (19)0.01178 (10)0.0195 (4)
C300.29935 (16)0.2660 (2)0.06704 (11)0.0238 (5)
H300.36110.26500.05780.029*
C310.29566 (17)0.2735 (2)0.13480 (11)0.0277 (5)
H310.35410.27760.17060.033*
C320.20657 (18)0.2749 (2)0.15029 (11)0.0281 (5)
H320.20350.28050.19640.034*
C330.12275 (17)0.2679 (2)0.09746 (11)0.0265 (5)
H330.06140.26840.10720.032*
C340.12770 (15)0.2601 (2)0.02969 (11)0.0212 (4)
H340.06900.25470.00570.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0257 (9)0.0168 (9)0.0217 (9)0.0042 (7)0.0062 (7)0.0017 (7)
N20.0230 (9)0.0196 (9)0.0220 (9)0.0037 (7)0.0048 (7)0.0014 (7)
N30.0246 (9)0.0214 (10)0.0202 (8)0.0028 (7)0.0044 (7)0.0022 (7)
C10.0184 (10)0.0191 (11)0.0201 (10)0.0011 (8)0.0035 (8)0.0019 (8)
C20.0287 (12)0.0219 (12)0.0345 (12)0.0047 (9)0.0128 (10)0.0012 (10)
C30.0342 (12)0.0200 (11)0.0221 (11)0.0033 (9)0.0039 (9)0.0017 (9)
C40.0361 (13)0.0215 (12)0.0261 (11)0.0076 (10)0.0057 (10)0.0052 (9)
C50.0359 (13)0.0202 (11)0.0278 (11)0.0028 (10)0.0131 (10)0.0013 (9)
C60.0279 (12)0.0258 (12)0.0245 (11)0.0006 (10)0.0080 (9)0.0034 (9)
C70.0220 (11)0.0247 (12)0.0273 (11)0.0009 (9)0.0046 (9)0.0093 (9)
C80.0242 (12)0.0264 (13)0.0568 (16)0.0009 (10)0.0013 (11)0.0206 (12)
O10.0228 (8)0.0303 (10)0.0548 (11)0.0017 (7)0.0028 (8)0.0138 (8)
O2A0.0213 (14)0.0220 (15)0.027 (3)0.0022 (10)0.0039 (12)0.0065 (15)
O2B0.024 (2)0.019 (2)0.021 (4)0.0051 (16)0.0040 (18)0.0016 (19)
C9A0.021 (3)0.026 (3)0.027 (2)0.004 (2)0.0025 (18)0.0058 (18)
C9B0.023 (5)0.021 (3)0.041 (4)0.007 (3)0.007 (3)0.005 (3)
C10A0.025 (3)0.027 (2)0.041 (3)0.0048 (19)0.009 (2)0.0016 (19)
C10B0.027 (4)0.028 (4)0.031 (4)0.000 (3)0.007 (3)0.003 (3)
B10.0215 (11)0.0156 (11)0.0172 (11)0.0015 (9)0.0034 (9)0.0010 (9)
C110.0179 (10)0.0158 (10)0.0202 (10)0.0019 (8)0.0051 (8)0.0011 (8)
C120.0230 (10)0.0182 (10)0.0205 (10)0.0017 (8)0.0076 (8)0.0009 (8)
C130.0256 (11)0.0225 (11)0.0189 (10)0.0018 (9)0.0054 (8)0.0006 (9)
C140.0196 (11)0.0243 (11)0.0251 (11)0.0024 (9)0.0043 (8)0.0075 (9)
C150.0273 (11)0.0163 (10)0.0276 (11)0.0066 (9)0.0088 (9)0.0046 (9)
C160.0263 (11)0.0167 (10)0.0219 (10)0.0024 (9)0.0048 (8)0.0023 (8)
C170.0247 (11)0.0183 (11)0.0157 (9)0.0030 (8)0.0042 (8)0.0007 (8)
C180.0239 (11)0.0184 (11)0.0357 (13)0.0016 (9)0.0005 (9)0.0013 (10)
C190.0286 (12)0.0212 (12)0.0370 (13)0.0072 (10)0.0025 (10)0.0012 (10)
C200.0387 (13)0.0156 (11)0.0209 (10)0.0053 (9)0.0062 (9)0.0008 (8)
C210.0305 (11)0.0190 (11)0.0187 (10)0.0022 (9)0.0077 (9)0.0004 (8)
C220.0263 (11)0.0194 (11)0.0151 (9)0.0022 (9)0.0051 (8)0.0002 (8)
C230.0170 (10)0.0200 (11)0.0209 (10)0.0038 (8)0.0013 (8)0.0024 (8)
C240.0233 (11)0.0181 (10)0.0218 (10)0.0027 (9)0.0033 (8)0.0001 (8)
C250.0216 (11)0.0190 (11)0.0303 (12)0.0009 (9)0.0004 (9)0.0035 (9)
C260.0193 (11)0.0252 (12)0.0363 (13)0.0022 (9)0.0077 (9)0.0048 (10)
C270.0254 (12)0.0335 (13)0.0344 (12)0.0048 (10)0.0139 (10)0.0011 (11)
C280.0224 (11)0.0229 (11)0.0276 (11)0.0009 (9)0.0067 (9)0.0042 (9)
C290.0254 (10)0.0134 (10)0.0196 (10)0.0021 (8)0.0059 (8)0.0013 (8)
C300.0262 (11)0.0202 (11)0.0243 (11)0.0016 (9)0.0055 (9)0.0034 (9)
C310.0351 (13)0.0216 (11)0.0216 (10)0.0007 (10)0.0009 (9)0.0036 (9)
C320.0471 (14)0.0176 (11)0.0215 (11)0.0006 (10)0.0124 (10)0.0012 (9)
C330.0350 (12)0.0179 (11)0.0308 (11)0.0037 (10)0.0161 (10)0.0007 (9)
C340.0236 (10)0.0147 (10)0.0247 (10)0.0025 (8)0.0057 (8)0.0005 (8)
Geometric parameters (Å, º) top
N1—C11.327 (3)B1—C111.649 (3)
N1—C41.459 (3)C11—C121.402 (3)
N1—C51.475 (3)C11—C161.402 (3)
N2—C11.339 (3)C12—C131.390 (3)
N2—C31.456 (3)C12—H120.9500
N2—C21.467 (3)C13—C141.388 (3)
N3—C11.342 (3)C13—H130.9500
N3—C71.457 (3)C14—C151.382 (3)
N3—C61.476 (3)C14—H140.9500
C2—H2A0.9800C15—C161.390 (3)
C2—H2B0.9800C15—H150.9500
C2—H2C0.9800C16—H160.9500
C3—H3A0.9800C17—C221.401 (3)
C3—H3B0.9800C17—C181.405 (3)
C3—H3C0.9800C18—C191.390 (3)
C4—H4A0.9800C18—H180.9500
C4—H4B0.9800C19—C201.381 (3)
C4—H4C0.9800C19—H190.9500
C5—C61.529 (3)C20—C211.391 (3)
C5—H5A0.9900C20—H200.9500
C5—H5B0.9900C21—C221.396 (3)
C6—H6A0.9900C21—H210.9500
C6—H6B0.9900C22—H220.9500
C7—C81.520 (3)C23—C241.399 (3)
C7—H7A0.9900C23—C281.405 (3)
C7—H7B0.9900C24—C251.392 (3)
C8—O11.192 (3)C24—H240.9500
C8—O2A1.307 (4)C25—C261.390 (3)
C8—O2B1.475 (6)C25—H250.9500
O2A—C9A1.456 (7)C26—C271.385 (3)
O2B—C9B1.461 (10)C26—H260.9500
C9A—C10A1.506 (8)C27—C281.396 (3)
C9A—H9A0.9900C27—H270.9500
C9A—H9B0.9900C28—H280.9500
C9B—C10B1.470 (12)C29—C301.401 (3)
C9B—H9C0.9900C29—C341.408 (3)
C9B—H9D0.9900C30—C311.392 (3)
C10A—H10A0.9800C30—H300.9500
C10A—H10B0.9800C31—C321.391 (3)
C10A—H10C0.9800C31—H310.9500
C10B—H10D0.9800C32—C331.380 (3)
C10B—H10E0.9800C32—H320.9500
C10B—H10F0.9800C33—C341.398 (3)
B1—C171.639 (3)C33—H330.9500
B1—C231.641 (3)C34—H340.9500
B1—C291.645 (3)
C1—N1—C4124.65 (18)C17—B1—C23112.33 (17)
C1—N1—C5110.29 (17)C17—B1—C29103.45 (16)
C4—N1—C5120.06 (18)C23—B1—C29112.97 (17)
C1—N2—C3122.92 (18)C17—B1—C11112.52 (17)
C1—N2—C2120.90 (18)C23—B1—C11102.89 (16)
C3—N2—C2116.11 (17)C29—B1—C11113.02 (17)
C1—N3—C7122.96 (18)C12—C11—C16115.12 (18)
C1—N3—C6110.22 (17)C12—C11—B1121.85 (18)
C7—N3—C6121.10 (17)C16—C11—B1122.54 (18)
N1—C1—N2124.52 (18)C13—C12—C11122.92 (19)
N1—C1—N3112.45 (18)C13—C12—H12118.5
N2—C1—N3123.02 (19)C11—C12—H12118.5
N2—C2—H2A109.5C14—C13—C12119.9 (2)
N2—C2—H2B109.5C14—C13—H13120.0
H2A—C2—H2B109.5C12—C13—H13120.0
N2—C2—H2C109.5C15—C14—C13119.06 (19)
H2A—C2—H2C109.5C15—C14—H14120.5
H2B—C2—H2C109.5C13—C14—H14120.5
N2—C3—H3A109.5C14—C15—C16120.2 (2)
N2—C3—H3B109.5C14—C15—H15119.9
H3A—C3—H3B109.5C16—C15—H15119.9
N2—C3—H3C109.5C15—C16—C11122.8 (2)
H3A—C3—H3C109.5C15—C16—H16118.6
H3B—C3—H3C109.5C11—C16—H16118.6
N1—C4—H4A109.5C22—C17—C18115.21 (19)
N1—C4—H4B109.5C22—C17—B1122.55 (18)
H4A—C4—H4B109.5C18—C17—B1121.95 (19)
N1—C4—H4C109.5C19—C18—C17122.9 (2)
H4A—C4—H4C109.5C19—C18—H18118.6
H4B—C4—H4C109.5C17—C18—H18118.6
N1—C5—C6103.74 (17)C20—C19—C18120.4 (2)
N1—C5—H5A111.0C20—C19—H19119.8
C6—C5—H5A111.0C18—C19—H19119.8
N1—C5—H5B111.0C19—C20—C21118.6 (2)
C6—C5—H5B111.0C19—C20—H20120.7
H5A—C5—H5B109.0C21—C20—H20120.7
N3—C6—C5103.22 (17)C20—C21—C22120.4 (2)
N3—C6—H6A111.1C20—C21—H21119.8
C5—C6—H6A111.1C22—C21—H21119.8
N3—C6—H6B111.1C21—C22—C17122.5 (2)
C5—C6—H6B111.1C21—C22—H22118.8
H6A—C6—H6B109.1C17—C22—H22118.8
N3—C7—C8111.94 (18)C24—C23—C28115.68 (19)
N3—C7—H7A109.2C24—C23—B1123.65 (18)
C8—C7—H7A109.2C28—C23—B1120.21 (19)
N3—C7—H7B109.2C25—C24—C23122.8 (2)
C8—C7—H7B109.2C25—C24—H24118.6
H7A—C7—H7B107.9C23—C24—H24118.6
O1—C8—O2A124.4 (3)C26—C25—C24120.1 (2)
O1—C8—O2B124.4 (3)C26—C25—H25119.9
O1—C8—C7125.6 (2)C24—C25—H25119.9
O2A—C8—C7108.4 (2)C27—C26—C25118.7 (2)
O2B—C8—C7106.3 (2)C27—C26—H26120.6
C8—O2A—C9A119.0 (3)C25—C26—H26120.6
C9B—O2B—C8116.1 (4)C26—C27—C28120.5 (2)
O2A—C9A—C10A111.2 (5)C26—C27—H27119.7
O2A—C9A—H9A109.4C28—C27—H27119.7
C10A—C9A—H9A109.4C27—C28—C23122.1 (2)
O2A—C9A—H9B109.4C27—C28—H28118.9
C10A—C9A—H9B109.4C23—C28—H28118.9
H9A—C9A—H9B108.0C30—C29—C34115.05 (18)
O2B—C9B—C10B110.6 (7)C30—C29—B1122.13 (18)
O2B—C9B—H9C109.5C34—C29—B1122.42 (18)
C10B—C9B—H9C109.5C31—C30—C29123.0 (2)
O2B—C9B—H9D109.5C31—C30—H30118.5
C10B—C9B—H9D109.5C29—C30—H30118.5
H9C—C9B—H9D108.1C32—C31—C30120.1 (2)
C9A—C10A—H10A109.5C32—C31—H31119.9
C9A—C10A—H10B109.5C30—C31—H31119.9
H10A—C10A—H10B109.5C33—C32—C31118.8 (2)
C9A—C10A—H10C109.5C33—C32—H32120.6
H10A—C10A—H10C109.5C31—C32—H32120.6
H10B—C10A—H10C109.5C32—C33—C34120.3 (2)
C9B—C10B—H10D109.5C32—C33—H33119.8
C9B—C10B—H10E109.5C34—C33—H33119.8
H10D—C10B—H10E109.5C33—C34—C29122.6 (2)
C9B—C10B—H10F109.5C33—C34—H34118.7
H10D—C10B—H10F109.5C29—C34—H34118.7
H10E—C10B—H10F109.5
C4—N1—C1—N223.3 (3)C23—B1—C17—C22151.06 (18)
C5—N1—C1—N2178.10 (19)C29—B1—C17—C2286.8 (2)
C4—N1—C1—N3155.7 (2)C11—B1—C17—C2235.5 (3)
C5—N1—C1—N30.9 (2)C23—B1—C17—C1835.4 (3)
C3—N2—C1—N138.3 (3)C29—B1—C17—C1886.7 (2)
C2—N2—C1—N1138.4 (2)C11—B1—C17—C18150.98 (19)
C3—N2—C1—N3142.8 (2)C22—C17—C18—C190.3 (3)
C2—N2—C1—N340.5 (3)B1—C17—C18—C19174.2 (2)
C7—N3—C1—N1154.57 (19)C17—C18—C19—C200.1 (4)
C6—N3—C1—N11.1 (2)C18—C19—C20—C210.3 (3)
C7—N3—C1—N226.4 (3)C19—C20—C21—C220.1 (3)
C6—N3—C1—N2179.87 (19)C20—C21—C22—C170.3 (3)
C1—N1—C5—C62.4 (2)C18—C17—C22—C210.5 (3)
C4—N1—C5—C6158.52 (19)B1—C17—C22—C21174.41 (19)
C1—N3—C6—C52.5 (2)C17—B1—C23—C24145.63 (19)
C7—N3—C6—C5156.55 (19)C29—B1—C23—C2429.1 (3)
N1—C5—C6—N32.8 (2)C11—B1—C23—C2493.1 (2)
C1—N3—C7—C8117.9 (2)C17—B1—C23—C2842.5 (3)
C6—N3—C7—C891.4 (2)C29—B1—C23—C28159.10 (19)
N3—C7—C8—O114.5 (4)C11—B1—C23—C2878.7 (2)
N3—C7—C8—O2A179.8 (4)C28—C23—C24—C250.4 (3)
N3—C7—C8—O2B144.2 (4)B1—C23—C24—C25172.53 (19)
O1—C8—O2A—C9A0.8 (8)C23—C24—C25—C260.8 (3)
C7—C8—O2A—C9A165.1 (4)C24—C25—C26—C271.0 (3)
O1—C8—O2B—C9B19.8 (9)C25—C26—C27—C280.6 (3)
C7—C8—O2B—C9B178.8 (5)C26—C27—C28—C230.2 (3)
C8—O2A—C9A—C10A84.2 (6)C24—C23—C28—C270.0 (3)
C8—O2B—C9B—C10B77.9 (7)B1—C23—C28—C27172.5 (2)
C17—B1—C11—C1233.8 (3)C17—B1—C29—C3080.4 (2)
C23—B1—C11—C1287.3 (2)C23—B1—C29—C3041.3 (3)
C29—B1—C11—C12150.53 (19)C11—B1—C29—C30157.59 (19)
C17—B1—C11—C16154.62 (19)C17—B1—C29—C3491.9 (2)
C23—B1—C11—C1684.3 (2)C23—B1—C29—C34146.4 (2)
C29—B1—C11—C1637.9 (3)C11—B1—C29—C3430.0 (3)
C16—C11—C12—C131.2 (3)C34—C29—C30—C310.8 (3)
B1—C11—C12—C13173.33 (19)B1—C29—C30—C31173.7 (2)
C11—C12—C13—C140.1 (3)C29—C30—C31—C320.1 (4)
C12—C13—C14—C150.4 (3)C30—C31—C32—C330.4 (3)
C13—C14—C15—C160.3 (3)C31—C32—C33—C340.3 (3)
C14—C15—C16—C111.5 (3)C32—C33—C34—C290.5 (3)
C12—C11—C16—C151.9 (3)C30—C29—C34—C331.0 (3)
B1—C11—C16—C15174.0 (2)B1—C29—C34—C33173.88 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C23–C28 and C29–C34 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cg1i0.992.773.694 (3)155
C6—H6A···Cg2ii0.992.963.870 (3)153
C4—H4B···Cg3iii0.982.793.758 (3)169
C3—H3B···Cg30.982.943.868 (3)159
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C23–C28 and C29–C34 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cg1i0.992.773.694 (3)155
C6—H6A···Cg2ii0.992.963.870 (3)153
C4—H4B···Cg3iii0.982.793.758 (3)169
C3—H3B···Cg30.982.943.868 (3)159
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H20N3O2+·C24H20B
Mr533.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3033 (6), 10.3598 (4), 20.2825 (9)
β (°) 105.468 (2)
V3)2896.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.23 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12960, 7012, 4502
Rint0.071
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.148, 1.04
No. of reflections7012
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: COLLECT (Hooft, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2002.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300–307.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds