metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(acetato-κO)bis­­{2-[4-(pyridin-2-yl)phen­yl]-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N′}cadmium(II)

aSchool of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
*Correspondence e-mail: guoleiqun0606@163.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 31 December 2015; accepted 13 January 2016; online 20 January 2016)

The asymmetric unit of the title compound, [Cd(CH3COO)(C24H15N5)], comprises one-half of the centrosymmetric mol­ecule. The CdII ion, situated on a centre of inversion, is coordinated by two O atoms from two acetate ligands and four N atoms from two 2-[4-(pyridin-2-yl)phen­yl]-1H-imidazo[4,5-f][1,10]phenanthroline (L) ligands in a distorted octa­hedral geometry. In the L ligand, the terminal phenyl and pyridine rings are turned away from the mean plane of the imidazo[4,5-f][1,10]phenanthroline fragment in opposite directions, at 11.1 (1) and 10.5 (1)°, respectively. In the crystal, N—H⋯O hydrogen bonds link mol­ecules related by translation along the a axis into linear chains, and weak C—H⋯N inter­actions link these chains into layers parallel to the (011) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, the design and synthesis of novel metal-organic coordination polymers based on 1,10-phenanthroline-derivates ligands have attracted much attention (Wang et al., 2011[Wang, X.-Y., Ma, S. & He, Y. (2011). Acta Cryst. E67, m325.]; Xu et al., 2011[Xu, H.-B., Ma, S. & He, Y. (2011). Acta Cryst. E67, m326.]; Kong et al., 2015[Kong, Z. G., Guo, S. N., Zhou, X. L., Zhao, Z. Y. & Lv, J. Q. (2015). Chin. J. Struct. Chem. 34, 606-610.]). We report herein the crystal structure of the title mol­ecular complex (I) (Fig. 1[link]). In (I), the CdII ion, situated on a centre of inversion, is six-coordinated by two O atoms from two acetato ligands and four N atoms from two 2-(4-pyridine-2-yl-phen­yl)-1H-imidazo[4,5-f] [1,10]phenanthroline ligands in a distorted octa­hedral geometry. Such a centrosymmetric coordination of the transition metal atom (Cd) is similar to those observed in the related structures with CCDC refcodes PUPTOK (Wang et al., 2010[Wang, X.-L., Chen, Y.-Q., Liu, G.-C., Zhang, J.-X., Lin, H.-Y. & Chen, B.-K. (2010). Inorg. Chim. Acta, 363, 773-778.]), WEJLUT (Che, 2006[Che, G.-B. (2006). Acta Cryst. E62, m1244-m1246.]) and WEJNUV (Che et al., 2006[Che, G.-B., Lin, X.-F. & Liu, C.-B. (2006). Acta Cryst. E62, m1456-m1458.]). However, all three of the aforementioned compounds are polymeric, while (I) is a 0D mol­ecular complex. In the crystal, the adjacent mol­ecules are linked via N—H⋯O hydrogen bonds (Table 1[link]) into linear chains along the axis a (Fig. 2[link]), and weak C—H⋯N inter­actions (Table 1[link]) link these chains into layers parallel to the (011) plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.86 1.93 2.724 (4) 153
C9—H9⋯N5ii 0.93 2.61 3.523 (5) 168
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atomic numbering and 50% probability displacement ellipsoids. [Symmetry code: (A) −x, −y + 1, −z + 1.]
[Figure 2]
Figure 2
A portion of the crystal packing showing the formation of a hydrogen-bonded (dashed lines) linear chain of mol­ecules.

Synthesis and crystallization

A mixture of Cd(CH3COO)2·4H2O (0.25 mmol), 2-(4-pyridine-2-yl-phen­yl)-1H-imidazo[4,5-f][1,10]phenanthroline (0.5 mmol) and H2O (10 ml) was stirred at room temperature for 15 min. When the pH value had been adjusted to about 7.08 with NaOH, the mixture was transferred into a 25 ml Teflon-lined stainless-steel reactor, heated to 453 K for nine days, and then slowly cooled to room temperature at a rate of 5 K h−1. Pale-yellow block crystals of the title complex were isolated, washed with distilled water, and dried in air (yield: 46% based on CdII).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C2H3O2)(C24H15N5)]
Mr 977.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.2984 (12), 9.3261 (14), 12.5747 (16)
α, β, γ (°) 107.160 (2), 103.719 (3), 96.550 (2)
V3) 992.1 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.25 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.861, 0.897
No. of measured, independent and observed [I > 2σ(I)] reflections 6876, 3448, 3170
Rint 0.041
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.07
No. of reflections 3448
No. of parameters 293
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.19, −0.95
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Comment top

In recent years, the design and synthesis of novel metal-organic coordination polymers based on 1,10-phenanthroline-derivates ligands have attracted much attention (Wang et al., 2011; Xu et al., 2011; Kong et al., 2015). We report herein the crystal structure of the title molecular complex (I) (Fig. 1). In (I), the CdII ion situated on a centre of inversion is six coordinated by two O atoms from two acetato ligands and four N atoms from two 2-(4-pyridine-2-yl-phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline ligands in a distorted octahedral geometry. Such centrosymmetric coordination of the transition metal atom (Cd) is similar to those observed in the related structures with CCDC refcodes PUPTOK (Wang et al., 2010), WEJLUT (Che, 2006) and WEJNUV (Che et al., 2006). However, all three aforementioned compounds are polymeric, while (I) is 0D molecular complex. In the crystal, the adjacent molecules are linked via N—H···O hydrogen bonds (Table 1) into linear chains along the axis a (Fig. 2), and weak C—H···N interactions (Table 1) link these chains into layers parallel to (011) plane.

Experimental top

A mixture of Cd(CH3COO)2.4H2O (0.25 mmol), 2-(4-pyridine-2-yl-phenyl)-1H- imidazo[4,5-f][1,10]phenanthroline (0.5 mmol) and H2O (10 ml) was stirred at room temperature for 15 min. When the pH value had been adjusted to about 7.08 with NaOH, the mixture was transferred into a 25 ml Teflon-lined stainless-steel reactor, heated to 453 K for nine days, and then slowly cooled to room temperature at a rate of 5 K h−1. Pale-yellow block crystals of the title complex were isolated, washed with distilled water, and dried in air (yield: 46% based on CdII).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

In recent years, the design and synthesis of novel metal-organic coordination polymers based on 1,10-phenanthroline-derivates ligands have attracted much attention (Wang et al., 2011; Xu et al., 2011; Kong et al., 2015). We report herein the crystal structure of the title molecular complex (I) (Fig. 1). In (I), the CdII ion, situated on a centre of inversion, is six-coordinated by two O atoms from two acetato ligands and four N atoms from two 2-(4-pyridine-2-yl-phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline ligands in a distorted octahedral geometry. Such a centrosymmetric coordination of the transition metal atom (Cd) is similar to those observed in the related structures with CCDC refcodes PUPTOK (Wang et al., 2010), WEJLUT (Che, 2006) and WEJNUV (Che et al., 2006). However, all three of the aforementioned compounds are polymeric, while (I) is a 0D molecular complex. In the crystal, the adjacent molecules are linked via N—H···O hydrogen bonds (Table 1) into linear chains along the axis a (Fig. 2), and weak C—H···N interactions (Table 1) link these chains into layers parallel to the (011) plane.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering and 50% probability displacement ellipsoids. [Symmetry code: (A) −x, −y + 1, −z + 1.]
[Figure 2] Fig. 2. A portion of the crystal packing showing the formation of a hydrogen-bonded (dashed lines) linear chain of molecules.
Bis(acetato-κO)bis{2-[4-(pyridin-2-yl)phenyl]-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N'}cadmium(II) top
Crystal data top
[Cd(C2H3O2)(C24H15N5)]Z = 1
Mr = 977.31F(000) = 498
Triclinic, P1Dx = 1.636 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2984 (12) ÅCell parameters from 1729 reflections
b = 9.3261 (14) Åθ = 2.1–23.6°
c = 12.5747 (16) ŵ = 0.62 mm1
α = 107.160 (2)°T = 293 K
β = 103.719 (3)°Block, pale-yellow
γ = 96.550 (2)°0.25 × 0.20 × 0.18 mm
V = 992.1 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.861, Tmax = 0.897k = 118
6876 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0238P]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cd(C2H3O2)(C24H15N5)]γ = 96.550 (2)°
Mr = 977.31V = 992.1 (2) Å3
Triclinic, P1Z = 1
a = 9.2984 (12) ÅMo Kα radiation
b = 9.3261 (14) ŵ = 0.62 mm1
c = 12.5747 (16) ÅT = 293 K
α = 107.160 (2)°0.25 × 0.20 × 0.18 mm
β = 103.719 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3170 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.897Rint = 0.041
6876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 1.19 e Å3
3448 reflectionsΔρmin = 0.95 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1738 (4)0.7815 (5)0.7460 (3)0.0222 (9)
H10.07930.80770.73100.027*
C20.2863 (4)0.8767 (5)0.8459 (4)0.0260 (9)
H20.26690.96330.89570.031*
C30.4248 (4)0.8383 (5)0.8677 (3)0.0242 (9)
H30.50220.89920.93300.029*
C40.4507 (2)0.7022 (2)0.78865 (19)0.0209 (9)
C50.33294 (19)0.6156 (3)0.6911 (2)0.0193 (8)
C60.3560 (2)0.4885 (3)0.61043 (17)0.0183 (8)
C70.4969 (2)0.4479 (2)0.62734 (19)0.0203 (9)
C120.61462 (19)0.5344 (3)0.7249 (2)0.0199 (8)
C110.5915 (2)0.6616 (3)0.80555 (17)0.0195 (8)
C80.5160 (4)0.3161 (5)0.5384 (4)0.0224 (9)
H80.60900.28660.54570.027*
C90.3958 (4)0.2363 (5)0.4440 (3)0.0232 (9)
H90.40520.15070.38710.028*
C100.2590 (4)0.2859 (4)0.4350 (4)0.0225 (9)
H100.17790.23110.37050.027*
C130.8247 (4)0.6499 (5)0.8649 (3)0.0217 (9)
C140.9828 (4)0.6839 (4)0.9361 (3)0.0210 (9)
C151.0378 (4)0.8222 (5)1.0267 (3)0.0224 (9)
H150.97480.89211.03990.027*
C161.1848 (4)0.8580 (5)1.0977 (4)0.0234 (9)
H161.22010.95211.15690.028*
C171.2810 (4)0.7524 (5)1.0806 (3)0.0207 (9)
C181.2244 (4)0.6149 (5)0.9902 (4)0.0266 (10)
H181.28660.54400.97790.032*
C191.0785 (4)0.5791 (5)0.9177 (4)0.0249 (9)
H191.04420.48620.85720.030*
C201.4371 (4)0.7911 (4)1.1599 (4)0.0222 (9)
C211.5513 (5)0.7191 (5)1.1270 (4)0.0323 (10)
H211.53210.64691.05370.039*
C221.6934 (5)0.7574 (5)1.2057 (4)0.0393 (12)
H221.77040.70951.18610.047*
C231.7198 (4)0.8663 (5)1.3124 (4)0.0303 (10)
H231.81440.89401.36660.036*
C241.6021 (4)0.9332 (5)1.3369 (4)0.0288 (10)
H241.62031.00821.40890.035*
C250.0756 (4)0.2401 (5)0.5775 (4)0.0230 (9)
C260.1180 (5)0.1365 (5)0.6414 (4)0.0304 (10)
H26A0.10430.03520.60420.046*
H26B0.22190.13320.64050.046*
H26C0.05500.17470.72020.046*
Cd10.00000.50000.50000.02133 (17)
N10.1936 (3)0.6574 (4)0.6721 (3)0.0208 (7)
N20.2376 (3)0.4062 (4)0.5128 (3)0.0207 (7)
N30.7245 (3)0.7336 (4)0.8941 (3)0.0218 (7)
N40.7646 (3)0.5293 (4)0.7644 (3)0.0210 (7)
H40.81140.46270.73190.025*
N51.4633 (4)0.8975 (4)1.2639 (3)0.0262 (8)
O10.0839 (3)0.3810 (3)0.6190 (3)0.0278 (7)
O20.0346 (3)0.1899 (3)0.4899 (3)0.0305 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.015 (2)0.028 (2)0.023 (2)0.0088 (16)0.0054 (16)0.0053 (18)
C20.025 (2)0.029 (2)0.022 (2)0.0069 (17)0.0051 (17)0.0061 (19)
C30.021 (2)0.026 (2)0.018 (2)0.0006 (16)0.0019 (17)0.0011 (18)
C40.016 (2)0.025 (2)0.019 (2)0.0031 (15)0.0034 (16)0.0049 (17)
C50.0136 (19)0.025 (2)0.021 (2)0.0060 (15)0.0039 (16)0.0096 (18)
C60.0120 (19)0.020 (2)0.018 (2)0.0010 (14)0.0001 (15)0.0047 (17)
C70.020 (2)0.021 (2)0.020 (2)0.0023 (16)0.0056 (16)0.0085 (18)
C120.016 (2)0.022 (2)0.020 (2)0.0040 (15)0.0038 (16)0.0065 (17)
C110.016 (2)0.019 (2)0.017 (2)0.0006 (15)0.0010 (15)0.0012 (17)
C80.016 (2)0.023 (2)0.029 (2)0.0046 (16)0.0053 (17)0.0109 (19)
C90.021 (2)0.019 (2)0.023 (2)0.0013 (16)0.0035 (17)0.0012 (17)
C100.016 (2)0.021 (2)0.024 (2)0.0012 (16)0.0010 (16)0.0025 (18)
C130.014 (2)0.027 (2)0.022 (2)0.0029 (16)0.0019 (16)0.0086 (18)
C140.019 (2)0.021 (2)0.022 (2)0.0025 (16)0.0027 (16)0.0081 (18)
C150.020 (2)0.022 (2)0.022 (2)0.0074 (16)0.0045 (17)0.0016 (17)
C160.022 (2)0.020 (2)0.023 (2)0.0036 (16)0.0030 (17)0.0027 (18)
C170.017 (2)0.024 (2)0.020 (2)0.0014 (16)0.0021 (16)0.0084 (18)
C180.018 (2)0.023 (2)0.032 (2)0.0061 (16)0.0033 (18)0.0018 (19)
C190.019 (2)0.021 (2)0.027 (2)0.0014 (16)0.0006 (18)0.0020 (18)
C200.021 (2)0.019 (2)0.023 (2)0.0017 (16)0.0021 (17)0.0060 (18)
C210.026 (2)0.025 (2)0.031 (3)0.0032 (18)0.0037 (19)0.006 (2)
C220.016 (2)0.032 (3)0.051 (3)0.0074 (18)0.001 (2)0.004 (2)
C230.014 (2)0.031 (3)0.037 (3)0.0028 (17)0.0054 (18)0.009 (2)
C240.024 (2)0.030 (2)0.026 (2)0.0042 (18)0.0007 (18)0.0058 (19)
C250.0131 (19)0.026 (2)0.029 (2)0.0038 (16)0.0024 (17)0.0102 (19)
C260.029 (2)0.030 (2)0.031 (2)0.0016 (18)0.0084 (19)0.011 (2)
Cd10.0144 (2)0.0254 (3)0.0198 (3)0.00243 (16)0.00164 (17)0.00412 (19)
N10.0151 (17)0.0254 (19)0.0229 (18)0.0072 (13)0.0055 (14)0.0082 (15)
N20.0160 (17)0.0210 (18)0.0192 (17)0.0005 (13)0.0011 (13)0.0041 (15)
N30.0157 (17)0.0229 (19)0.0191 (18)0.0019 (13)0.0008 (14)0.0012 (15)
N40.0181 (17)0.0178 (17)0.0254 (18)0.0095 (13)0.0060 (14)0.0028 (15)
N50.0176 (18)0.029 (2)0.0263 (19)0.0043 (14)0.0012 (15)0.0050 (16)
O10.0246 (15)0.0257 (17)0.0307 (16)0.0052 (12)0.0072 (12)0.0067 (13)
O20.0278 (16)0.0359 (18)0.0264 (17)0.0070 (13)0.0086 (13)0.0077 (14)
Geometric parameters (Å, º) top
C1—N11.316 (5)C16—C171.408 (5)
C1—C21.402 (5)C16—H160.9300
C1—H10.9300C17—C181.384 (6)
C2—C31.363 (5)C17—C201.488 (5)
C2—H20.9300C18—C191.383 (5)
C3—C41.448 (4)C18—H180.9300
C3—H30.9300C19—H190.9300
C4—C51.3900C20—N51.334 (5)
C4—C111.3900C20—C211.398 (6)
C5—N11.382 (3)C21—C221.384 (6)
C5—C61.3900C21—H210.9300
C6—N21.385 (3)C22—C231.370 (6)
C6—C71.3900C22—H220.9300
C7—C121.3900C23—C241.372 (6)
C7—C81.459 (4)C23—H230.9300
C12—N41.376 (3)C24—N51.334 (5)
C12—C111.3900C24—H240.9300
C11—N31.391 (3)C25—O21.230 (5)
C8—C91.367 (5)C25—O11.282 (5)
C8—H80.9300C25—C261.503 (6)
C9—C101.394 (5)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—N21.323 (5)C26—H26C0.9600
C10—H100.9300Cd1—O1i2.326 (3)
C13—N31.331 (5)Cd1—O12.326 (3)
C13—N41.363 (5)Cd1—N12.399 (3)
C13—C141.472 (5)Cd1—N1i2.399 (3)
C14—C151.389 (5)Cd1—N22.455 (3)
C14—C191.401 (6)Cd1—N2i2.455 (3)
C15—C161.385 (5)N4—H40.8600
C15—H150.9300
N1—C1—C2124.1 (3)C18—C19—C14119.5 (4)
N1—C1—H1118.0C18—C19—H19120.2
C2—C1—H1118.0C14—C19—H19120.2
C3—C2—C1117.9 (4)N5—C20—C21121.5 (4)
C3—C2—H2121.0N5—C20—C17117.0 (4)
C1—C2—H2121.0C21—C20—C17121.5 (4)
C2—C3—C4119.5 (3)C22—C21—C20118.8 (4)
C2—C3—H3120.2C22—C21—H21120.6
C4—C3—H3120.2C20—C21—H21120.6
C5—C4—C11120.0C23—C22—C21119.6 (4)
C5—C4—C3118.5 (2)C23—C22—H22120.2
C11—C4—C3121.4 (2)C21—C22—H22120.2
N1—C5—C6119.6 (2)C22—C23—C24117.8 (4)
N1—C5—C4120.4 (2)C22—C23—H23121.1
C6—C5—C4120.0C24—C23—H23121.1
N2—C6—C5118.8 (2)N5—C24—C23124.2 (4)
N2—C6—C7121.2 (2)N5—C24—H24117.9
C5—C6—C7120.0C23—C24—H24117.9
C12—C7—C6120.0O2—C25—O1122.6 (4)
C12—C7—C8122.3 (2)O2—C25—C26120.6 (4)
C6—C7—C8117.7 (2)O1—C25—C26116.8 (4)
N4—C12—C7134.5 (2)C25—C26—H26A109.5
N4—C12—C11105.5 (2)C25—C26—H26B109.5
C7—C12—C11120.0H26A—C26—H26B109.5
C12—C11—C4120.0C25—C26—H26C109.5
C12—C11—N3110.5 (2)H26A—C26—H26C109.5
C4—C11—N3129.4 (2)H26B—C26—H26C109.5
C9—C8—C7119.4 (3)O1i—Cd1—O1180.000 (1)
C9—C8—H8120.3O1i—Cd1—N193.95 (10)
C7—C8—H8120.3O1—Cd1—N186.05 (10)
C8—C9—C10118.6 (4)O1i—Cd1—N1i86.05 (10)
C8—C9—H9120.7O1—Cd1—N1i93.95 (10)
C10—C9—H9120.7N1—Cd1—N1i180.0
N2—C10—C9123.9 (3)O1i—Cd1—N283.71 (10)
N2—C10—H10118.1O1—Cd1—N296.29 (10)
C9—C10—H10118.1N1—Cd1—N268.72 (10)
N3—C13—N4113.0 (3)N1i—Cd1—N2111.28 (10)
N3—C13—C14122.9 (4)O1i—Cd1—N2i96.29 (10)
N4—C13—C14124.2 (4)O1—Cd1—N2i83.71 (10)
C15—C14—C19118.9 (4)N1—Cd1—N2i111.28 (10)
C15—C14—C13119.0 (4)N1i—Cd1—N2i68.72 (10)
C19—C14—C13122.1 (4)N2—Cd1—N2i180.000 (1)
C16—C15—C14121.2 (4)C1—N1—C5119.5 (3)
C16—C15—H15119.4C1—N1—Cd1123.2 (2)
C14—C15—H15119.4C5—N1—Cd1117.3 (2)
C15—C16—C17120.2 (4)C10—N2—C6119.2 (3)
C15—C16—H16119.9C10—N2—Cd1125.2 (2)
C17—C16—H16119.9C6—N2—Cd1115.6 (2)
C18—C17—C16117.9 (3)C13—N3—C11104.0 (3)
C18—C17—C20122.7 (4)C13—N4—C12107.0 (3)
C16—C17—C20119.5 (4)C13—N4—H4126.5
C19—C18—C17122.3 (4)C12—N4—H4126.5
C19—C18—H18118.8C24—N5—C20118.1 (4)
C17—C18—H18118.8C25—O1—Cd1105.5 (2)
N1—C1—C2—C30.0 (6)C17—C20—C21—C22178.5 (4)
C1—C2—C3—C40.3 (6)C20—C21—C22—C231.3 (7)
C2—C3—C4—C51.1 (5)C21—C22—C23—C240.1 (7)
C2—C3—C4—C11177.9 (3)C22—C23—C24—N50.9 (7)
C11—C4—C5—N1178.4 (3)C2—C1—N1—C50.5 (6)
C3—C4—C5—N11.5 (3)C2—C1—N1—Cd1178.7 (3)
C11—C4—C5—C60.0C6—C5—N1—C1177.1 (3)
C3—C4—C5—C6176.9 (3)C4—C5—N1—C11.2 (4)
N1—C5—C6—N20.3 (3)C6—C5—N1—Cd11.2 (3)
C4—C5—C6—N2178.7 (3)C4—C5—N1—Cd1179.58 (13)
N1—C5—C6—C7178.4 (3)O1i—Cd1—N1—C195.5 (3)
C4—C5—C6—C70.0O1—Cd1—N1—C184.5 (3)
N2—C6—C7—C12178.6 (3)N2—Cd1—N1—C1177.2 (3)
C5—C6—C7—C120.0N2i—Cd1—N1—C12.8 (3)
N2—C6—C7—C80.3 (3)O1i—Cd1—N1—C582.8 (2)
C5—C6—C7—C8178.3 (3)O1—Cd1—N1—C597.2 (2)
C6—C7—C12—N4177.2 (3)N2—Cd1—N1—C51.1 (2)
C8—C7—C12—N41.1 (4)N2i—Cd1—N1—C5178.9 (2)
C6—C7—C12—C110.0C9—C10—N2—C60.9 (6)
C8—C7—C12—C11178.2 (3)C9—C10—N2—Cd1179.3 (3)
N4—C12—C11—C4177.9 (2)C5—C6—N2—C10179.4 (3)
C7—C12—C11—C40.0C7—C6—N2—C100.8 (4)
N4—C12—C11—N30.4 (3)C5—C6—N2—Cd10.8 (3)
C7—C12—C11—N3178.3 (2)C7—C6—N2—Cd1179.40 (13)
C5—C4—C11—C120.0O1i—Cd1—N2—C1082.5 (3)
C3—C4—C11—C12176.8 (3)O1—Cd1—N2—C1097.5 (3)
C5—C4—C11—N3177.9 (3)N1—Cd1—N2—C10179.2 (3)
C3—C4—C11—N31.2 (3)N1i—Cd1—N2—C100.8 (3)
C12—C7—C8—C9179.6 (3)O1i—Cd1—N2—C697.7 (2)
C6—C7—C8—C91.3 (4)O1—Cd1—N2—C682.3 (2)
C7—C8—C9—C101.2 (6)N1—Cd1—N2—C61.0 (2)
C8—C9—C10—N20.2 (6)N1i—Cd1—N2—C6179.0 (2)
N3—C13—C14—C1511.1 (6)N4—C13—N3—C110.3 (4)
N4—C13—C14—C15170.1 (4)C14—C13—N3—C11179.2 (3)
N3—C13—C14—C19166.8 (4)C12—C11—N3—C130.5 (3)
N4—C13—C14—C1911.9 (6)C4—C11—N3—C13177.6 (2)
C19—C14—C15—C160.5 (6)N3—C13—N4—C120.1 (4)
C13—C14—C15—C16178.5 (4)C14—C13—N4—C12178.9 (3)
C14—C15—C16—C171.3 (6)C7—C12—N4—C13177.6 (2)
C15—C16—C17—C181.1 (6)C11—C12—N4—C130.2 (3)
C15—C16—C17—C20178.3 (4)C23—C24—N5—C200.7 (6)
C16—C17—C18—C190.0 (6)C21—C20—N5—C240.6 (6)
C20—C17—C18—C19179.3 (4)C17—C20—N5—C24179.4 (3)
C17—C18—C19—C140.7 (6)O2—C25—O1—Cd12.0 (4)
C15—C14—C19—C180.5 (6)C26—C25—O1—Cd1177.7 (3)
C13—C14—C19—C18177.4 (4)O1i—Cd1—O1—C25114 (100)
C18—C17—C20—N5157.8 (4)N1—Cd1—O1—C25119.9 (2)
C16—C17—C20—N521.5 (6)N1i—Cd1—O1—C2560.1 (2)
C18—C17—C20—C2122.2 (6)N2—Cd1—O1—C2551.8 (2)
C16—C17—C20—C21158.5 (4)N2i—Cd1—O1—C25128.2 (2)
N5—C20—C21—C221.5 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1ii0.861.932.724 (4)153
C9—H9···N5iii0.932.613.523 (5)168
Symmetry codes: (ii) x+1, y, z; (iii) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.861.932.724 (4)152.5
C9—H9···N5ii0.932.613.523 (5)168.2
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z1.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)(C24H15N5)]
Mr977.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2984 (12), 9.3261 (14), 12.5747 (16)
α, β, γ (°)107.160 (2), 103.719 (3), 96.550 (2)
V3)992.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.861, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
6876, 3448, 3170
Rint0.041
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.07
No. of reflections3448
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.95

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by Jiangsu University.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B. (2006). Acta Cryst. E62, m1244–m1246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChe, G.-B., Lin, X.-F. & Liu, C.-B. (2006). Acta Cryst. E62, m1456–m1458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, Z. G., Guo, S. N., Zhou, X. L., Zhao, Z. Y. & Lv, J. Q. (2015). Chin. J. Struct. Chem. 34, 606–610.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Chen, Y.-Q., Liu, G.-C., Zhang, J.-X., Lin, H.-Y. & Chen, B.-K. (2010). Inorg. Chim. Acta, 363, 773–778.  CSD CrossRef CAS Google Scholar
First citationWang, X.-Y., Ma, S. & He, Y. (2011). Acta Cryst. E67, m325.  CSD CrossRef IUCr Journals Google Scholar
First citationXu, H.-B., Ma, S. & He, Y. (2011). Acta Cryst. E67, m326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds