research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of tri­aza­triborinotris[1,3,2]benzodi­aza­borole acetone disolvate

crossmark logo

aDepartment of Chemistry, Biochemistry and Physics, Eastern Washington, University, Cheney, WA 99004, USA, and bDepartment of Chemistry, Whitworth University, Spokane, WA 99251, USA
*Correspondence e-mail: alamm@ewu.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 9 October 2023; accepted 24 October 2023; online 31 October 2023)

The title compound, alternatively known as benzodi­aza­borole trimer, C18H15B3N6·2C3H6O, at 100 K crystallizes in the triclinic system, space group P[\overline{1}]. The structure displays N—H⋯O hydrogen bonding connecting the main mol­ecule with the crystallization solvent. Disorder of the main mol­ecule is observed with occupancy factors refined to 0.8922 (14):0.1078 (14). The packing of the crystal shows a parallel-displaced atom-centered orientation with 3.30 (2) Å between the planes of the rings. In the solid state, the title compound is linked with weak C—H⋯π inter­actions, which is supported by Hirshfeld surface analysis.

1. Chemical context

Benzodi­aza­borole trimer was discovered over 60 years ago, with the first synthesis reported by Brotherton & Steinberg (1961[Brotherton, R. J. & Steinberg, H. (1961). J. Org. Chem. 26, 4632-4634.]). The formation of the borazine ring from three benzodi­aza­boroles is thermodynamically favorable and is found to be the major product (Niedenzu et al., 1962[Niedenzu, K., Beyer, H. & Dawson, J. W. (1962). Inorg. Chem. 1, 738-742.]). There has been research into the physical characteristics, such as IR (Harris & Rudner, 1962[Harris, J. J. & Rudner, B. (1962). J. Org. Chem. 27, 3848-3851.]). As a film, the title compound is highly reflective, adherent, hard, and behaves as a narrow-band semiconductor, which is susceptible to modifications by chemical treatment (Maya, 1988[Maya, L. (1988). MRS Online Proceedings Library, 121, 121-455.]). Additionally, its reactivity and synthesis have been studied by several groups (Kreutzberger & Ferris, 1962[Kreutzberger, A. & Ferris, F. C. (1962). J. Org. Chem. 27, 3496-3500.], Ryschkewitsch, 1964[Ryschkewitsch, G. E. (1964). Adv. Chem. 53-58.]; Trofimenko, 1967[Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 4948-4952.]; Dandegaonker & Mane, 1974[Dandegaonker, S. H. & Mane, A. S. (1974). Chemischer Informationsdienst, 5.]; Maras & Kocevar, 2012[Maras, N. & Kocevar, M. (2012). ChemInform, 43.]). To date, there are no reports on the solid-state structure of the compound. Herein we report on the crystalline structure of the title compound synthesized by the condensation of boron trichloride and o-phenyl­enedi­amine and recrystallized in acetone.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two equivalents of acetone as the crystallization solvent. The structure is disordered, with the acetone mol­ecules remaining stationary while the benzodi­aza­borle is inverted by 180° (Fig. 1[link]). In each case, the acetone forms hydrogen bonds with a nearby NH group; these bonds range from 2.086 (13) to 2.133 (13) Å. A comparison of between the two mol­ecular orientations, I and Ia, is given in Table 1[link]. The C1=O20 double bond of acetone is 1.2110 (15) Å and the O2=C23 double bond is 1.2122 (16) Å. The boron nitro­gen bonds of the borazine ring vary slightly between the disordered structures, Ia has slightly shorter bond lengths, see Table 2[link]. The B—NH bond lengths are similar between the title compounds and vary between 1.4191 (18) and 1.459 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.89 (1) 2.13 (1) 2.9817 (14) 160 (1)
N5—H5⋯O1 0.87 (1) 2.09 (1) 2.9544 (15) 175 (1)
N1A—H1A⋯O2 0.88 (2) 2.27 (4) 3.133 (8) 165 (11)
N5A—H5AA⋯O1 0.88 (2) 2.19 (5) 3.026 (8) 158 (11)

Table 2
Comparison of borazine bond lengths (Å) in I and Ia

I   Ia  
N2—B1 1.459 (2) N2A—B1A 1.433 (12)
N2—B2 1.429 (2) N2A—B2A 1.433 (12)
N4—B2 1.459 (2) N4A—B2A 1.433 (13)
N4—B3 1.433 (2) N4A—B3A 1.429 (12)
N6—B1 1.428 (2) N6A—B1A 1.409 (12)
N6—B3 1.459 (2) N6A—B3A 1.435 (12)
[Figure 1]
Figure 1
The mol­ecular structure of the disordered title compounds, (I and Ia), with displacements ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal (Fig. 2[link]), mol­ecules of (I)[link] adopt a parallel-displaced atom-centered orientation. The structure packs with 3.30 (2) Å between adjacent aromatic compounds. The weak inter­molecular inter­actions of I and Ia were explored by Hirshfeld surface analysis. The properties (dnorm, shape-index and de) are mapped over the Hirshfeld surfaces and two-dimensional fingerprint plots of the title compound were generated using CrystalExplorer (Version 17.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm values illustrate whether the inter­molecular contact is shorter or longer than the van der Waals radii. Red areas of the Hirshfeld surface indicate negative dnorm values, which in turn represents contacts closer than the van der Waals radii (Fig. 3[link]).

[Figure 2]
Figure 2
Packing diagram.
[Figure 3]
Figure 3
Hirshfeld surface inter­acting mol­ecules mapped over dnorm. Red areas highlight inter­molecular contacts shorter than the sum of the van der Waals radii for I (a) and Ia (b), the shape index for I (c) and Ia (d), and d­e where the circled areas indicate the C—H⋯π inter­actions in I (e) and Ia (f).

Contributions by individual elements to inter­molecular inter­actions were analyzed through fingerprint plots generated by CrystalExplorer (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). The significant inter­actions for each conformer are shown in Fig. 4[link](a)–(l). The dominating inter­actions are H⋯H inter­actions [Fig. 4[link](e) and (f)], followed by C⋯H/ C⋯H inter­actions [Fig. 4[link](c) and (d)], and few C⋯C inter­actions [Fig. 4[link](i) and (j)], which suggests C—H⋯π inter­actions. The hydrogen-bonding inter­actions between O⋯H/O⋯H are very strong [Fig. 4[link](g) and (h)]. Inter­estingly, there are also strong C⋯B/B⋯C inter­actions [Fig. 4[link](k) and (l)]. The negligible contributions from other contacts not included in Fig. 4[link] are as follows: N⋯H (I, 8.0%; Ia, 7.1%), B⋯H (I, 3.4%; Ia 4.1%),, C⋯O (I, 1.0%; Ia, 1.1%), N⋯O (I, 0.6%; Ia, 0.6%), B⋯O (I, 0.4%; Ia, 0.3%), C⋯N (I, 3.6%; Ia, 4.0%), N⋯N (I, 0.7%; Ia 0.5%), N⋯B (I, 0%; Ia, 0.4%) with O⋯O, and B⋯B contacts not observed.

[Figure 4]
Figure 4
Hirshfeld surfaces and fingerprint plots showing percentage of contacts of all inter­actions for both I (a) and Ia (b), C⋯H/ H⋯C inter­actions for I (c) and Ia (d), H⋯H inter­actions for I (e) and Ia (f), O⋯H/ H⋯O inter­actions for I (g) and Ia (h), C⋯C inter­actions for I (i) and Ia (j),and C⋯B/ B⋯C inter­actions for I (k) and Ia (l)

4. Database survey

A survey of the Cambridge Structural Database (CSD version 2023.2.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed there are no examples of the benzodi­aza­borole trimer structure and very few examples of similar compounds available in the literature. Crystal structures that contain borazine are usually not fused with five-membered rings except for boraza­truxenes, where the NH groups are replaced with CH2 groups. These materials are being explored as stable polycyclic aromatic hydro­carbons for material applications (Limberti et al., 2019[Limberti, S., Emmett, L., Trandafir, A., Kociok-Köhn, G. & Pantoş, G. D. (2019). Chem. Sci. 10, 9565-9570.]). Additionally, the synthesis of oxaza­borolidine trimers has been studied (Stepanenko et al., 2006[Stepanenko, V., Ortiz-Marciales, M., Barnes, C. E. & Garcia, C. (2006). Tet. Lett. 47, 43, 7603-7606.]).

5. Synthesis and crystallization

A solution of o-phenyl­enedi­amine (1.00 g, 9.247 mmol) in 30 mL of toluene with tri­ethyl­amine (3.866 mL, 27.7 mmol) was degassed and boron trichloride (9.247 mL, 9.24 mmol) was slowly added. This mixture was refluxed for 2 h. The cooled solution was filtered through celite and purified by column chromatography with acetone/pentane (1:1) solution. Clear needles were isolated from recrystallization in acetone and were suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were located in a series of difference-Fourier electron-density maps and refined using anisotropic displacement parameters. All C—H hydrogen atoms were placed in calculated positions with Uiso(H) = 1.2Ueq of the connected C atoms (1.5Ueq for methyl groups). Those H atoms attached to nitro­gen were located in difference-Fourier maps. A RIGU command was applied to the less occupied component and ISOR to N2A, N4A, and N6A. The N—H bonds were restrained with the SADI command. The benzodi­aza­borole mol­ecule was modeled with two-part disorder with occupancy factors refined to 0.8922 (14):0.1078 (14). The minor component was restrained using the SAME and RIGU commands.

Table 3
Experimental details

Crystal data
Chemical formula C18H15B3N6·2C3H6O
Mr 463.94
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.8357 (4), 13.6362 (9), 15.4653 (10)
α, β, γ (°) 97.595 (3), 96.957 (3), 99.771 (3)
V3) 1189.13 (14)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.41 × 0.13 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 47276, 4853, 4226
Rint 0.040
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.08
No. of reflections 4853
No. of parameters 579
No. of restraints 369
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.23
Computer programs: APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2020[Bruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL209/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX4 Ver. 8.38A (Bruker, 2022); cell refinement: SAINT-Plus V8.40B (Bruker, 2020); data reduction: SAINT-Plus Ve8.40B (Bruker, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL209/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Triazatriborinotris[1,3,2]benzodiazaborole acetone disolvate top
Crystal data top
C18H15B3N6·2C3H6OZ = 2
Mr = 463.94F(000) = 488
Triclinic, P1Dx = 1.296 Mg m3
a = 5.8357 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.6362 (9) ÅCell parameters from 9824 reflections
c = 15.4653 (10) Åθ = 3.3–74.3°
α = 97.595 (3)°µ = 0.66 mm1
β = 96.957 (3)°T = 100 K
γ = 99.771 (3)°Rod, colourless
V = 1189.13 (14) Å30.41 × 0.13 × 0.13 mm
Data collection top
Bruker D8 Venture
diffractometer
4853 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS 3.04226 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.040
Detector resolution: 7.9 pixels mm-1θmax = 74.6°, θmin = 2.9°
ω and φ scansh = 77
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.699, Tmax = 0.754l = 1919
47276 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.3978P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4853 reflectionsΔρmax = 0.22 e Å3
579 parametersΔρmin = 0.23 e Å3
369 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All nonhydrogen atoms were located in a series of difference Fourier electron density maps and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms 1.5xUeqiv for methyl groups). Those H atoms attached to nitrogen were located in Fourier diff maps. A RIGU command was applied to the minor component and ISOR to N2A, N4A, and N6A. The N-H bonds were restrained with the SADI command. The benzodiazaborole molecule was modeled with two-part disorder with occupancy factors refined to 89:11. The minor restrained using the SAME and RIGU commands. N2A, N4A, N6A were also restrained with an ISOR comand. The locations NH hydrogen atoms of the minor componenent were were fixed using AFIX 43 commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.06089 (19)0.80696 (9)0.44502 (7)0.0509 (3)
C191.4443 (2)0.84484 (11)0.52511 (9)0.0394 (3)
H19A1.4658840.9005880.4910550.059*
H19B1.5664860.8046330.5170580.059*
H19C1.4557420.8718850.5877460.059*
C201.2081 (2)0.78000 (10)0.49384 (8)0.0292 (3)
C211.1621 (3)0.68044 (11)0.52471 (10)0.0414 (3)
H21A0.9923120.6548470.5164800.062*
H21B1.2257950.6882000.5873620.062*
H21C1.2380690.6328120.4905870.062*
O20.42413 (17)0.45535 (8)0.15098 (7)0.0438 (3)
C220.7168 (3)0.31164 (10)0.15045 (10)0.0444 (4)
H22A0.7466140.2602530.0976820.067*
H22B0.8634790.3140310.1748050.067*
H22C0.6005410.2947810.1945620.067*
C230.6251 (2)0.41159 (9)0.12665 (8)0.0307 (3)
C240.7921 (3)0.45521 (12)0.06874 (11)0.0502 (4)
H24A0.9117860.4767030.1023290.075*
H24B0.8683430.4041660.0181790.075*
H24C0.7058550.5133640.0477170.075*
N10.05231 (18)0.94365 (8)0.12177 (7)0.0213 (2)0.8922 (14)
H10.087 (3)1.0065 (10)0.1141 (10)0.026*0.8922 (14)
N20.0215 (2)0.79057 (11)0.17389 (8)0.0199 (3)0.8922 (14)
N30.01420 (19)0.61709 (8)0.23107 (7)0.0223 (2)0.8922 (14)
H30.155 (2)0.5811 (11)0.2091 (10)0.027*0.8922 (14)
N40.3305 (3)0.73686 (10)0.27224 (7)0.0199 (3)0.8922 (14)
N50.70842 (18)0.87612 (8)0.32562 (7)0.0217 (2)0.8922 (14)
H50.808 (2)0.8516 (11)0.3595 (9)0.026*0.8922 (14)
N60.3973 (2)0.90929 (9)0.23233 (8)0.0194 (2)0.8922 (14)
C10.1652 (3)0.88371 (13)0.08577 (11)0.0198 (3)0.8922 (14)
C20.3450 (4)0.90431 (14)0.02761 (13)0.0224 (4)0.8922 (14)
H20.3296780.9663650.0052660.027*0.8922 (14)
C30.5501 (3)0.83056 (16)0.00289 (13)0.0229 (4)0.8922 (14)
H3A0.6767210.8431840.0361310.027*0.8922 (14)
C40.5705 (3)0.73916 (13)0.03476 (11)0.0229 (4)0.8922 (14)
H40.7108250.6902460.0171420.027*0.8922 (14)
C50.3876 (3)0.71828 (12)0.09227 (10)0.0212 (3)0.8922 (14)
H5A0.4017020.6557860.1138580.025*0.8922 (14)
C60.1858 (3)0.79089 (14)0.11696 (8)0.0191 (3)0.8922 (14)
C70.1469 (3)0.57793 (15)0.28473 (8)0.0208 (3)0.8922 (14)
C80.1229 (3)0.48537 (15)0.31331 (13)0.0244 (4)0.8922 (14)
H80.0206500.4380140.2982630.029*0.8922 (14)
C90.3158 (4)0.46330 (17)0.36499 (18)0.0260 (5)0.8922 (14)
H90.3036140.4001220.3853240.031*0.8922 (14)
C100.5261 (3)0.53338 (15)0.38692 (12)0.0251 (4)0.8922 (14)
H100.6560800.5166690.4212370.030*0.8922 (14)
C110.5489 (3)0.62773 (11)0.35930 (10)0.0227 (3)0.8922 (14)
H110.6918150.6754310.3747470.027*0.8922 (14)
C120.3572 (3)0.64948 (10)0.30890 (10)0.0199 (3)0.8922 (14)
C130.7668 (4)0.97371 (11)0.30686 (11)0.0215 (3)0.8922 (14)
C140.9721 (4)1.04497 (16)0.33531 (14)0.0244 (4)0.8922 (14)
H141.0979071.0310740.3739270.029*0.8922 (14)
C150.9867 (4)1.13764 (18)0.30511 (17)0.0262 (5)0.8922 (14)
H151.1253641.1874610.3229800.031*0.8922 (14)
C160.8000 (3)1.15820 (13)0.24893 (11)0.0266 (4)0.8922 (14)
H160.8139591.2217620.2292320.032*0.8922 (14)
C170.5933 (3)1.08661 (14)0.22134 (9)0.0240 (3)0.8922 (14)
H170.4661361.1009740.1837330.029*0.8922 (14)
C180.5792 (2)0.99461 (14)0.25019 (10)0.0200 (3)0.8922 (14)
B10.1734 (3)0.88827 (13)0.17792 (10)0.0203 (3)0.8922 (14)
B20.0951 (3)0.71571 (12)0.22164 (12)0.0206 (3)0.8922 (14)
B30.4808 (3)0.83321 (14)0.27939 (10)0.0202 (3)0.8922 (14)
N1A0.1999 (13)0.6816 (6)0.1539 (5)0.0194 (17)0.1078 (14)
H1A0.282 (18)0.623 (4)0.158 (8)0.023*0.1078 (14)
N2A0.0651 (16)0.8336 (8)0.1694 (6)0.0115 (18)0.1078 (14)
N3A0.3577 (13)1.0072 (6)0.1865 (5)0.0199 (17)0.1078 (14)
H3AA0.2829221.0419250.1522820.024*0.1078 (14)
N4A0.4546 (15)0.8803 (7)0.2592 (6)0.0101 (16)0.1078 (14)
N5A0.5854 (14)0.7321 (6)0.3329 (6)0.0202 (18)0.1078 (14)
H5AA0.722 (10)0.736 (9)0.366 (7)0.024*0.1078 (14)
N6A0.2152 (19)0.7135 (6)0.2538 (6)0.0106 (17)0.1078 (14)
C1A0.290 (2)0.7472 (10)0.1031 (7)0.014 (2)0.1078 (14)
C2A0.506 (3)0.7254 (10)0.0533 (11)0.022 (3)0.1078 (14)
H2A0.6099290.6633750.0521680.026*0.1078 (14)
C3A0.568 (3)0.7960 (12)0.0050 (13)0.022 (3)0.1078 (14)
H3AB0.7155530.7832900.0318000.026*0.1078 (14)
C4A0.417 (3)0.8847 (12)0.0099 (11)0.017 (3)0.1078 (14)
H4A0.4634780.9334620.0236470.021*0.1078 (14)
C5A0.201 (2)0.9069 (10)0.0609 (9)0.014 (2)0.1078 (14)
H5AB0.0966610.9689710.0624660.017*0.1078 (14)
C6A0.1419 (18)0.8371 (10)0.1089 (7)0.013 (2)0.1078 (14)
C7A0.5800 (17)1.0397 (11)0.2354 (8)0.018 (2)0.1078 (14)
C8A0.720 (3)1.1301 (10)0.2390 (10)0.025 (3)0.1078 (14)
H8A0.6709041.1789490.2062660.030*0.1078 (14)
C9A0.935 (3)1.1498 (14)0.2911 (15)0.020 (3)0.1078 (14)
H9A1.0368521.2134020.2966350.025*0.1078 (14)
C10A1.000 (3)1.0759 (13)0.3346 (15)0.025 (4)0.1078 (14)
H10A1.1519471.0893070.3685720.030*0.1078 (14)
C11A0.860 (2)0.9829 (10)0.3327 (9)0.020 (3)0.1078 (14)
H11A0.9086250.9338010.3654010.024*0.1078 (14)
C12A0.647 (2)0.9667 (8)0.2801 (8)0.012 (2)0.1078 (14)
C13A0.462 (2)0.6377 (8)0.3348 (8)0.015 (2)0.1078 (14)
C14A0.542 (2)0.5652 (11)0.3771 (11)0.018 (3)0.1078 (14)
H14A0.6971820.5748820.4078140.022*0.1078 (14)
C15A0.382 (3)0.4774 (15)0.3719 (16)0.019 (3)0.1078 (14)
H15A0.4296360.4255140.4009100.022*0.1078 (14)
C16A0.156 (3)0.4599 (12)0.3273 (13)0.020 (3)0.1078 (14)
H16A0.0538940.3972670.3257900.023*0.1078 (14)
C17A0.077 (2)0.5340 (10)0.2846 (8)0.016 (2)0.1078 (14)
H17A0.0774680.5244710.2535390.019*0.1078 (14)
C18A0.236 (2)0.6213 (8)0.2900 (6)0.0082 (18)0.1078 (14)
B1A0.0310 (19)0.7366 (9)0.1970 (8)0.011 (2)0.1078 (14)
B2A0.273 (2)0.9081 (8)0.2018 (8)0.010 (2)0.1078 (14)
B3A0.434 (2)0.7822 (9)0.2840 (7)0.012 (2)0.1078 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (6)0.0642 (7)0.0388 (6)0.0269 (5)0.0118 (5)0.0005 (5)
C190.0371 (7)0.0432 (8)0.0344 (7)0.0001 (6)0.0072 (6)0.0006 (6)
C200.0295 (6)0.0356 (7)0.0227 (6)0.0107 (5)0.0019 (5)0.0010 (5)
C210.0511 (9)0.0364 (8)0.0373 (7)0.0044 (6)0.0156 (6)0.0045 (6)
O20.0341 (5)0.0417 (6)0.0466 (6)0.0080 (4)0.0031 (4)0.0040 (5)
C220.0566 (9)0.0283 (7)0.0492 (9)0.0015 (6)0.0233 (7)0.0035 (6)
C230.0324 (7)0.0251 (6)0.0322 (6)0.0013 (5)0.0069 (5)0.0012 (5)
C240.0539 (9)0.0412 (8)0.0520 (9)0.0131 (7)0.0053 (7)0.0006 (7)
N10.0204 (5)0.0182 (5)0.0245 (5)0.0017 (4)0.0015 (4)0.0043 (4)
N20.0173 (6)0.0192 (7)0.0226 (6)0.0017 (5)0.0019 (4)0.0048 (6)
N30.0193 (5)0.0217 (5)0.0252 (5)0.0017 (4)0.0012 (4)0.0053 (4)
N40.0181 (7)0.0201 (6)0.0214 (6)0.0023 (5)0.0016 (5)0.0060 (5)
N50.0202 (5)0.0221 (5)0.0223 (5)0.0028 (4)0.0002 (4)0.0059 (4)
N60.0192 (6)0.0189 (6)0.0199 (6)0.0024 (5)0.0020 (5)0.0046 (5)
C10.0204 (7)0.0201 (9)0.0195 (8)0.0055 (6)0.0033 (6)0.0026 (6)
C20.0201 (10)0.0215 (8)0.0243 (9)0.0029 (7)0.0014 (8)0.0020 (7)
C30.0217 (8)0.0249 (10)0.0222 (7)0.0059 (8)0.0005 (6)0.0044 (8)
C40.0214 (8)0.0254 (9)0.0202 (8)0.0029 (6)0.0002 (6)0.0021 (6)
C50.0205 (8)0.0208 (7)0.0211 (7)0.0023 (6)0.0015 (6)0.0019 (6)
C60.0182 (7)0.0195 (8)0.0194 (6)0.0035 (6)0.0032 (5)0.0018 (6)
C70.0237 (8)0.0186 (8)0.0204 (7)0.0028 (7)0.0057 (6)0.0030 (7)
C80.0270 (8)0.0225 (10)0.0244 (10)0.0037 (7)0.0053 (7)0.0055 (7)
C90.0331 (13)0.0193 (9)0.0262 (10)0.0025 (8)0.0060 (10)0.0074 (8)
C100.0303 (9)0.0230 (10)0.0238 (8)0.0078 (8)0.0024 (6)0.0078 (7)
C110.0245 (7)0.0227 (8)0.0216 (7)0.0056 (6)0.0029 (6)0.0053 (6)
C120.0209 (8)0.0202 (7)0.0190 (7)0.0038 (6)0.0039 (6)0.0042 (5)
C130.0191 (9)0.0231 (7)0.0203 (8)0.0005 (7)0.0031 (7)0.0006 (6)
C140.0232 (9)0.0224 (10)0.0262 (8)0.0010 (8)0.0030 (7)0.0038 (9)
C150.0234 (10)0.0245 (10)0.0272 (11)0.0020 (7)0.0003 (7)0.0029 (7)
C160.0271 (9)0.0217 (8)0.0276 (8)0.0034 (7)0.0022 (7)0.0036 (6)
C170.0250 (8)0.0213 (8)0.0235 (7)0.0003 (6)0.0013 (5)0.0035 (6)
C180.0205 (7)0.0196 (8)0.0194 (7)0.0022 (6)0.0035 (5)0.0024 (6)
B10.0207 (8)0.0208 (8)0.0192 (7)0.0031 (7)0.0041 (6)0.0017 (6)
B20.0195 (9)0.0227 (8)0.0200 (8)0.0040 (6)0.0038 (7)0.0037 (6)
B30.0225 (7)0.0204 (9)0.0190 (7)0.0049 (7)0.0056 (5)0.0049 (7)
N1A0.018 (3)0.016 (3)0.022 (3)0.001 (2)0.006 (2)0.007 (3)
N2A0.011 (3)0.007 (3)0.015 (3)0.001 (2)0.007 (2)0.008 (2)
N3A0.019 (3)0.014 (3)0.024 (4)0.002 (2)0.000 (3)0.006 (2)
N4A0.007 (3)0.008 (3)0.013 (3)0.0032 (19)0.004 (2)0.005 (2)
N5A0.016 (3)0.018 (3)0.026 (4)0.001 (2)0.002 (2)0.010 (3)
N6A0.008 (3)0.007 (3)0.015 (3)0.002 (2)0.005 (2)0.005 (2)
C1A0.010 (3)0.010 (4)0.017 (4)0.004 (2)0.007 (3)0.005 (3)
C2A0.016 (4)0.014 (4)0.029 (6)0.006 (3)0.014 (3)0.011 (4)
C3A0.014 (4)0.020 (5)0.028 (6)0.002 (4)0.008 (3)0.012 (5)
C4A0.009 (4)0.016 (5)0.027 (6)0.004 (3)0.007 (3)0.012 (4)
C5A0.009 (4)0.014 (4)0.020 (5)0.005 (3)0.003 (3)0.010 (3)
C6A0.010 (3)0.007 (4)0.020 (4)0.002 (2)0.009 (3)0.007 (3)
C7A0.015 (3)0.011 (3)0.024 (5)0.004 (3)0.003 (3)0.007 (3)
C8A0.020 (4)0.014 (4)0.034 (6)0.009 (3)0.005 (4)0.007 (3)
C9A0.019 (5)0.014 (5)0.025 (6)0.008 (3)0.000 (4)0.004 (4)
C10A0.015 (4)0.017 (5)0.036 (7)0.012 (3)0.005 (4)0.008 (5)
C11A0.010 (4)0.018 (4)0.026 (5)0.008 (3)0.005 (3)0.005 (4)
C12A0.008 (3)0.010 (3)0.016 (4)0.004 (2)0.001 (3)0.003 (3)
C13A0.009 (4)0.016 (3)0.021 (5)0.001 (2)0.005 (3)0.011 (3)
C14A0.016 (4)0.015 (4)0.022 (5)0.001 (3)0.007 (3)0.010 (4)
C15A0.018 (5)0.016 (4)0.022 (6)0.003 (3)0.004 (4)0.010 (4)
C16A0.021 (5)0.014 (4)0.024 (6)0.003 (3)0.003 (4)0.012 (4)
C17A0.016 (4)0.011 (4)0.020 (5)0.000 (3)0.001 (3)0.010 (3)
C18A0.008 (3)0.008 (3)0.009 (4)0.001 (2)0.001 (3)0.004 (3)
B1A0.011 (3)0.008 (3)0.013 (4)0.001 (2)0.003 (3)0.006 (3)
B2A0.008 (3)0.008 (3)0.013 (4)0.001 (2)0.003 (3)0.004 (2)
B3A0.009 (3)0.009 (3)0.016 (4)0.003 (2)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C201.2110 (15)C13—C181.410 (2)
C19—H19A0.9800C14—H140.9500
C19—H19B0.9800C14—C151.397 (2)
C19—H19C0.9800C15—H150.9500
C19—C201.4927 (18)C15—C161.400 (2)
C20—C211.4906 (19)C16—H160.9500
C21—H21A0.9800C16—C171.398 (2)
C21—H21B0.9800C17—H170.9500
C21—H21C0.9800C17—C181.379 (2)
O2—C231.2122 (16)N1A—H1A0.880 (18)
C22—H22A0.9800N1A—C1A1.391 (11)
C22—H22B0.9800N1A—B1A1.460 (12)
C22—H22C0.9800N2A—C6A1.447 (11)
C22—C231.4873 (18)N2A—B1A1.433 (12)
C23—C241.494 (2)N2A—B2A1.433 (12)
C24—H24A0.9800N3A—H3AA0.8800
C24—H24B0.9800N3A—C7A1.389 (11)
C24—H24C0.9800N3A—B2A1.419 (11)
N1—H10.874 (12)N4A—C12A1.454 (11)
N1—C11.3948 (18)N4A—B2A1.433 (13)
N1—B11.4247 (19)N4A—B3A1.429 (12)
N2—C61.4082 (17)N5A—H5AA0.883 (18)
N2—B11.459 (2)N5A—C13A1.370 (11)
N2—B21.429 (2)N5A—B3A1.414 (11)
N3—H30.886 (12)N6A—C18A1.459 (11)
N3—C71.3985 (17)N6A—B1A1.409 (12)
N3—B21.4212 (19)N6A—B3A1.435 (12)
N4—C121.4091 (18)C1A—C2A1.362 (13)
N4—B21.459 (2)C1A—C6A1.359 (13)
N4—B31.433 (2)C2A—H2A0.9500
N5—H50.871 (12)C2A—C3A1.363 (14)
N5—C131.3941 (17)C3A—H3AB0.9500
N5—B31.4191 (18)C3A—C4A1.356 (14)
N6—C181.4077 (18)C4A—H4A0.9500
N6—B11.428 (2)C4A—C5A1.369 (13)
N6—B31.459 (2)C5A—H5AB0.9500
C1—C21.388 (2)C5A—C6A1.346 (12)
C1—C61.405 (2)C7A—C8A1.349 (13)
C2—H20.9500C7A—C12A1.367 (13)
C2—C31.403 (2)C8A—H8A0.9500
C3—H3A0.9500C8A—C9A1.371 (15)
C3—C41.392 (2)C9A—H9A0.9500
C4—H40.9500C9A—C10A1.363 (15)
C4—C51.397 (2)C10A—H10A0.9500
C5—H5A0.9500C10A—C11A1.382 (13)
C5—C61.382 (2)C11A—H11A0.9500
C7—C81.382 (3)C11A—C12A1.370 (13)
C7—C121.409 (2)C13A—C14A1.369 (14)
C8—H80.9500C13A—C18A1.382 (13)
C8—C91.399 (3)C14A—H14A0.9500
C9—H90.9500C14A—C15A1.375 (15)
C9—C101.396 (2)C15A—H15A0.9500
C10—H100.9500C15A—C16A1.378 (15)
C10—C111.399 (2)C16A—H16A0.9500
C11—H110.9500C16A—C17A1.387 (12)
C11—C121.382 (2)C17A—H17A0.9500
C13—C141.392 (3)C17A—C18A1.365 (13)
H19A—C19—H19B109.5C16—C17—H17120.9
H19A—C19—H19C109.5C18—C17—C16118.20 (14)
H19B—C19—H19C109.5C18—C17—H17120.9
C20—C19—H19A109.5N6—C18—C13108.64 (17)
C20—C19—H19B109.5C17—C18—N6130.44 (16)
C20—C19—H19C109.5C17—C18—C13120.92 (13)
O1—C20—C19121.34 (13)N1—B1—N2107.25 (15)
O1—C20—C21121.53 (13)N1—B1—N6133.95 (16)
C21—C20—C19117.12 (12)N6—B1—N2118.79 (13)
C20—C21—H21A109.5N2—B2—N4118.80 (13)
C20—C21—H21B109.5N3—B2—N2133.35 (16)
C20—C21—H21C109.5N3—B2—N4107.85 (15)
H21A—C21—H21B109.5N4—B3—N6118.71 (12)
H21A—C21—H21C109.5N5—B3—N4133.60 (16)
H21B—C21—H21C109.5N5—B3—N6107.68 (14)
H22A—C22—H22B109.5C1A—N1A—H1A122 (8)
H22A—C22—H22C109.5C1A—N1A—B1A105.0 (9)
H22B—C22—H22C109.5B1A—N1A—H1A133 (8)
C23—C22—H22A109.5B1A—N2A—C6A107.3 (9)
C23—C22—H22B109.5B1A—N2A—B2A121.9 (9)
C23—C22—H22C109.5B2A—N2A—C6A130.8 (9)
O2—C23—C22122.38 (13)C7A—N3A—H3AA126.2
O2—C23—C24120.99 (13)C7A—N3A—B2A107.6 (10)
C22—C23—C24116.61 (13)B2A—N3A—H3AA126.2
C23—C24—H24A109.5B2A—N4A—C12A106.9 (9)
C23—C24—H24B109.5B3A—N4A—C12A130.8 (10)
C23—C24—H24C109.5B3A—N4A—B2A122.2 (8)
H24A—C24—H24B109.5C13A—N5A—H5AA106 (8)
H24A—C24—H24C109.5C13A—N5A—B3A107.1 (9)
H24B—C24—H24C109.5B3A—N5A—H5AA147 (8)
C1—N1—H1121.2 (10)B1A—N6A—C18A130.6 (10)
C1—N1—B1107.84 (14)B1A—N6A—B3A122.9 (9)
B1—N1—H1130.4 (10)B3A—N6A—C18A106.5 (9)
C6—N2—B1106.69 (14)C2A—C1A—N1A123.9 (12)
C6—N2—B2132.10 (15)C6A—C1A—N1A113.6 (10)
B2—N2—B1121.21 (13)C6A—C1A—C2A122.5 (10)
C7—N3—H3121.0 (10)C1A—C2A—H2A121.3
C7—N3—B2107.62 (14)C1A—C2A—C3A117.3 (12)
B2—N3—H3131.4 (10)C3A—C2A—H2A121.3
C12—N4—B2106.30 (14)C2A—C3A—H3AB120.2
C12—N4—B3132.59 (15)C4A—C3A—C2A119.7 (13)
B3—N4—B2121.07 (12)C4A—C3A—H3AB120.2
C13—N5—H5120.5 (10)C3A—C4A—H4A118.6
C13—N5—B3107.76 (14)C3A—C4A—C5A122.8 (14)
B3—N5—H5131.7 (10)C5A—C4A—H4A118.6
C18—N6—B1132.24 (15)C4A—C5A—H5AB121.4
C18—N6—B3106.46 (14)C6A—C5A—C4A117.2 (13)
B1—N6—B3121.25 (12)C6A—C5A—H5AB121.4
N1—C1—C6109.50 (16)C1A—C6A—N2A106.6 (10)
C2—C1—N1129.53 (19)C5A—C6A—N2A132.9 (12)
C2—C1—C6120.97 (15)C5A—C6A—C1A120.4 (10)
C1—C2—H2121.1C8A—C7A—N3A126.1 (13)
C1—C2—C3117.88 (17)C8A—C7A—C12A122.4 (10)
C3—C2—H2121.1C12A—C7A—N3A111.4 (11)
C2—C3—H3A119.6C7A—C8A—H8A120.7
C4—C3—C2120.88 (17)C7A—C8A—C9A118.5 (12)
C4—C3—H3A119.6C9A—C8A—H8A120.7
C3—C4—H4119.5C8A—C9A—H9A120.9
C3—C4—C5120.98 (16)C10A—C9A—C8A118.3 (15)
C5—C4—H4119.5C10A—C9A—H9A120.9
C4—C5—H5A120.9C9A—C10A—H10A117.7
C6—C5—C4118.26 (14)C9A—C10A—C11A124.6 (16)
C6—C5—H5A120.9C11A—C10A—H10A117.7
C1—C6—N2108.71 (16)C10A—C11A—H11A122.5
C5—C6—N2130.27 (16)C12A—C11A—C10A115.0 (13)
C5—C6—C1121.01 (13)C12A—C11A—H11A122.5
N3—C7—C12109.33 (17)C7A—C12A—N4A106.8 (11)
C8—C7—N3129.57 (19)C7A—C12A—C11A121.1 (10)
C8—C7—C12121.10 (15)C11A—C12A—N4A132.1 (12)
C7—C8—H8120.9N5A—C13A—C18A112.6 (11)
C7—C8—C9118.21 (18)C14A—C13A—N5A126.2 (13)
C9—C8—H8120.9C14A—C13A—C18A121.1 (9)
C8—C9—H9119.7C13A—C14A—H14A122.4
C10—C9—C8120.5 (2)C13A—C14A—C15A115.3 (12)
C10—C9—H9119.7C15A—C14A—H14A122.4
C9—C10—H10119.4C14A—C15A—H15A117.9
C9—C10—C11121.24 (18)C14A—C15A—C16A124.2 (16)
C11—C10—H10119.4C16A—C15A—H15A117.9
C10—C11—H11121.0C15A—C16A—H16A120.1
C12—C11—C10118.00 (15)C15A—C16A—C17A119.9 (15)
C12—C11—H11121.0C17A—C16A—H16A120.1
C7—C12—N4108.88 (17)C16A—C17A—H17A122.0
C11—C12—N4130.22 (16)C18A—C17A—C16A116.0 (12)
C11—C12—C7120.88 (13)C18A—C17A—H17A122.0
N5—C13—C18109.44 (17)C13A—C18A—N6A105.6 (10)
C14—C13—N5129.36 (19)C17A—C18A—N6A130.9 (12)
C14—C13—C18121.20 (15)C17A—C18A—C13A123.5 (9)
C13—C14—H14121.2N2A—B1A—N1A107.4 (9)
C13—C14—C15117.67 (18)N6A—B1A—N1A134.6 (11)
C15—C14—H14121.2N6A—B1A—N2A118.0 (9)
C14—C15—H15119.5N2A—B2A—N4A117.6 (8)
C14—C15—C16121.0 (2)N3A—B2A—N2A135.0 (11)
C16—C15—H15119.5N3A—B2A—N4A107.2 (9)
C15—C16—H16119.5N4A—B3A—N6A117.2 (8)
C17—C16—C15121.01 (17)N5A—B3A—N4A134.7 (10)
C17—C16—H16119.5N5A—B3A—N6A108.1 (9)
N1—C1—C2—C3178.74 (15)N1A—C1A—C2A—C3A178.3 (14)
N1—C1—C6—N20.09 (15)N1A—C1A—C6A—N2A0.7 (14)
N1—C1—C6—C5178.83 (11)N1A—C1A—C6A—C5A177.6 (11)
N3—C7—C8—C9178.04 (17)N3A—C7A—C8A—C9A179.9 (15)
N3—C7—C12—N41.36 (14)N3A—C7A—C12A—N4A0.1 (13)
N3—C7—C12—C11177.48 (11)N3A—C7A—C12A—C11A179.9 (11)
N5—C13—C14—C15178.95 (17)N5A—C13A—C14A—C15A177.8 (15)
N5—C13—C18—N60.09 (14)N5A—C13A—C18A—N6A1.8 (12)
N5—C13—C18—C17179.75 (11)N5A—C13A—C18A—C17A178.2 (10)
C1—N1—B1—N20.79 (14)C1A—N1A—B1A—N2A0.4 (12)
C1—N1—B1—N6179.44 (14)C1A—N1A—B1A—N6A177.3 (13)
C1—C2—C3—C40.9 (2)C1A—C2A—C3A—C4A2 (3)
C2—C1—C6—N2179.59 (13)C2A—C1A—C6A—N2A178.1 (12)
C2—C1—C6—C51.5 (2)C2A—C1A—C6A—C5A4 (2)
C2—C3—C4—C50.1 (2)C2A—C3A—C4A—C5A1 (3)
C3—C4—C5—C60.2 (2)C3A—C4A—C5A—C6A1 (2)
C4—C5—C6—N2179.21 (13)C4A—C5A—C6A—N2A179.6 (13)
C4—C5—C6—C10.55 (19)C4A—C5A—C6A—C1A3 (2)
C6—N2—B1—N10.83 (14)C6A—N2A—B1A—N1A0.9 (12)
C6—N2—B1—N6179.35 (11)C6A—N2A—B1A—N6A177.3 (9)
C6—N2—B2—N32.1 (3)C6A—N2A—B2A—N3A2 (2)
C6—N2—B2—N4176.60 (12)C6A—N2A—B2A—N4A177.4 (10)
C6—C1—C2—C31.7 (2)C6A—C1A—C2A—C3A3 (2)
C7—N3—B2—N2178.35 (14)C7A—N3A—B2A—N2A177.2 (12)
C7—N3—B2—N40.47 (14)C7A—N3A—B2A—N4A1.9 (12)
C7—C8—C9—C100.1 (3)C7A—C8A—C9A—C10A2 (3)
C8—C7—C12—N4178.79 (13)C8A—C7A—C12A—N4A179.0 (12)
C8—C7—C12—C112.4 (2)C8A—C7A—C12A—C11A1 (2)
C8—C9—C10—C111.1 (3)C8A—C9A—C10A—C11A2 (3)
C9—C10—C11—C120.5 (2)C9A—C10A—C11A—C12A2 (3)
C10—C11—C12—N4179.74 (14)C10A—C11A—C12A—N4A178.8 (15)
C10—C11—C12—C71.2 (2)C10A—C11A—C12A—C7A2 (2)
C12—N4—B2—N2177.75 (11)C12A—N4A—B2A—N2A178.1 (9)
C12—N4—B2—N31.27 (14)C12A—N4A—B2A—N3A1.9 (11)
C12—N4—B3—N50.4 (2)C12A—N4A—B3A—N5A3 (2)
C12—N4—B3—N6179.55 (12)C12A—N4A—B3A—N6A178.5 (9)
C12—C7—C8—C91.8 (2)C12A—C7A—C8A—C9A1 (2)
C13—N5—B3—N4179.53 (14)C13A—N5A—B3A—N4A179.4 (12)
C13—N5—B3—N61.21 (14)C13A—N5A—B3A—N6A1.8 (12)
C13—C14—C15—C160.6 (3)C13A—C14A—C15A—C16A1 (3)
C14—C13—C18—N6179.70 (14)C14A—C13A—C18A—N6A179.7 (12)
C14—C13—C18—C170.1 (2)C14A—C13A—C18A—C17A0 (2)
C14—C15—C16—C170.0 (3)C14A—C15A—C16A—C17A1 (3)
C15—C16—C17—C180.7 (2)C15A—C16A—C17A—C18A0 (2)
C16—C17—C18—N6179.02 (13)C16A—C17A—C18A—N6A179.9 (13)
C16—C17—C18—C130.78 (19)C16A—C17A—C18A—C13A0.1 (19)
C18—N6—B1—N10.6 (2)C18A—N6A—B1A—N1A0 (2)
C18—N6—B1—N2179.62 (12)C18A—N6A—B1A—N2A177.5 (9)
C18—N6—B3—N4179.36 (11)C18A—N6A—B3A—N4A178.1 (9)
C18—N6—B3—N51.26 (13)C18A—N6A—B3A—N5A2.8 (11)
C18—C13—C14—C150.6 (3)C18A—C13A—C14A—C15A1 (2)
B1—N1—C1—C2179.91 (15)B1A—N1A—C1A—C2A178.6 (13)
B1—N1—C1—C60.45 (14)B1A—N1A—C1A—C6A0.2 (13)
B1—N2—C6—C10.57 (14)B1A—N2A—C6A—C1A1.0 (13)
B1—N2—C6—C5178.21 (13)B1A—N2A—C6A—C5A177.0 (14)
B1—N2—B2—N3178.83 (14)B1A—N2A—B2A—N3A178.8 (12)
B1—N2—B2—N42.45 (18)B1A—N2A—B2A—N4A3.8 (16)
B1—N6—C18—C13178.00 (13)B1A—N6A—C18A—C13A174.6 (11)
B1—N6—C18—C171.8 (2)B1A—N6A—C18A—C17A5.4 (19)
B1—N6—B3—N41.81 (18)B1A—N6A—B3A—N4A4.2 (16)
B1—N6—B3—N5178.81 (11)B1A—N6A—B3A—N5A174.8 (9)
B2—N2—C6—C1178.58 (13)B2A—N2A—C6A—C1A178.0 (11)
B2—N2—C6—C52.6 (2)B2A—N2A—C6A—C5A4 (2)
B2—N2—B1—N1178.43 (11)B2A—N2A—B1A—N1A178.2 (9)
B2—N2—B1—N61.38 (18)B2A—N2A—B1A—N6A3.7 (16)
B2—N3—C7—C8179.63 (15)B2A—N3A—C7A—C8A179.9 (13)
B2—N3—C7—C120.53 (14)B2A—N3A—C7A—C12A1.3 (13)
B2—N4—C12—C71.60 (13)B2A—N4A—C12A—C7A1.1 (12)
B2—N4—C12—C11177.09 (13)B2A—N4A—C12A—C11A178.6 (13)
B2—N4—B3—N5177.03 (13)B2A—N4A—B3A—N5A174.7 (11)
B2—N4—B3—N62.16 (18)B2A—N4A—B3A—N6A4.0 (15)
B3—N4—C12—C7176.07 (12)B3A—N4A—C12A—C7A176.6 (11)
B3—N4—C12—C115.2 (2)B3A—N4A—C12A—C11A4 (2)
B3—N4—B2—N24.25 (18)B3A—N4A—B2A—N2A0.2 (15)
B3—N4—B2—N3176.73 (11)B3A—N4A—B2A—N3A176.1 (9)
B3—N5—C13—C14178.86 (16)B3A—N5A—C13A—C14A178.4 (13)
B3—N5—C13—C180.71 (14)B3A—N5A—C13A—C18A0.0 (13)
B3—N6—C18—C130.83 (14)B3A—N6A—C18A—C13A2.8 (11)
B3—N6—C18—C17178.99 (13)B3A—N6A—C18A—C17A177.2 (12)
B3—N6—B1—N1176.20 (13)B3A—N6A—B1A—N1A177.0 (11)
B3—N6—B1—N23.55 (18)B3A—N6A—B1A—N2A0.5 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.89 (1)2.13 (1)2.9817 (14)160 (1)
N5—H5···O10.87 (1)2.09 (1)2.9544 (15)175 (1)
N1A—H1A···O20.88 (2)2.27 (4)3.133 (8)165 (11)
N5A—H5AA···O10.88 (2)2.19 (5)3.026 (8)158 (11)
Comparison of borazine bond lengths (Å) in I and Ia top
IIa
N2—B11.459 (2)N2A—B1A1.433 (12)
N2—B21.429 (2)N2A—B2A1.433 (12)
N4—B21.459 (2)N4A—B2A1.433 (13)
N4—B31.433 (2)N4A—B3A1.429 (12)
N6—B11.428 (2)N6A—B1A1.409 (12)
N6—B31.459 (2)N6A—B3A1.435 (12)
 

Acknowledgements

The authors are grateful for the support from EWU's Faculty Grant for Research and Creative Works.

Funding information

Funding for this research was provided by: National Science Foundation, MRI (award No. CHE 1827313).

References

First citationBrotherton, R. J. & Steinberg, H. (1961). J. Org. Chem. 26, 4632–4634.  CrossRef CAS Google Scholar
First citationBruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandegaonker, S. H. & Mane, A. S. (1974). Chemischer Informationsdienst, 5.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, J. J. & Rudner, B. (1962). J. Org. Chem. 27, 3848–3851.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKreutzberger, A. & Ferris, F. C. (1962). J. Org. Chem. 27, 3496–3500.  CrossRef CAS Google Scholar
First citationLimberti, S., Emmett, L., Trandafir, A., Kociok-Köhn, G. & Pantoş, G. D. (2019). Chem. Sci. 10, 9565–9570.  CrossRef CAS PubMed Google Scholar
First citationMaras, N. & Kocevar, M. (2012). ChemInform, 43Google Scholar
First citationMaya, L. (1988). MRS Online Proceedings Library, 121, 121–455.  Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiedenzu, K., Beyer, H. & Dawson, J. W. (1962). Inorg. Chem. 1, 738–742.  CrossRef CAS Google Scholar
First citationRyschkewitsch, G. E. (1964). Adv. Chem. 53–58.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepanenko, V., Ortiz-Marciales, M., Barnes, C. E. & Garcia, C. (2006). Tet. Lett. 47, 43, 7603–7606.  Google Scholar
First citationTrofimenko, S. (1967). J. Am. Chem. Soc. 89, 4948–4952.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds