

Received 9 October 2023 Accepted 24 October 2023

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; Hirshfeld surface analysis; borazine; benzodiazaborole.

CCDC reference: 2303332

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of triazatriborinotris[1,3,2]benzodiazaborole acetone disolvate

Cole Streeter,^a Kraig A. Wheeler^b and Ashley N. Lamm^a*

^aDepartment of Chemistry, Biochemistry and Physics, Eastern Washington, University, Cheney, WA 99004, USA, and ^bDepartment of Chemistry, Whitworth University, Spokane, WA 99251, USA. *Correspondence e-mail: alamm@ewu.edu

The title compound, alternatively known as benzodiazaborole trimer, $C_{18}H_{15}B_3N_6\cdot 2C_3H_6O$, at 100 K crystallizes in the triclinic system, space group $P\overline{1}$. The structure displays N-H···O hydrogen bonding connecting the main molecule with the crystallization solvent. Disorder of the main molecule is observed with occupancy factors refined to 0.8922 (14):0.1078 (14). The packing of the crystal shows a parallel-displaced atom-centered orientation with 3.30 (2) Å between the planes of the rings. In the solid state, the title compound is linked with weak C-H··· π interactions, which is supported by Hirshfeld surface analysis.

1. Chemical context

Benzodiazaborole trimer was discovered over 60 years ago, with the first synthesis reported by Brotherton & Steinberg (1961). The formation of the borazine ring from three benzodiazaboroles is thermodynamically favorable and is found to be the major product (Niedenzu et al., 1962). There has been research into the physical characteristics, such as IR (Harris & Rudner, 1962). As a film, the title compound is highly reflective, adherent, hard, and behaves as a narrowband semiconductor, which is susceptible to modifications by chemical treatment (Maya, 1988). Additionally, its reactivity and synthesis have been studied by several groups (Kreutzberger & Ferris, 1962, Ryschkewitsch, 1964; Trofimenko, 1967; Dandegaonker & Mane, 1974; Maras & Kocevar, 2012). To date, there are no reports on the solid-state structure of the compound. Herein we report on the crystalline structure of the title compound synthesized by the condensation of boron trichloride and o-phenylenediamine and recrystallized in acetone.

2. Structural commentary

The title compound crystallizes with two equivalents of acetone as the crystallization solvent. The structure is disordered, with the acetone molecules remaining stationary while the benzodiazaborle is inverted by 180° (Fig. 1). In each case, the acetone forms hydrogen bonds with a nearby NH group;

OPEN OPEN ACCESS

Figure 1

The molecular structure of the disordered title compounds, (I and Ia), with displacements ellipsoids drawn at the 50% probability level.

these bonds range from 2.086 (13) to 2.133 (13) Å. A comparison of between the two molecular orientations, **I** and **Ia**, is given in Table 1. The C1=O20 double bond of acetone is 1.2110 (15) Å and the O2=C23 double bond is 1.2122 (16) Å. The boron nitrogen bonds of the borazine ring vary slightly between the disordered structures, **Ia** has slightly shorter bond lengths, see Table 2. The B-NH bond lengths are similar between the title compounds and vary between 1.4191 (18) and 1.459 (2) Å.

3. Supramolecular features

In the crystal (Fig. 2), molecules of (I) adopt a paralleldisplaced atom-centered orientation. The structure packs with 3.30 (2) Å between adjacent aromatic compounds. The weak intermolecular interactions of **I** and **Ia** were explored by Hirshfeld surface analysis. The properties (d_{norm} , shape-index and d_{e}) are mapped over the Hirshfeld surfaces and twodimensional fingerprint plots of the title compound were generated using *CrystalExplorer* (Version 17.5; Spackman *et al.*, 2021). The d_{norm} values illustrate whether the intermolecular contact is shorter or longer than the van der Waals radii. Red areas of the Hirshfeld surface indicate negative

Figure 2 Packing diagram.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,				
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O2	0.89(1)	2.13 (1)	2.9817 (14)	160(1)
$N5-H5\cdots O1$	0.87(1)	2.09(1)	2.9544 (15)	175 (1)
$N1A - H1A \cdots O2$	0.88(2)	2.27 (4)	3.133 (8)	165 (11)
$N5A - H5AA \cdots O1$	0.88 (2)	2.19 (5)	3.026 (8)	158 (11)

Table 2						
Comparison of borazine	bond	lengths	(Å)	in	I and	Ia.

-			
I		Ia	
N2-B1	1.459 (2)	N2A - B1A	1.433 (12)
N2-B2	1.429 (2)	N2A - B2A	1.433 (12)
N4-B2	1.459 (2)	N4A - B2A	1.433 (13)
N4-B3	1.433 (2)	N4A - B3A	1.429 (12)
N6-B1	1.428 (2)	N6A - B1A	1.409 (12)
N6-B3	1.459 (2)	N6A - B3A	1.435 (12)

 d_{norm} values, which in turn represents contacts closer than the van der Waals radii (Fig. 3).

Contributions by individual elements to intermolecular interactions were analyzed through fingerprint plots generated by *CrystalExplorer* (McKinnon *et al.*, 2004). The significant

Figure 3

Hirshfeld surface interacting molecules mapped over d_{norm} . Red areas highlight intermolecular contacts shorter than the sum of the van der Waals radii for $\mathbf{I}(a)$ and $\mathbf{Ia}(b)$, the shape index for $\mathbf{I}(c)$ and $\mathbf{Ia}(d)$, and d_e where the circled areas indicate the C-H··· π interactions in $\mathbf{I}(e)$ and $\mathbf{Ia}(f)$.

research communications

Figure 4

Hirshfeld surfaces and fingerprint plots showing percentage of contacts of all interactions for both \mathbf{I} (*a*) and \mathbf{Ia} (*b*), $\mathbf{C} \cdots \mathbf{H} / \mathbf{H} \cdots \mathbf{C}$ interactions for \mathbf{I} (*c*) and \mathbf{Ia} (*d*), $\mathbf{H} \cdots \mathbf{H}$ interactions for \mathbf{I} (*e*) and \mathbf{Ia} (*f*), $\mathbf{O} \cdots \mathbf{H} / \mathbf{H} \cdots \mathbf{O}$ interactions for \mathbf{I} (*g*) and \mathbf{Ia} (*h*), $\mathbf{C} \cdots \mathbf{C}$ interactions for \mathbf{I} (*i*) and \mathbf{Ia} (*j*), and $\mathbf{C} \cdots \mathbf{B} / \mathbf{B} \cdots \mathbf{C}$ interactions for \mathbf{I} (*k*) and \mathbf{Ia} (*l*)

interactions for each conformer are shown in Fig. 4(*a*)–(*l*). The dominating interactions are H···H interactions [Fig. 4(*e*) and (*f*)], followed by C···H/C···H interactions [Fig. 4(*c*) and (*d*)], and few C···C interactions [Fig. 4(*i*) and (*j*)], which suggests C–H··· π interactions. The hydrogen-bonding interactions between O···H/O···H are very strong [Fig. 4(*g*) and (*h*)]. Interestingly, there are also strong C···B/B···C interactions [Fig. 4(*k*) and (*l*)]. The negligible contributions from other contacts not included in Fig. 4 are as follows: N···H (I, 8.0%; Ia, 7.1%), B···H (I, 3.4%; Ia 4.1%),, C···O (I, 1.0%; Ia, 1.1%), N···O (I, 0.6%; Ia, 0.6%), B···O (I, 0.4%; Ia, 0.3%), C···N (I, 3.6%; Ia, 4.0%), N···N (I, 0.7%; Ia 0.5%), N···B (I, 0%; Ia, 0.4%) with O···O, and B···B contacts not observed.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 2023.2.0; Groom *et al.*, 2016) showed there are no examples of the benzodiazaborole trimer structure and very few examples of similar compounds available in the literature. Crystal structures that contain borazine are usually not fused with five-membered rings except for borazatruxenes, where the NH groups are replaced with CH₂ groups. These materials are being explored as stable polycyclic aromatic hydrocarbons for material applications (Limberti *et al.*, 2019). Additionally, the synthesis of oxazaborolidine trimers has been studied (Stepanenko *et al.*, 2006).

5. Synthesis and crystallization

A solution of *o*-phenylenediamine (1.00 g, 9.247 mmol) in 30 mL of toluene with triethylamine (3.866 mL, 27.7 mmol) was degassed and boron trichloride (9.247 mL, 9.24 mmol) was slowly added. This mixture was refluxed for 2 h. The cooled solution was filtered through celite and purified by column chromatography with acetone/pentane (1:1) solution. Clear needles were isolated from recrystallization in acetone and were suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were located in a series of difference-Fourier electron-density maps and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with $U_{iso}(H) = 1.2U_{eq}$ of the connected C atoms $(1.5U_{eq}$ for methyl groups). Those H atoms attached to nitrogen were located in difference-Fourier maps. A RIGU command was applied to the less occupied component and ISOR to N2A, N4A, and N6A. The N-H bonds were restrained with the SADI command. The benzodiazaborole molecule was modeled with two-part disorder with occupancy factors refined to 0.8922 (14):0.1078 (14). The minor component was restrained using the SAME and RIGU commands.

Table 3	
Experimental	details

Enperimental actails	
Crystal data	
Chemical formula	$C_{18}H_{15}B_3N_6 \cdot 2C_3H_6O$
Mr	463.94
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	5.8357 (4), 13.6362 (9), 15.4653 (10)
α, β, γ (°)	97.595 (3), 96.957 (3), 99.771 (3)
$V(\dot{A}^3)$	1189.13 (14)
Z	2
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	0.66
Crystal size (mm)	$0.41 \times 0.13 \times 0.13$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.699, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	47276, 4853, 4226
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.095, 1.08
No. of reflections	4853
No. of parameters	579
No. of restraints	369
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.22, -0.23

Computer programs: *APEX4* (Bruker, 2022), *SAINT-Plus* (Bruker, 2020), *SHELXT2018/2* (Sheldrick, 2015*a*), *SHELXL209/1* (Sheldrick, 2015*b*), and *OLEX2* (Dolomanov *et al.*, 2009).

Acknowledgements

The authors are grateful for the support from EWU's Faculty Grant for Research and Creative Works.

Funding information

Funding for this research was provided by: National Science Foundation, MRI (award No. CHE 1827313).

References

Brotherton, R. J. & Steinberg, H. (1961). J. Org. Chem. 26, 4632–4634. Bruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dandegaonker, S. H. & Mane, A. S. (1974). Chemischer Informationsdienst, 5.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Harris, J. J. & Rudner, B. (1962). J. Org. Chem. 27, 3848-3851.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.

Kreutzberger, A. & Ferris, F. C. (1962). J. Org. Chem. 27, 3496–3500.

Limberti, S., Emmett, L., Trandafir, A., Kociok-Köhn, G. & Pantoş, G. D. (2019). *Chem. Sci.* **10**, 9565–9570.

Maras, N. & Kocevar, M. (2012). ChemInform, 43.

- Maya, L. (1988). MRS Online Proceedings Library, 121, 121-455.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.
- Niedenzu, K., Beyer, H. & Dawson, J. W. (1962). *Inorg. Chem.* 1, 738–742.
- Ryschkewitsch, G. E. (1964). Adv. Chem. 53-58.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Stepanenko, V., Ortiz-Marciales, M., Barnes, C. E. & Garcia, C. (2006). Tet. Lett. 47, 43, 7603–7606.
- Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 4948-4952.

Acta Cryst. (2023). E79, 1104-1108 [https://doi.org/10.1107/S2056989023009337]

Crystal structure and Hirshfeld surface analysis of triazatriborinotris[1,3,2]benzodiazaborole acetone disolvate

Cole Streeter, Kraig A. Wheeler and Ashley N. Lamm

Computing details

Data collection: *APEX4* Ver. 8.38A (Bruker, 2022); cell refinement: *SAINT-Plus* V8.40B (Bruker, 2020); data reduction: *SAINT-Plus* V8.40B (Bruker, 2020); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL209/1* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Triazatriborinotris[1,3,2]benzodiazaborole acetone disolvate

Crystal data

 $C_{18}H_{15}B_{3}N_{6} \cdot 2C_{3}H_{6}O$ $M_{r} = 463.94$ Triclinic, *P*1 a = 5.8357 (4) Å b = 13.6362 (9) Å c = 15.4653 (10) Å $a = 97.595 (3)^{\circ}$ $\beta = 96.957 (3)^{\circ}$ $\gamma = 99.771 (3)^{\circ}$ $V = 1189.13 (14) Å^{3}$

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ S 3.0 Multilayer mirror monochromator Detector resolution: 7.9 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.095$ S = 1.084853 reflections 579 parameters Z = 2 F(000) = 488 $D_x = 1.296 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9824 reflections $\theta = 3.3-74.3^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 100 KRod, colourless $0.41 \times 0.13 \times 0.13 \text{ mm}$

 $T_{\min} = 0.699, T_{\max} = 0.754$ 47276 measured reflections 4853 independent reflections 4226 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.040$ $\theta_{\text{max}} = 74.6^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -17 \rightarrow 17$ $l = -19 \rightarrow 19$

369 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.3978P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} < 0.001$$

 $\Delta\rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All nonhydrogen atoms were located in a series of difference Fourier electron density maps and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms 1.5xUeqiv for methyl groups). Those H atoms attached to nitrogen were located in Fourier diff maps. A RIGU command was applied to the minor component and ISOR to N2A, N4A, and N6A. The N-H bonds were restrained with the SADI command. The benzodiazaborole molecule was modeled with two-part disorder with occupancy factors refined to 89:11. The minor restrained using the SAME and RIGU commands. N2A, N4A, N6A were also restrained with an ISOR comand. The locations NH hydrogen atoms of the minor component were were fixed using AFIX 43 commands.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	1.06089 (19)	0.80696 (9)	0.44502 (7)	0.0509 (3)	
C19	1.4443 (2)	0.84484 (11)	0.52511 (9)	0.0394 (3)	
H19A	1.465884	0.900588	0.491055	0.059*	
H19B	1.566486	0.804633	0.517058	0.059*	
H19C	1.455742	0.871885	0.587746	0.059*	
C20	1.2081 (2)	0.78000 (10)	0.49384 (8)	0.0292 (3)	
C21	1.1621 (3)	0.68044 (11)	0.52471 (10)	0.0414 (3)	
H21A	0.992312	0.654847	0.516480	0.062*	
H21B	1.225795	0.688200	0.587362	0.062*	
H21C	1.238069	0.632812	0.490587	0.062*	
O2	-0.42413 (17)	0.45535 (8)	0.15098 (7)	0.0438 (3)	
C22	-0.7168 (3)	0.31164 (10)	0.15045 (10)	0.0444 (4)	
H22A	-0.746614	0.260253	0.097682	0.067*	
H22B	-0.863479	0.314031	0.174805	0.067*	
H22C	-0.600541	0.294781	0.194562	0.067*	
C23	-0.6251 (2)	0.41159 (9)	0.12665 (8)	0.0307 (3)	
C24	-0.7921 (3)	0.45521 (12)	0.06874 (11)	0.0502 (4)	
H24A	-0.911786	0.476703	0.102329	0.075*	
H24B	-0.868343	0.404166	0.018179	0.075*	
H24C	-0.705855	0.513364	0.047717	0.075*	
N1	0.05231 (18)	0.94365 (8)	0.12177 (7)	0.0213 (2)	0.8922 (14)
H1	0.087 (3)	1.0065 (10)	0.1141 (10)	0.026*	0.8922 (14)
N2	0.0215 (2)	0.79057 (11)	0.17389 (8)	0.0199 (3)	0.8922 (14)
N3	-0.01420 (19)	0.61709 (8)	0.23107 (7)	0.0223 (2)	0.8922 (14)
H3	-0.155 (2)	0.5811 (11)	0.2091 (10)	0.027*	0.8922 (14)
N4	0.3305 (3)	0.73686 (10)	0.27224 (7)	0.0199 (3)	0.8922 (14)
N5	0.70842 (18)	0.87612 (8)	0.32562 (7)	0.0217 (2)	0.8922 (14)
H5	0.808 (2)	0.8516 (11)	0.3595 (9)	0.026*	0.8922 (14)
N6	0.3973 (2)	0.90929 (9)	0.23233 (8)	0.0194 (2)	0.8922 (14)
C1	-0.1652 (3)	0.88371 (13)	0.08577 (11)	0.0198 (3)	0.8922 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	-0.3450 (4)	0.90431 (14)	0.02761 (13)	0.0224 (4)	0.8922 (14)
H2	-0.329678	0.966365	0.005266	0.027*	0.8922 (14)
C3	-0.5501(3)	0.83056 (16)	0.00289 (13)	0.0229 (4)	0.8922 (14)
H3A	-0.676721	0.843184	-0.036131	0.027*	0.8922 (14)
C4	-0.5705 (3)	0.73916 (13)	0.03476 (11)	0.0229 (4)	0.8922 (14)
H4	-0.710825	0.690246	0.017142	0.027*	0.8922 (14)
C5	-0.3876 (3)	0.71828 (12)	0.09227 (10)	0.0212 (3)	0.8922 (14)
H5A	-0.401702	0.655786	0.113858	0.025*	0.8922 (14)
C6	-0.1858 (3)	0.79089 (14)	0.11696 (8)	0.0191 (3)	0.8922 (14)
C7	0.1469 (3)	0.57793 (15)	0.28473 (8)	0.0208 (3)	0.8922 (14)
C8	0.1229 (3)	0.48537 (15)	0.31331 (13)	0.0244 (4)	0.8922 (14)
H8	-0.020650	0.438014	0.298263	0.029*	0.8922 (14)
С9	0.3158 (4)	0.46330 (17)	0.36499 (18)	0.0260 (5)	0.8922 (14)
Н9	0.303614	0.400122	0.385324	0.031*	0.8922 (14)
C10	0.5261 (3)	0.53338 (15)	0.38692 (12)	0.0251 (4)	0.8922 (14)
H10	0.656080	0.516669	0.421237	0.030*	0.8922 (14)
C11	0.5489 (3)	0.62773 (11)	0.35930 (10)	0.0227 (3)	0.8922 (14)
H11	0.691815	0.675431	0.374747	0.027*	0.8922 (14)
C12	0.3572 (3)	0.64948 (10)	0.30890 (10)	0.0199 (3)	0.8922 (14)
C13	0.7668 (4)	0.97371 (11)	0.30686 (11)	0.0215 (3)	0.8922 (14)
C14	0.9721 (4)	1.04497 (16)	0.33531 (14)	0.0244 (4)	0.8922 (14)
H14	1.097907	1.031074	0.373927	0.029*	0.8922 (14)
C15	0.9867 (4)	1.13764 (18)	0.30511 (17)	0.0262 (5)	0.8922 (14)
H15	1.125364	1.187461	0.322980	0.031*	0.8922 (14)
C16	0.8000 (3)	1.15820 (13)	0.24893 (11)	0.0266 (4)	0.8922 (14)
H16	0.813959	1.221762	0.229232	0.032*	0.8922 (14)
C17	0.5933 (3)	1.08661 (14)	0.22134 (9)	0.0240 (3)	0.8922 (14)
H17	0.466136	1.100974	0.183733	0.029*	0.8922 (14)
C18	0.5792 (2)	0.99461 (14)	0.25019 (10)	0.0200 (3)	0.8922 (14)
B1	0.1734 (3)	0.88827 (13)	0.17792 (10)	0.0203 (3)	0.8922 (14)
B2	0.0951 (3)	0.71571 (12)	0.22164 (12)	0.0206 (3)	0.8922 (14)
B3	0.4808 (3)	0.83321 (14)	0.27939 (10)	0.0202 (3)	0.8922 (14)
N1A	-0.1999 (13)	0.6816 (6)	0.1539 (5)	0.0194 (17)	0.1078 (14)
H1A	-0.282 (18)	0.623 (4)	0.158 (8)	0.023*	0.1078 (14)
N2A	0.0651 (16)	0.8336 (8)	0.1694 (6)	0.0115 (18)	0.1078 (14)
N3A	0.3577 (13)	1.0072 (6)	0.1865 (5)	0.0199 (17)	0.1078 (14)
H3AA	0.282922	1.041925	0.152282	0.024*	0.1078 (14)
N4A	0.4546 (15)	0.8803 (7)	0.2592 (6)	0.0101 (16)	0.1078 (14)
N5A	0.5854 (14)	0.7321 (6)	0.3329 (6)	0.0202 (18)	0.1078 (14)
H5AA	0.722 (10)	0.736 (9)	0.366 (7)	0.024*	0.1078 (14)
N6A	0.2152 (19)	0.7135 (6)	0.2538 (6)	0.0106 (17)	0.1078 (14)
C1A	-0.290 (2)	0.7472 (10)	0.1031 (7)	0.014 (2)	0.1078 (14)
C2A	-0.506 (3)	0.7254 (10)	0.0533 (11)	0.022 (3)	0.1078 (14)
H2A	-0.609929	0.663375	0.052168	0.026*	0.1078 (14)
C3A	-0.568 (3)	0.7960 (12)	0.0050 (13)	0.022 (3)	0.1078 (14)
H3AB	-0.715553	0.783290	-0.031800	0.026*	0.1078 (14)
C4A	-0.417 (3)	0.8847 (12)	0.0099 (11)	0.017 (3)	0.1078 (14)
H4A	-0.463478	0.933462	-0.023647	0.021*	0.1078 (14)
					```

C5A	-0.201 (2)	0.9069 (10)	0.0609 (9)	0.014 (2)	0.1078 (14)
H5AB	-0.096661	0.968971	0.062466	0.017*	0.1078 (14)
C6A	-0.1419 (18)	0.8371 (10)	0.1089 (7)	0.013 (2)	0.1078 (14)
C7A	0.5800 (17)	1.0397 (11)	0.2354 (8)	0.018 (2)	0.1078 (14)
C8A	0.720 (3)	1.1301 (10)	0.2390 (10)	0.025 (3)	0.1078 (14)
H8A	0.670904	1.178949	0.206266	0.030*	0.1078 (14)
C9A	0.935 (3)	1.1498 (14)	0.2911 (15)	0.020 (3)	0.1078 (14)
H9A	1.036852	1.213402	0.296635	0.025*	0.1078 (14)
C10A	1.000 (3)	1.0759 (13)	0.3346 (15)	0.025 (4)	0.1078 (14)
H10A	1.151947	1.089307	0.368572	0.030*	0.1078 (14)
C11A	0.860 (2)	0.9829 (10)	0.3327 (9)	0.020 (3)	0.1078 (14)
H11A	0.908625	0.933801	0.365401	0.024*	0.1078 (14)
C12A	0.647 (2)	0.9667 (8)	0.2801 (8)	0.012 (2)	0.1078 (14)
C13A	0.462 (2)	0.6377 (8)	0.3348 (8)	0.015 (2)	0.1078 (14)
C14A	0.542 (2)	0.5652 (11)	0.3771 (11)	0.018 (3)	0.1078 (14)
H14A	0.697182	0.574882	0.407814	0.022*	0.1078 (14)
C15A	0.382 (3)	0.4774 (15)	0.3719 (16)	0.019 (3)	0.1078 (14)
H15A	0.429636	0.425514	0.400910	0.022*	0.1078 (14)
C16A	0.156 (3)	0.4599 (12)	0.3273 (13)	0.020 (3)	0.1078 (14)
H16A	0.053894	0.397267	0.325790	0.023*	0.1078 (14)
C17A	0.077 (2)	0.5340 (10)	0.2846 (8)	0.016 (2)	0.1078 (14)
H17A	-0.077468	0.524471	0.253539	0.019*	0.1078 (14)
C18A	0.236 (2)	0.6213 (8)	0.2900 (6)	0.0082 (18)	0.1078 (14)
B1A	0.0310 (19)	0.7366 (9)	0.1970 (8)	0.011 (2)	0.1078 (14)
B2A	0.273 (2)	0.9081 (8)	0.2018 (8)	0.010 (2)	0.1078 (14)
B3A	0.434 (2)	0.7822 (9)	0.2840 (7)	0.012 (2)	0.1078 (14)

Atomic displacement parameters  $(\mathring{A}^2)$ 

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
01	0.0489 (6)	0.0642 (7)	0.0388 (6)	0.0269 (5)	-0.0118 (5)	0.0005 (5)
C19	0.0371 (7)	0.0432 (8)	0.0344 (7)	0.0001 (6)	0.0072 (6)	0.0006 (6)
C20	0.0295 (6)	0.0356 (7)	0.0227 (6)	0.0107 (5)	0.0019 (5)	0.0010 (5)
C21	0.0511 (9)	0.0364 (8)	0.0373 (7)	0.0044 (6)	0.0156 (6)	0.0045 (6)
02	0.0341 (5)	0.0417 (6)	0.0466 (6)	-0.0080(4)	0.0031 (4)	-0.0040 (5)
C22	0.0566 (9)	0.0283 (7)	0.0492 (9)	0.0015 (6)	0.0233 (7)	0.0035 (6)
C23	0.0324 (7)	0.0251 (6)	0.0322 (6)	0.0013 (5)	0.0069 (5)	-0.0012 (5)
C24	0.0539 (9)	0.0412 (8)	0.0520 (9)	0.0131 (7)	-0.0053 (7)	0.0006 (7)
N1	0.0204 (5)	0.0182 (5)	0.0245 (5)	0.0017 (4)	0.0015 (4)	0.0043 (4)
N2	0.0173 (6)	0.0192 (7)	0.0226 (6)	0.0017 (5)	0.0019 (4)	0.0048 (6)
N3	0.0193 (5)	0.0217 (5)	0.0252 (5)	0.0017 (4)	0.0012 (4)	0.0053 (4)
N4	0.0181 (7)	0.0201 (6)	0.0214 (6)	0.0023 (5)	0.0016 (5)	0.0060 (5)
N5	0.0202 (5)	0.0221 (5)	0.0223 (5)	0.0028 (4)	0.0002 (4)	0.0059 (4)
N6	0.0192 (6)	0.0189 (6)	0.0199 (6)	0.0024 (5)	0.0020 (5)	0.0046 (5)
C1	0.0204 (7)	0.0201 (9)	0.0195 (8)	0.0055 (6)	0.0033 (6)	0.0026 (6)
C2	0.0201 (10)	0.0215 (8)	0.0243 (9)	0.0029 (7)	0.0014 (8)	0.0020(7)
C3	0.0217 (8)	0.0249 (10)	0.0222 (7)	0.0059 (8)	0.0005 (6)	0.0044 (8)
C4	0.0214 (8)	0.0254 (9)	0.0202 (8)	0.0029 (6)	0.0002 (6)	0.0021 (6)

C5	0 0205 (8)	0.0208(7)	0.0211(7)	0.0023 (6)	0.0015(6)	0.0019 (6)
C6	0.0182(7)	0.0195(8)	0.0194(6)	0.0035 (6)	0.0032(5)	0.0018 (6)
C7	0.0237(8)	0.0186 (8)	0.0204(7)	0.0028 (7)	0.0057 (6)	0.0030(7)
C8	0.0270 (8)	0.0225(10)	0.0244(10)	0.0037(7)	0.0053(7)	0.0055(7)
C9	0.0331(13)	0.0193(9)	0.0262(10)	0.0025 (8)	0.0060(10)	0.0074 (8)
C10	0.0303(9)	0.0230(10)	0.0238(8)	0.0078 (8)	0.0024 (6)	0.0078(7)
C11	0.0245(7)	0.0227 (8)	0.0216(7)	0.0056 (6)	0.0029(6)	0.0053 (6)
C12	0.0209 (8)	0.0202(7)	0.0190(7)	0.0038 (6)	0.0039 (6)	0.0042(5)
C13	0.0191 (9)	0.0231(7)	0.0203 (8)	0.0005 (7)	0.0031 (7)	0.0006 (6)
C14	0.0232(9)	0.0224(10)	0.0262(8)	0.0010 (8)	0.0030(7)	0.0038 (9)
C15	0.0234(10)	0.0245(10)	0.0272(11)	-0.0020(7)	0.0003(7)	0.0029 (7)
C16	0.0271 (9)	0.0217 (8)	0.0276 (8)	-0.0034(7)	0.0022(7)	0.0036 (6)
C17	0.0250 (8)	0.0213 (8)	0.0235(7)	-0.0003(6)	0.0013(5)	0.0035 (6)
C18	0.0205 (7)	0.0196 (8)	0.0194(7)	0.0022 (6)	0.0035(5)	0.0024 (6)
B1	0.0207 (8)	0.0208 (8)	0.0192(7)	0.0031(7)	0.0041 (6)	0.0017 (6)
B2	0.0195 (9)	0.0227 (8)	0.0200 (8)	0.0040 (6)	0.0038(7)	0.0037 (6)
B3	0.0225 (7)	0.0204 (9)	0.0190(7)	0.0049 (7)	0.0056 (5)	0.0049 (7)
N1A	0.018 (3)	0.016 (3)	0.022 (3)	0.001 (2)	-0.006(2)	0.007 (3)
N2A	0.011 (3)	0.007 (3)	0.015 (3)	-0.001(2)	-0.007(2)	0.008 (2)
N3A	0.019 (3)	0.014 (3)	0.024 (4)	-0.002(2)	0.000 (3)	0.006 (2)
N4A	0.007 (3)	0.008 (3)	0.013 (3)	-0.0032(19)	-0.004(2)	0.005 (2)
N5A	0.016 (3)	0.018 (3)	0.026 (4)	0.001 (2)	-0.002(2)	0.010 (3)
N6A	0.008 (3)	0.007 (3)	0.015 (3)	-0.002 (2)	-0.005(2)	0.005 (2)
C1A	0.010 (3)	0.010 (4)	0.017 (4)	-0.004(2)	-0.007(3)	0.005 (3)
C2A	0.016 (4)	0.014 (4)	0.029 (6)	-0.006 (3)	-0.014(3)	0.011 (4)
C3A	0.014 (4)	0.020 (5)	0.028 (6)	-0.002(4)	-0.008(3)	0.012 (5)
C4A	0.009 (4)	0.016 (5)	0.027 (6)	0.004 (3)	-0.007(3)	0.012 (4)
C5A	0.009 (4)	0.014 (4)	0.020 (5)	0.005 (3)	-0.003(3)	0.010 (3)
C6A	0.010 (3)	0.007 (4)	0.020 (4)	-0.002 (2)	-0.009(3)	0.007 (3)
C7A	0.015 (3)	0.011 (3)	0.024 (5)	-0.004(3)	-0.003(3)	0.007 (3)
C8A	0.020 (4)	0.014 (4)	0.034 (6)	-0.009(3)	-0.005 (4)	0.007 (3)
C9A	0.019 (5)	0.014 (5)	0.025 (6)	-0.008(3)	0.000 (4)	0.004 (4)
C10A	0.015 (4)	0.017 (5)	0.036(7)	-0.012(3)	-0.005 (4)	0.008 (5)
C11A	0.010 (4)	0.018 (4)	0.026 (5)	-0.008(3)	-0.005 (3)	0.005 (4)
C12A	0.008 (3)	0.010 (3)	0.016 (4)	-0.004(2)	-0.001 (3)	0.003 (3)
C13A	0.009 (4)	0.016 (3)	0.021 (5)	0.001 (2)	-0.005 (3)	0.011 (3)
C14A	0.016 (4)	0.015 (4)	0.022 (5)	0.001 (3)	-0.007 (3)	0.010 (4)
C15A	0.018 (5)	0.016 (4)	0.022 (6)	0.003 (3)	-0.004 (4)	0.010 (4)
C16A	0.021 (5)	0.014 (4)	0.024 (6)	0.003 (3)	-0.003 (4)	0.012 (4)
C17A	0.016 (4)	0.011 (4)	0.020 (5)	0.000 (3)	-0.001 (3)	0.010 (3)
C18A	0.008 (3)	0.008 (3)	0.009 (4)	0.001 (2)	-0.001 (3)	0.004 (3)
B1A	0.011 (3)	0.008 (3)	0.013 (4)	0.001 (2)	-0.003 (3)	0.006 (3)
B2A	0.008 (3)	0.008 (3)	0.013 (4)	-0.001 (2)	-0.003 (3)	0.004 (2)
B3A	0.009 (3)	0.009 (3)	0.016 (4)	-0.003 (2)	-0.004 (3)	0.005 (3)

Geometric parameters (Å, °)

O1—C20	1.2110 (15)	C13—C18	1.410 (2)
С19—Н19А	0.9800	C14—H14	0.9500
C19—H19B	0.9800	C14—C15	1.397 (2)
С19—Н19С	0.9800	C15—H15	0.9500
C19—C20	1.4927 (18)	C15—C16	1.400 (2)
C20—C21	1.4906 (19)	C16—H16	0.9500
C21—H21A	0.9800	C16—C17	1.398 (2)
C21—H21B	0.9800	C17—H17	0.9500
C21—H21C	0.9800	C17—C18	1.379 (2)
O2—C23	1.2122 (16)	N1A—H1A	0.880 (18)
C22—H22A	0.9800	N1A—C1A	1.391 (11)
C22—H22B	0.9800	N1A—B1A	1.460 (12)
С22—Н22С	0.9800	N2A—C6A	1.447 (11)
C22—C23	1.4873 (18)	N2A—B1A	1.433 (12)
C23—C24	1.494 (2)	N2A—B2A	1.433 (12)
C24—H24A	0.9800	N3A—H3AA	0.8800
C24—H24B	0.9800	N3A—C7A	1.389 (11)
C24—H24C	0.9800	N3A—B2A	1.419 (11)
N1—H1	0.874 (12)	N4A—C12A	1.454 (11)
N1—C1	1.3948 (18)	N4A—B2A	1.433 (13)
N1—B1	1.4247 (19)	N4A—B3A	1.429 (12)
N2—C6	1.4082 (17)	N5A—H5AA	0.883 (18)
N2—B1	1.459 (2)	N5A—C13A	1.370 (11)
N2—B2	1.429 (2)	N5A—B3A	1.414 (11)
N3—H3	0.886 (12)	N6A—C18A	1.459 (11)
N3—C7	1.3985 (17)	N6A—B1A	1.409 (12)
N3—B2	1.4212 (19)	N6A—B3A	1.435 (12)
N4—C12	1.4091 (18)	C1A—C2A	1.362 (13)
N4—B2	1.459 (2)	C1A—C6A	1.359 (13)
N4—B3	1.433 (2)	C2A—H2A	0.9500
N5—H5	0.871 (12)	C2A—C3A	1.363 (14)
N5—C13	1.3941 (17)	СЗА—НЗАВ	0.9500
N5—B3	1.4191 (18)	C3A—C4A	1.356 (14)
N6—C18	1.4077 (18)	C4A—H4A	0.9500
N6—B1	1.428 (2)	C4A—C5A	1.369 (13)
N6—B3	1.459 (2)	C5A—H5AB	0.9500
C1—C2	1.388 (2)	C5A—C6A	1.346 (12)
C1—C6	1.405 (2)	C7A—C8A	1.349 (13)
С2—Н2	0.9500	C7A—C12A	1.367 (13)
C2—C3	1.403 (2)	C8A—H8A	0.9500
С3—НЗА	0.9500	C8A—C9A	1.371 (15)
C3—C4	1.392 (2)	С9А—Н9А	0.9500
C4—H4	0.9500	C9A—C10A	1.363 (15)
C4—C5	1.397 (2)	C10A—H10A	0.9500
C5—H5A	0.9500	C10A—C11A	1.382 (13)
C5—C6	1.382 (2)	C11A—H11A	0.9500

C7—C8	1.382 (3)	C11A—C12A	1.370 (13)
C7—C12	1.409 (2)	C13A—C14A	1.369 (14)
С8—Н8	0.9500	C13A—C18A	1.382 (13)
C8—C9	1.399 (3)	C14A—H14A	0.9500
С9—Н9	0.9500	C14A—C15A	1.375 (15)
C9—C10	1.396 (2)	C15A—H15A	0.9500
C10—H10	0.9500	C15A—C16A	1.378 (15)
C10—C11	1 399 (2)	C16A—H16A	0.9500
C11—H11	0.9500	C16A - C17A	1.387(12)
C11-C12	1.382(2)	$C_{17A}$ $H_{17A}$	0.9500
C13 C14	1.302(2)	C17A $C18A$	1.365(13)
015-014	1.392 (3)	CI/A—CI0A	1.505 (15)
H19A—C19—H19B	109.5	C16—C17—H17	120.9
H19A—C19—H19C	109.5	C18—C17—C16	118.20 (14)
H19B—C19—H19C	109.5	C18—C17—H17	120.9
С20—С19—Н19А	109.5	N6-C18-C13	108.64 (17)
С20—С19—Н19В	109.5	C17—C18—N6	130.44 (16)
C20—C19—H19C	109.5	C17—C18—C13	120.92 (13)
01-C20-C19	121.34 (13)	N1—B1—N2	107.25 (15)
01-C20-C21	121.53 (13)	N1—B1—N6	133.95 (16)
$C_{21}$ $C_{20}$ $C_{19}$	117.12 (12)	N6—B1—N2	118.79 (13)
$C_{20}$ $C_{21}$ $H_{21}$ $A$	109 5	N2-B2-N4	118 80 (13)
$C_{20}$ $C_{21}$ $H_{21B}$	109.5	N3—B2—N2	133 35 (16)
$C_{20} = C_{21} = H_{21}C_{21}$	109.5	N3N4	107.85(15)
$H_{21} = C_{21} = H_{21} = H_{21}$	109.5	N4_B3_N6	107.05(13) 118.71(12)
$H_{21}A = C_{21} = H_{21}C$	109.5	N5N4	133.60(16)
$H_{21}R = C_{21} = H_{21}C$	109.5	N5 B3 N6	107.68 (14)
H22A C22 H22B	109.5	$C_{1A} = N_{1A} = H_{1A}$	107.08(14) 122(8)
$H_{22A} = C_{22} = H_{22C}$	109.5	CIA NIA BIA	122(0)
$H_{22}A = C_{22} = H_{22}C$	109.5	$\mathbf{P}_{\mathbf{A}}$ $\mathbf{N}_{\mathbf{A}}$ $\mathbf{P}_{\mathbf{A}}$ $\mathbf{N}_{\mathbf{A}}$ $\mathbf{H}_{\mathbf{A}}$	103.0(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	DIA N2A C6A	133(0)
C23—C22—H22A	109.5	DIA N2A D2A	107.3 (9)
C23—C22—H22B	109.5	BIA—NZA—BZA	121.9 (9)
$C_{23} = C_{22} = H_{22}C_{23}$	109.5	B2A—N2A—C6A	130.8 (9)
02 - C23 - C22	122.38 (13)	C/A—N3A—H3AA	126.2
02 - 023 - 024	120.99 (13)	C/A—N3A—B2A	107.6 (10)
$C_{22} = C_{23} = C_{24}$	116.61 (13)	B2A—N3A—H3AA	126.2
C23—C24—H24A	109.5	B2A—N4A—C12A	106.9 (9)
C23—C24—H24B	109.5	B3A—N4A—C12A	130.8 (10)
C23—C24—H24C	109.5	B3A—N4A—B2A	122.2 (8)
H24A—C24—H24B	109.5	C13A—N5A—H5AA	106 (8)
H24A—C24—H24C	109.5	C13A—N5A—B3A	107.1 (9)
H24B—C24—H24C	109.5	B3A—N5A—H5AA	147 (8)
C1—N1—H1	121.2 (10)	B1A—N6A—C18A	130.6 (10)
C1—N1—B1	107.84 (14)	B1A—N6A—B3A	122.9 (9)
B1—N1—H1	130.4 (10)	B3A—N6A—C18A	106.5 (9)
C6—N2—B1	106.69 (14)	C2A—C1A—N1A	123.9 (12)
C6—N2—B2	132.10 (15)	C6A—C1A—N1A	113.6 (10)
B2—N2—B1	121.21 (13)	C6A—C1A—C2A	122.5 (10)

C7—N3—H3	121.0 (10)	C1A—C2A—H2A	121.3
C7—N3—B2	107.62 (14)	C1A—C2A—C3A	117.3 (12)
B2—N3—H3	131.4 (10)	C3A—C2A—H2A	121.3
C12—N4—B2	106.30 (14)	С2А—С3А—НЗАВ	120.2
C12—N4—B3	132.59 (15)	C4A—C3A—C2A	119.7 (13)
B3—N4—B2	121.07 (12)	С4А—С3А—НЗАВ	120.2
C13—N5—H5	120.5 (10)	C3A—C4A—H4A	118.6
C13—N5—B3	107.76 (14)	C3A—C4A—C5A	122.8 (14)
B3—N5—H5	131.7 (10)	С5А—С4А—Н4А	118.6
C18—N6—B1	132.24 (15)	С4А—С5А—Н5АВ	121.4
C18—N6—B3	106.46 (14)	C6A—C5A—C4A	117.2 (13)
B1—N6—B3	121.25 (12)	С6А—С5А—Н5АВ	121.4
N1—C1—C6	109.50 (16)	C1A—C6A—N2A	106.6 (10)
C2-C1-N1	129.53 (19)	C5A—C6A—N2A	132.9 (12)
C2—C1—C6	120.97 (15)	C5A—C6A—C1A	120.4 (10)
C1—C2—H2	121.1	C8A—C7A—N3A	126.1 (13)
C1—C2—C3	117.88 (17)	C8A—C7A—C12A	122.4 (10)
C3—C2—H2	121.1	C12A—C7A—N3A	111.4 (11)
C2—C3—H3A	119.6	C7A—C8A—H8A	120.7
C4-C3-C2	120.88 (17)	C7A—C8A—C9A	118.5 (12)
C4—C3—H3A	119.6	C9A—C8A—H8A	120.7
C3—C4—H4	119.5	C8A—C9A—H9A	120.9
C3—C4—C5	120.98 (16)	C10A—C9A—C8A	118.3 (15)
C5—C4—H4	119.5	С10А—С9А—Н9А	120.9
С4—С5—Н5А	120.9	C9A—C10A—H10A	117.7
C6—C5—C4	118.26 (14)	C9A—C10A—C11A	124.6 (16)
С6—С5—Н5А	120.9	C11A—C10A—H10A	117.7
C1—C6—N2	108.71 (16)	C10A—C11A—H11A	122.5
C5—C6—N2	130.27 (16)	C12A—C11A—C10A	115.0 (13)
C5—C6—C1	121.01 (13)	C12A—C11A—H11A	122.5
N3—C7—C12	109.33 (17)	C7A—C12A—N4A	106.8 (11)
C8—C7—N3	129.57 (19)	C7A—C12A—C11A	121.1 (10)
C8—C7—C12	121.10 (15)	C11A—C12A—N4A	132.1 (12)
С7—С8—Н8	120.9	N5A—C13A—C18A	112.6 (11)
C7—C8—C9	118.21 (18)	C14A—C13A—N5A	126.2 (13)
С9—С8—Н8	120.9	C14A—C13A—C18A	121.1 (9)
С8—С9—Н9	119.7	C13A—C14A—H14A	122.4
С10—С9—С8	120.5 (2)	C13A—C14A—C15A	115.3 (12)
С10—С9—Н9	119.7	C15A—C14A—H14A	122.4
С9—С10—Н10	119.4	C14A—C15A—H15A	117.9
C9-C10-C11	121.24 (18)	C14A—C15A—C16A	124.2 (16)
C11—C10—H10	119.4	C16A—C15A—H15A	117.9
C10—C11—H11	121.0	C15A—C16A—H16A	120.1
C12—C11—C10	118.00 (15)	C15A—C16A—C17A	119.9 (15)
C12—C11—H11	121.0	C17A—C16A—H16A	120.1
C7—C12—N4	108.88 (17)	C16A—C17A—H17A	122.0
C11—C12—N4	130.22 (16)	C18A—C17A—C16A	116.0 (12)
C11—C12—C7	120.88 (13)	C18A—C17A—H17A	122.0

N5-C13-C18	109.44 (17)	C13A—C18A—N6A	105.6 (10)
C14—C13—N5	129.36 (19)	C17A—C18A—N6A	130.9 (12)
C14—C13—C18	121.20 (15)	C17A—C18A—C13A	123.5 (9)
C13—C14—H14	121.2	N2A—B1A—N1A	107.4 (9)
$C_{13}$ $C_{14}$ $C_{15}$	117 67 (18)	N6A—B1A—N1A	1346(11)
$C_{15}$ $C_{14}$ $H_{14}$	121.2	N6A B1A N2A	131.0(11) 1180(9)
$C_{13} - C_{14} - H_{15}$	121.2	NOA DIA NAA	117.6(9)
C14 C15 C16	119.5	NZA DZA NZA	117.0(6)
	121.0 (2)	NJA-BZA-NZA	135.0 (11)
C16—C15—H15	119.5	N3A—B2A—N4A	107.2 (9)
C15—C16—H16	119.5	N4A—B3A—N6A	117.2 (8)
C17—C16—C15	121.01 (17)	N5A—B3A—N4A	134.7 (10)
C17—C16—H16	119.5	N5A—B3A—N6A	108.1 (9)
N1—C1—C2—C3	-178.74 (15)	N1A—C1A—C2A—C3A	-178.3 (14)
N1—C1—C6—N2	-0.09 (15)	N1A—C1A—C6A—N2A	-0.7 (14)
N1—C1—C6—C5	178.83 (11)	N1A—C1A—C6A—C5A	177.6 (11)
N3—C7—C8—C9	178.04 (17)	N3A—C7A—C8A—C9A	179.9 (15)
N3-C7-C12-N4	1.36(14)	N3A - C7A - C12A - N4A	-0.1(13)
$N_{3}$ $C_{7}$ $C_{12}$ $C_{11}$	-17748(11)	N3A - C7A - C12A - C11A	-179.9(11)
$N_{5} = C_{13} = C_{14} = C_{15}$	178 95 (17)	N5A - C13A - C14A - C15A	177.8 (15)
N5 C13 C18 N6	1/0.93(17)	N5A C13A C18A N6A	177.0(13) 18(12)
$N_{5} = C_{13} = C_{16} = N_{0}$	-170.75(11)	N5A C13A C18A C17A	-178.2(10)
$N_{3} = C_{13} = C_{10} = C_{17}$	1/9.73(11) 0.70(14)	$N_{A}$ $C_{1A}$ $N_{1A}$ $D_{1A}$ $N_{2A}$	1/8.2(10)
CI = NI = DI = NZ	0.79 (14)	CIA-NIA-DIA-NZA	0.4(12)
CI = NI = BI = N6	-1/9.44(14)	CIA—NIA—BIA—NOA	-1/7.5(13)
C1 - C2 - C3 - C4	-0.9(2)	C1A - C2A - C3A - C4A	-2(3)
C2 - C1 - C6 - N2	179.59 (13)	C2A—C1A—C6A—N2A	178.1 (12)
C2-C1-C6-C5	-1.5 (2)	C2A—C1A—C6A—C5A	-4 (2)
C2—C3—C4—C5	0.1 (2)	C2A—C3A—C4A—C5A	1 (3)
C3—C4—C5—C6	0.2 (2)	C3A—C4A—C5A—C6A	-1 (2)
C4—C5—C6—N2	179.21 (13)	C4A—C5A—C6A—N2A	-179.6 (13)
C4—C5—C6—C1	0.55 (19)	C4A—C5A—C6A—C1A	3 (2)
C6—N2—B1—N1	-0.83 (14)	C6A—N2A—B1A—N1A	-0.9 (12)
C6—N2—B1—N6	179.35 (11)	C6A—N2A—B1A—N6A	177.3 (9)
C6—N2—B2—N3	-2.1(3)	C6A—N2A—B2A—N3A	-2(2)
C6—N2—B2—N4	176.60 (12)	C6A—N2A—B2A—N4A	-177.4 (10)
C6-C1-C2-C3	1.7 (2)	C6A—C1A—C2A—C3A	3 (2)
C7-N3-B2-N2	178.35 (14)	C7A—N3A—B2A—N2A	-177.2(12)
C7-N3-B2-N4	-0.47(14)	C7A - N3A - B2A - N4A	-19(12)
C7 - C8 - C9 - C10	0.1(3)	C7A - C8A - C9A - C10A	2(3)
C8-C7-C12-N4	-17879(13)	C8A - C7A - C12A - N4A	-1790(12)
$C_{8}$ $C_{7}$ $C_{12}$ $C_{11}$	24(2)	$C_{8A}$ $C_{7A}$ $C_{12A}$ $C_{11A}$	1(2)
$C_{8} = C_{12} = C_{11}$	2.4(2)	$C_{0A} = C_{1A} = C_{12A} = C_{11A}$	(2)
$C_0 = C_1 = C_1 = C_1^2$	-0.5(2)	$C_{0A} = C_{0A} = C_{0A} = C_{1A}$	2(3)
$C_{10} = C_{10} = C_{11} = C_{12} = C_{12}$	-170.74(14)	$C_{2A}$ $C_{10A}$ $C_{12A}$ $C_{12$	2(3)
$C_{10} = C_{11} = C_{12} = C_{13}$	1/7.74(14) 1/2(2)	C10A = C11A = C12A = C1A	1/0.0 (13)
C10 - C11 - C12 - C/	-1.2(2)	C12A = V1A = C12A = V/A	-2(2)
$U_1 Z = N_4 = B_2 = N_2$	-1/1.15(11)	C12A N4A B2A N2A	1/8.1 (9)
C12—N4—B2—N3	1.27 (14)	C12A—N4A—B2A—N3A	1.9 (11)
C12—N4—B3—N5	-0.4 (2)	C12A—N4A—B3A—N5A	-3(2)

C12—N4—B3—N6	-179.55 (12)	C12A—N4A—B3A—N6A	178.5 (9)
C12—C7—C8—C9	-1.8 (2)	C12A—C7A—C8A—C9A	-1 (2)
C13—N5—B3—N4	179.53 (14)	C13A—N5A—B3A—N4A	179.4 (12)
C13—N5—B3—N6	-1.21 (14)	C13A—N5A—B3A—N6A	-1.8(12)
C13—C14—C15—C16	0.6 (3)	C13A—C14A—C15A—C16A	1 (3)
C14—C13—C18—N6	179.70 (14)	C14A—C13A—C18A—N6A	-179.7 (12)
C14—C13—C18—C17	-0.1 (2)	C14A—C13A—C18A—C17A	0 (2)
C14—C15—C16—C17	0.0 (3)	C14A—C15A—C16A—C17A	-1(3)
C15—C16—C17—C18	-0.7 (2)	C15A—C16A—C17A—C18A	0(2)
C16—C17—C18—N6	-179.02 (13)	C16A—C17A—C18A—N6A	179.9 (13)
C16—C17—C18—C13	0.78 (19)	C16A—C17A—C18A—C13A	-0.1 (19)
C18—N6—B1—N1	0.6 (2)	C18A—N6A—B1A—N1A	0(2)
C18—N6—B1—N2	-179.62 (12)	C18A—N6A—B1A—N2A	-177.5 (9)
C18—N6—B3—N4	-179.36 (11)	C18A—N6A—B3A—N4A	-178.1 (9)
C18—N6—B3—N5	1.26 (13)	C18A—N6A—B3A—N5A	2.8 (11)
C18—C13—C14—C15	-0.6 (3)	C18A—C13A—C14A—C15A	-1(2)
B1—N1—C1—C2	179.91 (15)	B1A—N1A—C1A—C2A	-178.6 (13)
B1—N1—C1—C6	-0.45 (14)	B1A—N1A—C1A—C6A	0.2 (13)
B1—N2—C6—C1	0.57 (14)	B1A—N2A—C6A—C1A	1.0 (13)
B1—N2—C6—C5	-178.21 (13)	B1A—N2A—C6A—C5A	-177.0 (14)
B1—N2—B2—N3	178.83 (14)	B1A—N2A—B2A—N3A	178.8 (12)
B1—N2—B2—N4	-2.45 (18)	B1A—N2A—B2A—N4A	3.8 (16)
B1-N6-C18-C13	-178.00 (13)	B1A—N6A—C18A—C13A	174.6 (11)
B1-N6-C18-C17	1.8 (2)	B1A—N6A—C18A—C17A	-5.4 (19)
B1—N6—B3—N4	-1.81 (18)	B1A—N6A—B3A—N4A	4.2 (16)
B1—N6—B3—N5	178.81 (11)	B1A—N6A—B3A—N5A	-174.8 (9)
B2—N2—C6—C1	-178.58 (13)	B2A—N2A—C6A—C1A	-178.0 (11)
B2—N2—C6—C5	2.6 (2)	B2A—N2A—C6A—C5A	4 (2)
B2—N2—B1—N1	178.43 (11)	B2A—N2A—B1A—N1A	178.2 (9)
B2—N2—B1—N6	-1.38 (18)	B2A—N2A—B1A—N6A	-3.7 (16)
B2—N3—C7—C8	179.63 (15)	B2A—N3A—C7A—C8A	-179.9 (13)
B2—N3—C7—C12	-0.53 (14)	B2A—N3A—C7A—C12A	1.3 (13)
B2—N4—C12—C7	-1.60 (13)	B2A—N4A—C12A—C7A	-1.1 (12)
B2—N4—C12—C11	177.09 (13)	B2A—N4A—C12A—C11A	178.6 (13)
B2—N4—B3—N5	177.03 (13)	B2A—N4A—B3A—N5A	174.7 (11)
B2—N4—B3—N6	-2.16 (18)	B2A—N4A—B3A—N6A	-4.0 (15)
B3—N4—C12—C7	176.07 (12)	B3A—N4A—C12A—C7A	176.6 (11)
B3—N4—C12—C11	-5.2 (2)	B3A—N4A—C12A—C11A	-4 (2)
B3—N4—B2—N2	4.25 (18)	B3A—N4A—B2A—N2A	0.2 (15)
B3—N4—B2—N3	-176.73 (11)	B3A—N4A—B2A—N3A	-176.1 (9)
B3—N5—C13—C14	-178.86 (16)	B3A—N5A—C13A—C14A	-178.4 (13)
B3—N5—C13—C18	0.71 (14)	B3A—N5A—C13A—C18A	0.0 (13)
B3—N6—C18—C13	-0.83 (14)	B3A—N6A—C18A—C13A	-2.8 (11)
B3—N6—C18—C17	178.99 (13)	B3A—N6A—C18A—C17A	177.2 (12)
B3—N6—B1—N1	-176.20 (13)	B3A—N6A—B1A—N1A	177.0 (11)
B3—N6—B1—N2	3.55 (18)	B3A—N6A—B1A—N2A	-0.5 (16)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3…O2	0.89 (1)	2.13 (1)	2.9817 (14)	160 (1)
N5—H5…O1	0.87 (1)	2.09 (1)	2.9544 (15)	175 (1)
N1 <i>A</i> —H1 <i>A</i> ···O2	0.88 (2)	2.27 (4)	3.133 (8)	165 (11)
N5A—H5AA…O1	0.88 (2)	2.19 (5)	3.026 (8)	158 (11)

Hydrogen-bond geometry (Å, °)