research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of photodegradable 1-(4,5-dimeth­­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate

crossmark logo

aDepartment of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and bRigaku Corporation 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: chikan01@kanagawa-u.ac.jp

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 February 2023; accepted 9 May 2023; online 16 May 2023)

The reaction of 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propan-1-ol and butyl­iso­cyanate using di­butyl­tin dilaurate as a catalyst afforded 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate, C17H25N3O8, which released butyl­amine upon photoirradiation. Single crystals of the title compound were grown in a 1:1 mixed solution of hexane and ethyl acetate. Two nitro groups and one meth­oxy group are twisted out of the plane of the aromatic ring in the novel photo-protecting group. Inter­molecular hydrogen bonds are observed between N-butyl­carbamate moieties parallel to the a axis.

1. Chemical context

Photodegradable protective groups (PPGs) are common tools in the field of organic, biochemical, and materials sciences (Cambie et al., 2016[Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. (2016). Chem. Rev. 116, 10276-10341.]; Ellis-Davies, 2020[Ellis-Davies, G. C. R. (2020). Acc. Chem. Res. 53, 1593-1604.]; Hansen et al., 2015[Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. (2015). Chem. Soc. Rev. 44, 3358-3377.]). 2-Nitro­benzyl groups are widely used as PPGs because several precursors are available, they react with various functional groups and the resulting protected compounds are soluble in common organic solvents. To increase the sensitivity of 2-nitro­benzyl-group-protected derivatives, several chemical modifications, such as the introduction of substituents at the α-position, have been performed (Kasuga et al., 2016[Kasuga, N. C., Saito, Y., Okamura, N., Miyazaki, T., Satou, H., Watanabe, K., Ohta, T., Morimoto, S. & Yamaguchi, K. (2016). J. Photochem. Photobiol. Chem. 321, 41-47.]; Zhao et al., 2012[Zhao, H., Sterner, E. S., Coughlin, E. B. & Theato, P. (2012). Macromolecules, 45, 1723-1736.]).

[Scheme 1]

Herein, we report the synthesis and structure of the novel photolabile title compound 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate (1), which has an isopropyl group at the α-position and an additional nitro group at the 3-position. It was prepared from the corres­ponding alcohol and iso­cyanate using a tin catalyst based on a previously reported reaction with modifications (Stegmaier et al., 2008[Stegmaier, P., Alonso, J. M. & Campo, A. D. (2008). Langmuir, 24, 11872-11879.]) and the amine was released upon photoirradiation, which indicated that the compound has high reactivity and the potential for application in various functional materials. Compound 1 exhibits a higher sensitivity to light than the corresponding compound with one nitro group at the ortho position (Kasuga et al., 2015[Kasuga, N. C., Saito, Y., Sato, H. & Yamaguchi, K. (2015). Acta Cryst. E71, 483-486.]).

2. Structural commentary

The asymmetric unit of 1 contains a single mol­ecule in which four functional groups and a carbamate linkage site are connected to the aromatic ring. The substituents are positioned in a manner that prevents steric repulsion (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structure of photocleavable 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl butyl­carbamate. Displacement ellipsoids are drawn at the 50% probability level. The inter­molecular hydrogen bonds (Table 1[link]) are drawn as dotted lines.

The aromatic ring (C1–C6) and five attached atoms (N1, N2, O5, O6, and C7) are almost planar, as indicated by the torsion angles N2—C3—C2—N1 = 4.4 (3)°, O5—C4—C5—O6 = −8.0 (3)°, and C7—C1—C2—N1 = −4.3 (3)°. However, the torsion angles involving the two nitro groups [O2—N1—C2—C1 = 56.9 (3)°, O1—N1—C2—C1 = −122.5 (2)°, O3—N2—C3—C2 = −125.9 (3)°, and O4—N2—C3—C2 = 53.9 (3)°] indicate that both NO2 groups are twisted relative to the plane of the aromatic ring. The torsion angles involving the two meth­oxy groups [C16—O5—C4—C3 and C17—O6—C5—C4) are −110.7 (2)° and 172.5 (2)°] indicate that one meth­oxy group (O5–C16) is twisted and the other (O6–C17) is located in the same plane as the aromatic ring.

In the related compound, 4,5-dimeth­oxy-2-nitro­benzyl acetate (shown in the scheme below[link]), the nitro and dimeth­oxy groups are in the same plane as the aromatic ring and the whole mol­ecule is flat in the absence of substituents at the α-position (Kasuga et al., 2015[Kasuga, N. C., Saito, Y., Sato, H. & Yamaguchi, K. (2015). Acta Cryst. E71, 483-486.]).

[Scheme 2]

3. Supra­molecular features

In the crystal, N3—H3⋯O8i hydrogen bonds link the mol­ecules into chains parallel to the a axis (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O8i 0.78 (3) 2.26 (3) 3.042 (3) 176 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
Inter­molecular hydrogen bonds (Table 1[link]) between the carbamate moieties, shown as dotted lines, link the molecules into chains parallel to the a axis.

4. Synthesis and crystallization

The synthesis of compound 1 was based on the method reported by Stegmaier et al. (2008[Stegmaier, P., Alonso, J. M. & Campo, A. D. (2008). Langmuir, 24, 11872-11879.]) with modifications. The synthesis and photocleavage is shown in the scheme below[link]. This di­nitro­benzyl protecting group photocleaved twice as fast as the corresponding 2-mono­nitro­benzyl group. Under an N2 atmosphere, a mixture of 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propan-1-ol (150 mg, 0.5 mmol), n-butyl iso­cyanate (85 µL, 0.75 mmol), di­butyl­tin laurate (15 µL), and 1.5 ml of tetra­hydro­furan were refluxed for 19 h. After removing the solvent, the crude solid was purified by silica gel column chromatography. Pale-yellow needle-shaped crystals were grown in a 1:1 mixed solution of hexane and ethyl acetate by slow evaporation. The crystals were washed with a small volume of ethyl acetate and dried in vacuo (50 mg).

[Scheme 3]

Analysis calculated for C17H25N3O8: C 51.12, H 6.31, N 10.52%. Found: C 51.07, H 6.20, N 10.42%. Prominent IR bands at 1800–400 cm−1 (KBr disc): 1693m, 1557m, 1359m. Melting point 379.9–381.1 K (uncorrected). 1H NMR (CDCl3, 292.2 K) 0.90 (3H, t), 0.91 (3H, d), 1.03 (3H, d), 1.32 (2H, m), 1.45 (2H, m), 2.18 (1H, m), 3.13 (2H, m), 3.93 (6H, s), 4.76 (1H, br), 5.61 (1H, d), 6.97 (1H, s). 13C NMR (CDCl3, 293.7 K) 13.69, 17.88, 19.21, 19.86, 31.88, 33.39, 40.85, 56.71, 62.58, 76.04, 111.29, 131.17, 134.82, 140.45, 141.14, 155.28, 155.84.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H25N3O8
Mr 399.40
Crystal system, space group Monoclinic, Ia
Temperature (K) 120
a, b, c (Å) 9.9490 (4), 19.9223 (8), 10.2378 (4)
β (°) 97.616 (4)
V3) 2011.30 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.21 × 0.18
 
Data collection
Diffractometer Rigaku VariMax SaturnCCD724
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.906, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18806, 5927, 4720
Rint 0.039
(sin θ/λ)max−1) 0.730
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.094, 1.04
No. of reflections 5927
No. of parameters 262
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015aa); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

1-(4,5-Dimethoxy-2,3-dinitrophenyl)-2-methylpropyl N-butylcarbamate top
Crystal data top
C17H25N3O8Dx = 1.319 Mg m3
Mr = 399.40Melting point = 380.1–274.2 K
Monoclinic, IaMo Kα radiation, λ = 0.71073 Å
a = 9.9490 (4) ÅCell parameters from 10281 reflections
b = 19.9223 (8) Åθ = 3.4–31.2°
c = 10.2378 (4) ŵ = 0.11 mm1
β = 97.616 (4)°T = 120 K
V = 2011.30 (14) Å3Block, clear light yellow
Z = 40.25 × 0.21 × 0.18 mm
F(000) = 848
Data collection top
Rigaku VariMax SaturnCCD724
diffractometer
5927 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 31.3°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1414
Tmin = 0.906, Tmax = 1.000k = 2728
18806 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.040P)2 + 0.1525P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5927 reflectionsΔρmax = 0.18 e Å3
262 parametersΔρmin = 0.18 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13662 (19)0.40830 (14)0.6373 (2)0.0649 (7)
O20.18717 (19)0.32139 (11)0.5256 (2)0.0512 (5)
O30.2890 (2)0.41867 (10)0.9547 (2)0.0502 (5)
O40.2377 (2)0.32211 (10)0.8644 (2)0.0483 (5)
O50.57340 (17)0.39172 (8)0.96576 (16)0.0313 (4)
O60.75485 (16)0.42284 (9)0.80062 (16)0.0341 (4)
O70.48515 (15)0.43395 (7)0.34698 (15)0.0246 (3)
O80.30610 (16)0.50552 (8)0.34710 (17)0.0349 (4)
N10.2168 (2)0.36864 (14)0.5995 (2)0.0403 (6)
N20.3014 (2)0.37462 (11)0.8748 (2)0.0346 (5)
N30.5126 (2)0.54139 (9)0.30272 (19)0.0248 (4)
C10.4522 (2)0.38928 (11)0.5581 (2)0.0242 (5)
C20.3608 (2)0.38015 (11)0.6472 (2)0.0266 (5)
C30.4010 (2)0.38545 (11)0.7824 (2)0.0270 (5)
C40.5334 (2)0.39790 (11)0.8338 (2)0.0260 (5)
C50.6271 (2)0.40978 (11)0.7437 (2)0.0255 (5)
C60.5857 (2)0.40607 (11)0.6096 (2)0.0249 (5)
C70.4121 (2)0.38328 (11)0.4104 (2)0.0262 (5)
C80.4431 (3)0.31488 (12)0.3535 (2)0.0309 (5)
C90.5937 (3)0.29733 (13)0.3712 (3)0.0413 (6)
C100.3836 (3)0.31118 (14)0.2093 (3)0.0426 (7)
C110.4244 (2)0.49560 (11)0.3336 (2)0.0233 (4)
C120.4751 (2)0.61096 (11)0.2740 (2)0.0288 (5)
C130.4652 (2)0.62909 (11)0.1295 (2)0.0289 (5)
C140.4296 (3)0.70286 (12)0.1055 (3)0.0374 (6)
C150.4166 (3)0.72204 (14)0.0381 (3)0.0421 (7)
C160.6073 (3)0.45403 (14)1.0351 (3)0.0446 (7)
C170.8593 (2)0.42724 (15)0.7164 (3)0.0412 (7)
H30.588 (3)0.5291 (12)0.310 (3)0.026 (7)*
H60.6480820.4149740.5517520.030*
H70.3146820.3920500.3899220.031*
H80.3971290.2808520.4006800.037*
H9A0.6425270.3311900.3301870.062*
H9B0.6061790.2546380.3310340.062*
H9C0.6270430.2951280.4634720.062*
H10A0.2882380.3207140.2006860.064*
H10B0.3972340.2669680.1761670.064*
H10C0.4276500.3435060.1599200.064*
H12A0.5416870.6399130.3236540.035*
H12B0.3882470.6196570.3039690.035*
H13A0.3964520.6014340.0795590.035*
H13B0.5512100.6196740.0983630.035*
H14A0.3446490.7123100.1386770.045*
H14B0.4993050.7303410.1546380.045*
H15A0.5002250.7126900.0716720.063*
H15B0.3964470.7690650.0473500.063*
H15C0.3447060.6965790.0866890.063*
H16A0.6754260.4772820.9945580.067*
H16B0.6411710.4445661.1254450.067*
H16C0.5276630.4815661.0313910.067*
H17A0.8396870.4637590.6556660.062*
H17B0.8627260.3860570.6682330.062*
H17C0.9452130.4348350.7689970.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (10)0.1028 (19)0.0698 (16)0.0228 (11)0.0194 (10)0.0230 (14)
O20.0328 (10)0.0666 (14)0.0513 (13)0.0210 (10)0.0052 (9)0.0176 (11)
O30.0577 (13)0.0498 (12)0.0502 (13)0.0163 (10)0.0334 (10)0.0051 (9)
O40.0390 (11)0.0518 (13)0.0586 (14)0.0083 (9)0.0227 (9)0.0144 (10)
O50.0398 (10)0.0322 (9)0.0233 (8)0.0001 (7)0.0097 (7)0.0013 (7)
O60.0253 (8)0.0503 (11)0.0274 (9)0.0058 (7)0.0067 (7)0.0059 (7)
O70.0201 (7)0.0261 (8)0.0288 (8)0.0013 (6)0.0069 (6)0.0082 (6)
O80.0193 (8)0.0366 (9)0.0498 (11)0.0031 (7)0.0078 (7)0.0056 (8)
N10.0195 (10)0.0607 (15)0.0417 (13)0.0005 (10)0.0079 (9)0.0249 (11)
N20.0297 (11)0.0389 (12)0.0384 (12)0.0114 (10)0.0170 (9)0.0152 (10)
N30.0199 (9)0.0250 (10)0.0301 (10)0.0015 (8)0.0051 (8)0.0023 (7)
C10.0215 (11)0.0249 (11)0.0269 (12)0.0025 (8)0.0059 (9)0.0063 (9)
C20.0197 (10)0.0296 (12)0.0316 (13)0.0027 (9)0.0073 (9)0.0087 (9)
C30.0256 (11)0.0253 (11)0.0333 (12)0.0052 (9)0.0157 (9)0.0087 (9)
C40.0298 (12)0.0239 (11)0.0259 (12)0.0032 (9)0.0105 (9)0.0008 (8)
C50.0234 (11)0.0259 (11)0.0280 (12)0.0006 (9)0.0067 (9)0.0016 (9)
C60.0208 (10)0.0283 (12)0.0278 (12)0.0005 (9)0.0114 (9)0.0032 (9)
C70.0206 (10)0.0303 (12)0.0278 (12)0.0034 (9)0.0034 (9)0.0104 (9)
C80.0343 (13)0.0287 (12)0.0293 (12)0.0065 (10)0.0021 (10)0.0062 (9)
C90.0410 (15)0.0332 (14)0.0485 (17)0.0066 (12)0.0019 (12)0.0069 (12)
C100.0525 (16)0.0427 (15)0.0310 (14)0.0119 (13)0.0006 (12)0.0028 (11)
C110.0228 (11)0.0278 (11)0.0189 (10)0.0037 (9)0.0008 (8)0.0024 (8)
C120.0302 (12)0.0232 (11)0.0332 (13)0.0023 (9)0.0050 (10)0.0002 (9)
C130.0252 (11)0.0268 (12)0.0351 (13)0.0001 (9)0.0052 (9)0.0028 (10)
C140.0370 (14)0.0301 (13)0.0459 (16)0.0013 (11)0.0087 (12)0.0065 (11)
C150.0353 (14)0.0404 (16)0.0510 (17)0.0019 (12)0.0071 (12)0.0169 (13)
C160.0603 (19)0.0421 (16)0.0335 (15)0.0066 (13)0.0147 (13)0.0108 (11)
C170.0259 (13)0.0651 (19)0.0339 (15)0.0097 (12)0.0085 (11)0.0077 (13)
Geometric parameters (Å, º) top
O2—N11.219 (3)C8—C91.525 (4)
O3—N21.217 (3)C8—C101.518 (4)
O5—C41.363 (3)C9—H9A0.9600
O5—C161.448 (3)C9—H9B0.9600
O8—C111.220 (3)C9—H9C0.9600
O6—C51.351 (3)C10—H10A0.9600
O6—C171.438 (3)C10—H10B0.9600
O7—C111.367 (3)C10—H10C0.9600
O7—C71.447 (2)C12—H12A0.9700
N1—O11.222 (3)C12—H12B0.9700
N1—C21.469 (3)C12—C131.513 (3)
N2—O41.220 (3)C13—H13A0.9700
N2—C31.473 (3)C13—H13B0.9700
N3—C111.332 (3)C13—C141.524 (3)
N3—C121.455 (3)C14—H14A0.9700
N3—H30.78 (3)C14—H14B0.9700
C1—C61.402 (3)C14—C151.508 (4)
C1—C21.383 (3)C15—H15A0.9600
C1—C71.517 (3)C15—H15B0.9600
C3—C21.394 (3)C15—H15C0.9600
C4—C31.374 (3)C16—H16A0.9600
C4—C51.416 (3)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C6—C51.382 (3)C17—H17A0.9600
C7—H70.9800C17—H17B0.9600
C8—H80.9800C17—H17C0.9600
C8—C71.529 (3)
O1—N1—C2116.3 (3)C8—C9—H9C109.5
O2—N1—O1125.6 (2)C8—C10—H10A109.5
O2—N1—C2118.1 (2)C8—C10—H10B109.5
O3—N2—O4125.4 (2)C8—C10—H10C109.5
O3—N2—C3117.5 (2)C9—C8—H8107.3
O4—N2—C3117.1 (2)C9—C8—C7113.8 (2)
O5—C4—C3120.13 (19)C10—C8—H8107.3
O5—C4—C5122.0 (2)C10—C8—C7110.0 (2)
O5—C16—H16A109.5C10—C8—C9110.8 (2)
O5—C16—H16B109.5C11—O7—C7115.47 (17)
O5—C16—H16C109.5C11—N3—C12122.75 (19)
O6—C5—C4114.47 (19)C11—N3—H3114.4 (19)
O6—C5—C6125.36 (19)C12—N3—H3122.3 (19)
O6—C17—H17A109.5C12—C13—H13A109.3
O6—C17—H17B109.5C12—C13—H13B109.3
O6—C17—H17C109.5C12—C13—C14111.8 (2)
O7—C7—C1108.12 (17)C13—C12—H12A108.8
O7—C7—C8108.20 (18)C13—C12—H12B108.8
O7—C7—H7108.7C13—C14—H14A109.0
O8—C11—O7123.68 (19)C13—C14—H14B109.0
O8—C11—N3126.3 (2)C14—C13—H13A109.3
N3—C12—H12A108.8C14—C13—H13B109.3
N3—C12—H12B108.8C14—C15—H15A109.5
N3—C12—C13113.99 (19)C14—C15—H15B109.5
N3—C11—O7110.05 (18)C14—C15—H15C109.5
C1—C6—H6119.0C15—C14—C13112.9 (2)
C1—C2—N1120.0 (2)C15—C14—H14A109.0
C1—C2—C3121.2 (2)C15—C14—H14B109.0
C1—C7—C8114.22 (18)H9A—C9—H9B109.5
C1—C7—H7108.7H9A—C9—H9C109.5
C2—C3—N2119.8 (2)H9B—C9—H9C109.5
C2—C1—C6117.2 (2)H10A—C10—H10B109.5
C2—C1—C7122.5 (2)H10A—C10—H10C109.5
C3—C4—C5117.5 (2)H10B—C10—H10C109.5
C3—C2—N1118.75 (19)H12A—C12—H12B107.7
C4—O5—C16115.31 (19)H13A—C13—H13B107.9
C4—C3—N2118.2 (2)H14A—C14—H14B107.8
C4—C3—C2121.9 (2)H15A—C15—H15B109.5
C5—O6—C17117.76 (18)H15A—C15—H15C109.5
C5—C6—C1121.93 (19)H15B—C15—H15C109.5
C5—C6—H6119.0H16A—C16—H16B109.5
C6—C1—C7120.26 (19)H16A—C16—H16C109.5
C6—C5—C4120.2 (2)H16B—C16—H16C109.5
C7—C8—H8107.3H17A—C17—H17B109.5
C8—C7—H7108.7H17A—C17—H17C109.5
C8—C9—H9A109.5H17B—C17—H17C109.5
C8—C9—H9B109.5
O1—N1—C2—C1122.5 (2)C5—C4—C3—C24.2 (3)
O1—N1—C2—C353.9 (3)C6—C1—C2—N1174.4 (2)
O2—N1—C2—C156.9 (3)C6—C1—C2—C31.9 (3)
O2—N1—C2—C3126.7 (2)C6—C1—C7—O736.3 (3)
O3—N2—C3—C456.7 (3)C6—C1—C7—C884.2 (2)
O3—N2—C3—C2125.9 (3)C7—O7—C11—O815.0 (3)
O4—N2—C3—C4123.5 (2)C7—O7—C11—N3165.85 (18)
O4—N2—C3—C253.9 (3)C7—C1—C6—C5177.8 (2)
O5—C4—C3—N28.2 (3)C7—C1—C2—N14.3 (3)
O5—C4—C3—C2169.1 (2)C7—C1—C2—C3179.4 (2)
O5—C4—C5—O68.0 (3)C9—C8—C7—O758.3 (3)
O5—C4—C5—C6170.6 (2)C9—C8—C7—C162.1 (3)
N2—C3—C2—N14.4 (3)C10—C8—C7—O766.6 (2)
N2—C3—C2—C1179.3 (2)C10—C8—C7—C1172.9 (2)
N3—C12—C13—C14178.41 (19)C11—O7—C7—C186.6 (2)
C1—C6—C5—O6177.1 (2)C11—O7—C7—C8149.19 (18)
C1—C6—C5—C41.4 (3)C11—N3—C12—C13106.4 (2)
C2—C1—C7—O7142.3 (2)C12—N3—C11—O7176.03 (19)
C2—C1—C7—C897.2 (3)C12—N3—C11—O83.1 (4)
C2—C1—C6—C53.6 (3)C12—C13—C14—C15178.9 (2)
C3—C4—C5—O6178.9 (2)C16—O5—C4—C3110.7 (2)
C3—C4—C5—C62.5 (3)C16—O5—C4—C576.3 (3)
C4—C3—C2—N1178.3 (2)C17—O6—C5—C4172.5 (2)
C4—C3—C2—C12.0 (3)C17—O6—C5—C66.0 (3)
C5—C4—C3—N2178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O8i0.78 (3)2.26 (3)3.042 (3)176 (3)
Symmetry code: (i) x+1/2, y+1, z.
 

Acknowledgements

The support of Kanagawa University, including the use of the diffractometer, is gratefully acknowledged. Author contributions: conceptualization, MI, NCK, and KY; synthesis and analysis, HT, MI, and NCK; writing, NCK and KY; validation, NCK and HS.

References

First citationCambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. (2016). Chem. Rev. 116, 10276–10341.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllis-Davies, G. C. R. (2020). Acc. Chem. Res. 53, 1593–1604.  Web of Science CAS PubMed Google Scholar
First citationHansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. (2015). Chem. Soc. Rev. 44, 3358–3377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKasuga, N. C., Saito, Y., Okamura, N., Miyazaki, T., Satou, H., Watanabe, K., Ohta, T., Morimoto, S. & Yamaguchi, K. (2016). J. Photochem. Photobiol. Chem. 321, 41–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasuga, N. C., Saito, Y., Sato, H. & Yamaguchi, K. (2015). Acta Cryst. E71, 483–486.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStegmaier, P., Alonso, J. M. & Campo, A. D. (2008). Langmuir, 24, 11872–11879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, H., Sterner, E. S., Coughlin, E. B. & Theato, P. (2012). Macromolecules, 45, 1723–1736.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds