

ISSN 2056-9890

Received 23 February 2023 Accepted 9 May 2023

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: photolabile carbamate; 2,3-dinitrobenzyl group; intermolecular hydrogen bonding; crystal structure.

CCDC reference: 2261578

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and structure of photodegradable 1-(4,5-dimethoxy-2,3-dinitrophenyl)-2-methylpropyl *N*-butylcarbamate

Takafumi Honda,^a Michiko Ito,^a Kazuo Yamaguchi,^a Noriko Chikaraishi Kasuga^a and Hiroyasu Sato^b

^aDepartment of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and ^bRigaku Corporation 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan. *Correspondence e-mail: chikan01@kanagawa-u.ac.jp

The reaction of 1-(4,5-dimethoxy-2,3-dinitrophenyl)-2-methylpropan-1-ol and butylisocyanate using dibutyltin dilaurate as a catalyst afforded 1-(4,5-dimeth-oxy-2,3-dinitrophenyl)-2-methylpropyl *N*-butylcarbamate, $C_{17}H_{25}N_3O_8$, which released butylamine upon photoirradiation. Single crystals of the title compound were grown in a 1:1 mixed solution of hexane and ethyl acetate. Two nitro groups and one methoxy group are twisted out of the plane of the aromatic ring in the novel photo-protecting group. Intermolecular hydrogen bonds are observed between *N*-butylcarbamate moieties parallel to the *a* axis.

1. Chemical context

Photodegradable protective groups (PPGs) are common tools in the field of organic, biochemical, and materials sciences (Cambie *et al.*, 2016; Ellis-Davies, 2020; Hansen *et al.*, 2015). 2-Nitrobenzyl groups are widely used as PPGs because several precursors are available, they react with various functional groups and the resulting protected compounds are soluble in common organic solvents. To increase the sensitivity of 2-nitrobenzyl-group-protected derivatives, several chemical modifications, such as the introduction of substituents at the α position, have been performed (Kasuga *et al.*, 2016; Zhao *et al.*, 2012).

Herein, we report the synthesis and structure of the novel photolabile title compound 1-(4,5-dimethoxy-2,3-dinitrophenyl)-2-methylpropyl N-butylcarbamate (1), which has an isopropyl group at the α -position and an additional nitro group at the 3-position. It was prepared from the corresponding alcohol and isocyanate using a tin catalyst based on a previously reported reaction with modifications (Stegmaier *et al.*, 2008) and the amine was released upon photoirradiation, which indicated that the compound has high reactivity and the potential for application in various functional materials. Compound 1 exhibits a higher sensitivity to light than the corresponding compound with one nitro group at the *ortho* position (Kasuga *et al.*, 2015).

2. Structural commentary

The asymmetric unit of 1 contains a single molecule in which four functional groups and a carbamate linkage site are connected to the aromatic ring. The substituents are positioned in a manner that prevents steric repulsion (Fig. 1).

The aromatic ring (C1–C6) and five attached atoms (N1, N2, O5, O6, and C7) are almost planar, as indicated by the torsion angles N2–C3–C2–N1 = 4.4 (3)°, O5–C4–C5–O6 = -8.0 (3)°, and C7–C1–C2–N1 = -4.3 (3)°. However, the torsion angles involving the two nitro groups [O2–N1–C2–C1 = 56.9 (3)°, O1–N1–C2–C1 = -122.5 (2)°, O3–N2–C3–C2 = -125.9 (3)°, and O4–N2–C3–C2 = 53.9 (3)°] indicate that both NO₂ groups are twisted relative to the plane of the aromatic ring. The torsion angles involving the two methoxy groups [C16–O5–C4–C3 and C17–O6–C5–C4) are -110.7 (2)° and 172.5 (2)°] indicate that one methoxy group (O5–C16) is twisted and the other (O6–C17) is located in the same plane as the aromatic ring.

In the related compound, 4,5-dimethoxy-2-nitrobenzyl acetate (shown in the scheme below), the nitro and dimethoxy groups are in the same plane as the aromatic ring and the whole molecule is flat in the absence of substituents at the α -position (Kasuga *et al.*, 2015).

3. Supramolecular features

In the crystal, $N3-H3\cdots O8^{i}$ hydrogen bonds link the molecules into chains parallel to the *a* axis (Fig. 2 and Table 1).

Figure 1

Molecular structure of photocleavable 1-(4,5-dimethoxy-2,3-dinitrophenyl)-2-methylpropyl butylcarbamate. Displacement ellipsoids are drawn at the 50% probability level. The intermolecular hydrogen bonds (Table 1) are drawn as dotted lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

, ,		,		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdots O8^{i}$	0.78 (3)	2.26 (3)	3.042 (3)	176 (3)

Symmetry code: (i) $x + \frac{1}{2}, -y + 1, z$.

4. Synthesis and crystallization

The synthesis of compound **1** was based on the method reported by Stegmaier *et al.* (2008) with modifications. The synthesis and photocleavage is shown in the scheme below. This dinitrobenzyl protecting group photocleaved twice as fast as the corresponding 2-mononitrobenzyl group. Under an N₂ atmosphere, a mixture of 1-(4,5-dimethoxy-2,3-dinitrophen-yl)-2-methylpropan-1-ol (150 mg, 0.5 mmol), *n*-butyl isocyanate (85 μ L, 0.75 mmol), dibutyltin laurate (15 μ L), and 1.5 ml of tetrahydrofuran were refluxed for 19 h. After

Figure 2

Intermolecular hydrogen bonds (Table 1) between the carbamate moieties, shown as dotted lines, link the molecules into chains parallel to the a axis.

removing the solvent, the crude solid was purified by silica gel column chromatography. Pale-yellow needle-shaped crystals were grown in a 1:1 mixed solution of hexane and ethyl acetate by slow evaporation. The crystals were washed with a small volume of ethyl acetate and dried *in vacuo* (50 mg).

Analysis calculated for $C_{17}H_{25}N_3O_8$: C 51.12, H 6.31, N 10.52%. Found: C 51.07, H 6.20, N 10.42%. Prominent IR bands at 1800–400 cm⁻¹ (KBr disc): 1693*m*, 1557*m*, 1359*m*. Melting point 379.9–381.1 K (uncorrected). ¹H NMR (CDCl₃, 292.2 K) 0.90 (3H, *t*), 0.91 (3H, *d*), 1.03 (3H, *d*), 1.32 (2H, *m*), 1.45 (2H, *m*), 2.18 (1H, *m*), 3.13 (2H, *m*), 3.93 (6H, *s*), 4.76 (1H, *br*), 5.61 (1H, *d*), 6.97 (1H, *s*). ¹³C NMR (CDCl₃, 293.7 K) 13.69, 17.88, 19.21, 19.86, 31.88, 33.39, 40.85, 56.71, 62.58, 76.04, 111.29, 131.17, 134.82, 140.45, 141.14, 155.28, 155.84.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Acknowledgements

The support of Kanagawa University, including the use of the diffractometer, is gratefully acknowledged. Author contributions: conceptualization, MI, NCK, and KY; synthesis and analysis, HT, MI, and NCK; writing, NCK and KY; validation, NCK and HS.

References

Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. (2016). *Chem. Rev.* **116**, 10276–10341.

Table 2	
Experimental deta	ils

Crystal data	
Chemical formula	$C_{17}H_{25}N_3O_8$
M _r	399.40
Crystal system, space group	Monoclinic, Ia
Temperature (K)	120
a, b, c (Å)	9.9490 (4), 19.9223 (8), 10.2378 (4)
β (°)	97.616 (4)
$V(Å^3)$	2011.30 (14)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.25 \times 0.21 \times 0.18$
Data collection	
Diffractometer	Rigaku VariMax SaturnCCD724
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.906, 1.000
No. of measured, independent and	18806, 5927, 4720
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.039
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.730
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.094, 1.04
No. of reflections	5927
No. of parameters	262
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.18, -0.19

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ellis-Davies, G. C. R. (2020). Acc. Chem. Res. 53, 1593-1604.
- Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. (2015). *Chem. Soc. Rev.* 44, 3358–3377.
- Kasuga, N. C., Saito, Y., Okamura, N., Miyazaki, T., Satou, H., Watanabe, K., Ohta, T., Morimoto, S. & Yamaguchi, K. (2016). J. Photochem. Photobiol. Chem. **321**, 41–47.
- Kasuga, N. C., Saito, Y., Sato, H. & Yamaguchi, K. (2015). *Acta Cryst.* E71, 483–486.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stegmaier, P., Alonso, J. M. & Campo, A. D. (2008). Langmuir, 24, 11872–11879.
- Zhao, H., Sterner, E. S., Coughlin, E. B. & Theato, P. (2012). Macromolecules, 45, 1723-1736.

supporting information

Acta Cryst. (2023). E79, 549-551 [https://doi.org/10.1107/S2056989023004103]

Synthesis and structure of photodegradable 1-(4,5-dimethoxy-2,3-dinitrophenyl)-2-methylpropyl *N*-butylcarbamate

Takafumi Honda, Michiko Ito, Kazuo Yamaguchi, Noriko Chikaraishi Kasuga and Hiroyasu Sato

Computing details

Data collection: *CrysAlis PRO* 1.171.39.46 (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* 1.171.39.46 (Rigaku OD, 2018); data reduction: *CrysAlis PRO* 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015aa); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

1-(4,5-Dimethoxy-2,3-dinitrophenyl)-2-methylpropyl N-butylcarbamate

Crystal data

 $C_{17}H_{25}N_{3}O_{8}$ $M_{r} = 399.40$ Monoclinic, *Ia* a = 9.9490 (4) Å b = 19.9223 (8) Å c = 10.2378 (4) Å $\beta = 97.616$ (4)° V = 2011.30 (14) Å³ Z = 4F(000) = 848

Data collection

Rigaku VariMax SaturnCCD724 diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.906, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.094$ S = 1.035927 reflections $D_x = 1.319 \text{ Mg m}^{-3}$ Melting point = 380.1–274.2 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10281 reflections $\theta = 3.4-31.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 120 KBlock, clear light yellow $0.25 \times 0.21 \times 0.18 \text{ mm}$

18806 measured reflections 5927 independent reflections 4720 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 31.3^\circ$, $\theta_{min} = 3.4^\circ$ $h = -14 \rightarrow 14$ $k = -27 \rightarrow 28$ $l = -14 \rightarrow 14$

262 parameters2 restraintsPrimary atom site location: dualHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 0.1525P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.13662 (19)	0.40830 (14)	0.6373 (2)	0.0649 (7)	
O2	0.18717 (19)	0.32139 (11)	0.5256 (2)	0.0512 (5)	
O3	0.2890 (2)	0.41867 (10)	0.9547 (2)	0.0502 (5)	
O4	0.2377 (2)	0.32211 (10)	0.8644 (2)	0.0483 (5)	
05	0.57340 (17)	0.39172 (8)	0.96576 (16)	0.0313 (4)	
06	0.75485 (16)	0.42284 (9)	0.80062 (16)	0.0341 (4)	
O7	0.48515 (15)	0.43395 (7)	0.34698 (15)	0.0246 (3)	
08	0.30610 (16)	0.50552 (8)	0.34710 (17)	0.0349 (4)	
N1	0.2168 (2)	0.36864 (14)	0.5995 (2)	0.0403 (6)	
N2	0.3014 (2)	0.37462 (11)	0.8748 (2)	0.0346 (5)	
N3	0.5126 (2)	0.54139 (9)	0.30272 (19)	0.0248 (4)	
C1	0.4522 (2)	0.38928 (11)	0.5581 (2)	0.0242 (5)	
C2	0.3608 (2)	0.38015 (11)	0.6472 (2)	0.0266 (5)	
C3	0.4010 (2)	0.38545 (11)	0.7824 (2)	0.0270 (5)	
C4	0.5334 (2)	0.39790 (11)	0.8338 (2)	0.0260 (5)	
C5	0.6271 (2)	0.40978 (11)	0.7437 (2)	0.0255 (5)	
C6	0.5857 (2)	0.40607 (11)	0.6096 (2)	0.0249 (5)	
C7	0.4121 (2)	0.38328 (11)	0.4104 (2)	0.0262 (5)	
C8	0.4431 (3)	0.31488 (12)	0.3535 (2)	0.0309 (5)	
C9	0.5937 (3)	0.29733 (13)	0.3712 (3)	0.0413 (6)	
C10	0.3836 (3)	0.31118 (14)	0.2093 (3)	0.0426 (7)	
C11	0.4244 (2)	0.49560 (11)	0.3336 (2)	0.0233 (4)	
C12	0.4751 (2)	0.61096 (11)	0.2740 (2)	0.0288 (5)	
C13	0.4652 (2)	0.62909 (11)	0.1295 (2)	0.0289 (5)	
C14	0.4296 (3)	0.70286 (12)	0.1055 (3)	0.0374 (6)	
C15	0.4166 (3)	0.72204 (14)	-0.0381 (3)	0.0421 (7)	
C16	0.6073 (3)	0.45403 (14)	1.0351 (3)	0.0446 (7)	
C17	0.8593 (2)	0.42724 (15)	0.7164 (3)	0.0412 (7)	
H3	0.588 (3)	0.5291 (12)	0.310 (3)	0.026 (7)*	
H6	0.648082	0.414974	0.551752	0.030*	
H7	0.314682	0.392050	0.389922	0.031*	
H8	0.397129	0.280852	0.400680	0.037*	
H9A	0.642527	0.331190	0.330187	0.062*	
H9B	0.606179	0.254638	0.331034	0.062*	
H9C	0.627043	0.295128	0.463472	0.062*	
H10A	0.288238	0.320714	0.200686	0.064*	

supporting information

H10B	0.397234	0.266968	0.176167	0.064*
H10C	0.427650	0.343506	0.159920	0.064*
H12A	0.541687	0.639913	0.323654	0.035*
H12B	0.388247	0.619657	0.303969	0.035*
H13A	0.396452	0.601434	0.079559	0.035*
H13B	0.551210	0.619674	0.098363	0.035*
H14A	0.344649	0.712310	0.138677	0.045*
H14B	0.499305	0.730341	0.154638	0.045*
H15A	0.500225	0.712690	-0.071672	0.063*
H15B	0.396447	0.769065	-0.047350	0.063*
H15C	0.344706	0.696579	-0.086689	0.063*
H16A	0.675426	0.477282	0.994558	0.067*
H16B	0.641171	0.444566	1.125445	0.067*
H16C	0.527663	0.481566	1.031391	0.067*
H17A	0.839687	0.463759	0.655666	0.062*
H17B	0.862726	0.386057	0.668233	0.062*
H17C	0.945213	0.434835	0.768997	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0257 (10)	0.1028 (19)	0.0698 (16)	0.0228 (11)	0.0194 (10)	0.0230 (14)
O2	0.0328 (10)	0.0666 (14)	0.0513 (13)	-0.0210 (10)	-0.0052 (9)	0.0176 (11)
O3	0.0577 (13)	0.0498 (12)	0.0502 (13)	0.0163 (10)	0.0334 (10)	0.0051 (9)
O4	0.0390 (11)	0.0518 (13)	0.0586 (14)	-0.0083 (9)	0.0227 (9)	0.0144 (10)
O5	0.0398 (10)	0.0322 (9)	0.0233 (8)	-0.0001 (7)	0.0097 (7)	-0.0013 (7)
O6	0.0253 (8)	0.0503 (11)	0.0274 (9)	-0.0058 (7)	0.0067 (7)	-0.0059 (7)
O7	0.0201 (7)	0.0261 (8)	0.0288 (8)	0.0013 (6)	0.0069 (6)	0.0082 (6)
08	0.0193 (8)	0.0366 (9)	0.0498 (11)	0.0031 (7)	0.0078 (7)	0.0056 (8)
N1	0.0195 (10)	0.0607 (15)	0.0417 (13)	0.0005 (10)	0.0079 (9)	0.0249 (11)
N2	0.0297 (11)	0.0389 (12)	0.0384 (12)	0.0114 (10)	0.0170 (9)	0.0152 (10)
N3	0.0199 (9)	0.0250 (10)	0.0301 (10)	0.0015 (8)	0.0051 (8)	0.0023 (7)
C1	0.0215 (11)	0.0249 (11)	0.0269 (12)	0.0025 (8)	0.0059 (9)	0.0063 (9)
C2	0.0197 (10)	0.0296 (12)	0.0316 (13)	0.0027 (9)	0.0073 (9)	0.0087 (9)
C3	0.0256 (11)	0.0253 (11)	0.0333 (12)	0.0052 (9)	0.0157 (9)	0.0087 (9)
C4	0.0298 (12)	0.0239 (11)	0.0259 (12)	0.0032 (9)	0.0105 (9)	0.0008 (8)
C5	0.0234 (11)	0.0259 (11)	0.0280 (12)	0.0006 (9)	0.0067 (9)	-0.0016 (9)
C6	0.0208 (10)	0.0283 (12)	0.0278 (12)	-0.0005 (9)	0.0114 (9)	0.0032 (9)
C7	0.0206 (10)	0.0303 (12)	0.0278 (12)	-0.0034 (9)	0.0034 (9)	0.0104 (9)
C8	0.0343 (13)	0.0287 (12)	0.0293 (12)	-0.0065 (10)	0.0021 (10)	0.0062 (9)
C9	0.0410 (15)	0.0332 (14)	0.0485 (17)	0.0066 (12)	0.0019 (12)	-0.0069 (12)
C10	0.0525 (16)	0.0427 (15)	0.0310 (14)	-0.0119 (13)	-0.0006 (12)	0.0028 (11)
C11	0.0228 (11)	0.0278 (11)	0.0189 (10)	0.0037 (9)	0.0008 (8)	0.0024 (8)
C12	0.0302 (12)	0.0232 (11)	0.0332 (13)	0.0023 (9)	0.0050 (10)	0.0002 (9)
C13	0.0252 (11)	0.0268 (12)	0.0351 (13)	0.0001 (9)	0.0052 (9)	0.0028 (10)
C14	0.0370 (14)	0.0301 (13)	0.0459 (16)	0.0013 (11)	0.0087 (12)	0.0065 (11)
C15	0.0353 (14)	0.0404 (16)	0.0510 (17)	0.0019 (12)	0.0071 (12)	0.0169 (13)
C16	0.0603 (19)	0.0421 (16)	0.0335 (15)	-0.0066 (13)	0.0147 (13)	-0.0108 (11)

O2—N1	1.219 (3)	C8—C9	1.525 (4)
O3—N2	1.217 (3)	C8—C10	1.518 (4)
O5—C4	1.363 (3)	С9—Н9А	0.9600
O5—C16	1.448 (3)	С9—Н9В	0.9600
O8—C11	1.220 (3)	С9—Н9С	0.9600
O6—C5	1.351 (3)	C10—H10A	0.9600
O6—C17	1.438 (3)	C10—H10B	0.9600
O7—C11	1.367 (3)	C10—H10C	0.9600
O7—C7	1.447 (2)	C12—H12A	0.9700
N1—01	1.222 (3)	C12—H12B	0.9700
N1—C2	1.469 (3)	C12—C13	1.513 (3)
N2—O4	1.220 (3)	C13—H13A	0.9700
N2—C3	1.473 (3)	C13—H13B	0.9700
N3—C11	1.332 (3)	C13—C14	1.524 (3)
N3—C12	1.455 (3)	C14—H14A	0.9700
N3—H3	0.78 (3)	C14—H14B	0.9700
C1—C6	1.402 (3)	C14—C15	1.508 (4)
C1—C2	1.383 (3)	C15—H15A	0.9600
C1—C7	1.517 (3)	C15—H15B	0.9600
C3—C2	1.394 (3)	C15—H15C	0.9600
C4—C3	1.374 (3)	C16—H16A	0.9600
C4—C5	1.416 (3)	C16—H16B	0.9600
С6—Н6	0.9300	C16—H16C	0.9600
C6—C5	1.382 (3)	C17—H17A	0.9600
С7—Н7	0.9800	C17—H17B	0.9600
С8—Н8	0.9800	C17—H17C	0.9600
C8—C7	1.529 (3)		
O1—N1—C2	116.3 (3)	С8—С9—Н9С	109.5
O2—N1—O1	125.6 (2)	C8—C10—H10A	109.5
O2—N1—C2	118.1 (2)	C8—C10—H10B	109.5
O3—N2—O4	125.4 (2)	C8—C10—H10C	109.5
O3—N2—C3	117.5 (2)	С9—С8—Н8	107.3
O4—N2—C3	117.1 (2)	C9—C8—C7	113.8 (2)
O5—C4—C3	120.13 (19)	С10—С8—Н8	107.3
O5—C4—C5	122.0 (2)	C10—C8—C7	110.0 (2)
O5—C16—H16A	109.5	C10—C8—C9	110.8 (2)
O5—C16—H16B	109.5	C11—O7—C7	115.47 (17)
O5—C16—H16C	109.5	C11—N3—C12	122.75 (19)
O6—C5—C4	114.47 (19)	C11—N3—H3	114.4 (19)
O6—C5—C6	125.36 (19)	С12—N3—H3	122.3 (19)
O6—C17—H17A	109.5	C12—C13—H13A	109.3
O6—C17—H17B	109.5	C12—C13—H13B	109.3
O6—C17—H17C	109.5	C12—C13—C14	111.8 (2)

0.0259 (13)

C17

O7—C7—C1	108.12 (17)	C13—C12—H12A	108.8
O7—C7—C8	108.20 (18)	C13—C12—H12B	108.8
O7—C7—H7	108.7	C13—C14—H14A	109.0
08—C11—O7	123.68 (19)	C13—C14—H14B	109.0
O8—C11—N3	126.3 (2)	C14—C13—H13A	109.3
N3—C12—H12A	108.8	C14—C13—H13B	109.3
N3—C12—H12B	108.8	C14—C15—H15A	109.5
N3-C12-C13	113.99 (19)	C14—C15—H15B	109.5
N3-C11-O7	110.05 (18)	C14—C15—H15C	109.5
C1—C6—H6	119.0	C15—C14—C13	112.9 (2)
C1—C2—N1	120.0 (2)	C15—C14—H14A	109.0
C1 - C2 - C3	121.2(2)	C15—C14—H14B	109.0
C1 - C7 - C8	114 22 (18)	H9A_C9_H9B	109.5
C1—C7—H7	108 7	H9A - C9 - H9C	109.5
$C^2 - C^3 - N^2$	119.8 (2)	H9B-C9-H9C	109.5
$C_2 - C_1 - C_6$	117.2(2)	H10A—C10—H10B	109.5
$C_{2}^{-}C_{1}^{-}C_{7}^{-}$	1225(2)	H10A - C10 - H10C	109.5
C_{2}^{-} C_{4}^{-} C_{5}^{-}	1175(2)	H10B-C10-H10C	109.5
C_{3} C_{2} N_{1}	118 75 (19)	H12A - C12 - H12B	107.7
C4-05-C16	115 31 (19)	H12A - C12 - H12B	107.7
C4-C3-N2	113.31(1)) 118.2(2)	H_{14A} C_{14} H_{14B}	107.9
C4 - C3 - C2	110.2(2) 1219(2)	$H_{15} - C_{15} - H_{15} B$	107.8
$C_{5} - C_{5} - C_{17}$	121.9(2) 117.76(18)	H15A - C15 - H15D	109.5
$C_{5} = C_{6} = C_{1}$	121 03 (10)	H15R C15 H15C	109.5
$C_{5} = C_{6} = C_{1}$	121.95 (19)	H16A C16 H16P	109.5
$C_{5} = C_{0} = 110$	119.0	$H_{16A} = C_{16} = H_{16C}$	109.5
$C_{0} = C_{1} = C_{1}$	120.20(19) 120.2(2)	$H_{16R} = C_{16} = H_{16C}$	109.5
C_{0}	120.2 (2)	H17A C17 H17P	109.5
C^{2}	107.3	H17A = C17 = H17C	109.5
$C_8 = C_7 = H_7$	108.7	H17R C17 H17C	109.5
C_{0} C_{0} H_{0} H_{0}	109.5	III/B—CI/—III/C	109.5
С8—С9—Н9В	109.5		
01 NI C2 C1	-1225(2)	C_{5} C_{4} C_{3} C_{2}	(1,2,(3))
01 - N1 - C2 - C1	122.3(2)	C_{3} C_{4} C_{3} C_{2} C_{2}	(3)
01 - N1 - C2 - C3 02 - N1 - C2 - C1	56.9 (3)	$C_{0} = C_{1} = C_{2} = N_{1}$	-1.9(3)
02 - N1 - C2 - C1	-1267(2)	$C_{0} - C_{1} - C_{2} - C_{3}$	-363(3)
02 - N1 - C2 - C3	-120.7(2)	$C_{0} = C_{1} = C_{1} = C_{1}$	-30.3(3)
03 - N2 - C3 - C4	-125.0(2)	$C_{0} - C_{1} - C_{0}$	-150(2)
03 - N2 - C3 - C2	-123.9(3) -123.5(2)	$C_{1}^{-} = 0_{1$	-15.0(3)
04 N2 C3 C2	-125.5(2)	$C_{1} = 0_{1} = 0_{1} = 0_{1}$	103.03(10)
04 - N2 - C3 - C2	33.9 (3) 8 2 (2)	$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	-177.8(2)
05 - C4 - C3 - N2	0.2(3)	$C_{1} - C_{1} - C_{2} - C_{1}$	-4.3(3)
05 - 04 - 05 - 02	-109.1(2)	$C^{-} C^{-} C^{-$	1/9.4(2)
05 - 04 - 05 - 06	-0.0(3)	$C_{9} = C_{8} = C_{7} = C_{1}$	30.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/0.0(2)	$C_{2} = C_{2} = C_{1} = C_{1}$	-02.1(3)
IN2 - C3 - C2 - C1	4.4 (3)	$C_{10} = C_{0} = C_{1} = C_{1}$	-00.0(2)
$N_2 = C_3 = C_2 = C_1^2$	-1/9.3(2)	$C_{10} = C_{\delta} = C_{1} = C_{1}$	1/2.9 (2)
$1N_{3} - U_{12} - U_{13} - U_{14}$	-1/8.41(19)	$U_{11} - U_{1} - U_{1} - U_{1}$	-80.0(2)
C1-C6-C5-O6	1//.1(2)	C11—O/—C/—C8	149.19 (18)

supporting information

C1—C6—C5—C4	-1.4 (3)	C11—N3—C12—C13	-106.4 (2)	
C2-C1-C7-O7	142.3 (2)	C12—N3—C11—O7	176.03 (19)	
C2—C1—C7—C8	-97.2 (3)	C12—N3—C11—O8	-3.1 (4)	
C2-C1-C6-C5	3.6 (3)	C12—C13—C14—C15	-178.9 (2)	
C3—C4—C5—O6	178.9 (2)	C16—O5—C4—C3	-110.7 (2)	
C3—C4—C5—C6	-2.5 (3)	C16—O5—C4—C5	76.3 (3)	
C4—C3—C2—N1	-178.3 (2)	C17—O6—C5—C4	172.5 (2)	
C4—C3—C2—C1	-2.0 (3)	C17—O6—C5—C6	-6.0 (3)	
C5-C4-C3-N2	-178.5 (2)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O8 ⁱ	0.78 (3)	2.26 (3)	3.042 (3)	176 (3)

Symmetry code: (i) x+1/2, -y+1, z.