research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of trans-di­iodido­bis­­[(methyl­sulfan­yl)benzene-κS]platinum(II)

crossmark logo

aTU Dortmund University, Institute for Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and bInstitut UTINAM CNRS UMR 6213, Equipe "Matériaux et Surfaces Fonctionnels", Université de Franche-Comté, Faculté des Sciences et des Techniques La Bouloie - 16 Route de Gray, 25030 BESANÇON CEDEX, France
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by J. Reibenspies, Texas A & M University, USA (Received 5 April 2023; accepted 24 April 2023; online 28 April 2023)

The title complex, [PtI2(C7H8I2)2], represents a further example of a square-planar PtII–di­thio­ether complex. It crystallizes in the monoclinic space group P21/c. Additional Hirshfeld analyses indicate a C—H⋯π inter­action along the [010] axis to be the most important packing factor.

1. Chemical context

Di­thio­ethers are a quite useful class of ligands for various transition-metal complexes and their coordination chemistry is well documented (Murray & Hartley, 1981[Murray, S. G. & Hartley, F. R. (1981). Chem. Rev. 81, 365-414.]). As a result of the soft character of the sulfur center, they preferably bond to soft transition metals like the coinage metals (Cu, Ag, Au), mercury(II), or catalytically active noble metals such as rhodium(I), iridium(I), palladium(II) or platinum(II). Apart from structural aspects (Marangoni et al., 1995[Marangoni, G., Pitteri, B., Bertolasi, V. & Gilli, P. (1995). Inorg. Chim. Acta, 234, 173-179.]) and the investigation of inversion dynamics occurring at the coordinated sulfur atoms (Abel et al., 1984[Abel, E. W., Bhargava, S. K. & Orrell, K. G. (1984). Progr. Inorg. Chem, 32, 1-118.]), these complexes have been reported to have several applications in homogeneous catalysis (Masdeu-Bulto et al., 2003[Masdeu-Bultó, A. M., Diéguez, M., Martin, E. & Gómez, M. (2003). Coord. Chem. Rev. 242, 159-201.]; Arrayás & Carretero, 2011[Arrayás, R. G. & Carretero, J. C. (2011). Chem. Commun. 47, 2207-2211.]). They can form inter­esting luminescent cluster-like structures (Knorr et al., 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; Peindy et al., 2007[Peindy, H. M., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823-1828.]) and even coordination polymers by coordination to CuI and AgI (Raghuvanshi et al., 2017[Raghuvanshi, A., Strohmann, C., Tissot, J.-B., Clément, S., Mehdi, A., Richeter, S., Viau, L. & Knorr, M. (2017). Chem. Eur. J. 23, 16479-16483.]; Awaleh et al., 2006[Awaleh, M. O., Badia, A., Brisse, F. & Bu, X.-H. (2006). Inorg. Chem. 45, 1560-1574.]). Depending on the metal coordination sphere and the remaining ligands, the preparation of di­thio­ether complexes may yield different isomers. In particular, the isomerism of chalcogenoether complexes with palladium and platinum has been intensively investigated (Vigo et al., 2006[Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376-2383.]) and the presence of both trans- and cis-isomers in solution and the solid state were proven. The clarification of the transcis isomerism is therefore of importance.

In the past, our groups have investigated the coordination of chelating di­thio­ethers such as the vinylic ferrocenyl-di­thio­ether Z-[(ArS)(H)C=C(SAr)-Fc] or the silylated compounds (PhSCH2)2SiPh2 and PhSCH2Si(Me)-Si(Me)CH2SPh2 yielding [Fc-{C(S-p-tol­yl)=C(S-p-tol­yl)(H)}PtCl2], cis-[PtCl2{(PhSCH2)2Si2Me4}] and cis-[PtCl2{(PhSCH2)2SiPh2}] and converted them via metathesis in the presence of NaI to their corresponding di­iodo derivatives (Clement et al., 2007[Clement, S., Guyard, L., Knorr, M., Villafane, F., Strohmann, C. & Kubicki, M. M. (2007). Eur. J. Inorg. Chem. pp. 5052-5061.]; Knorr et al., 2004[Knorr, M., Peindy, H. M., Guyon, F., Sachdev, H. & Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955-1961.]; Peindy et al., 2006[Peindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. & Strohmann, C. (2006). Organometallics, 25, 1472-1479.]). We have also shown that the tetra­kis­(thio­ether) (PhSCH2)4Si can be ligated on HgBr2 in a chelating manner (Peindy et al., 2005[Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479-482.]). In a similar manner, we also prepared, as shown in Fig. 1[link], the complex cis-[PtI2{(PhSCH2)2Si(CH2SPh}2]. When attempting to recrystallize this poorly soluble compound from hot toluene, partial cleavage of the Si—CH2Ph bond occurred, yielding trans-[PtI2(SMePh)2] 1, albeit in a quite low yield of 10%. Alternatively, this air-stable complex could be prepared in a much improved yield of 80% by reaction of bis­(benzo­nitrile)­diiodo­platinum with 2 equivalents of methyl phenyl sulfide (thio­anisol) MeSPh using di­chloro­methane as solvent. This compound was characterized by NMR spectroscopy in solution and exhibits a singlet resonance for the two magnetically equivalent methyl groups at δ 3.01 ppm, flanked by 195Pt satellites due to a 3JPtH coupling of 48 Hz. Furthermore, we report herein on the solid-state structure and structural analysis of trans-di­iodido­bis­[(methyl­sulfan­yl)benzene-κS]platinum(II) (1). In addition, the results of a Hirshfeld analysis of the inter­molecular inter­actions are presented.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme for trans-PtI2(SMePh)2] (1).

2. Structural commentary

trans-Di­iodido­bis­[(methyl­sulfan­yl)benzene-κS]platinum(II) (1) crystallizes from di­chloro­methane in the monoclinic crystal system, space group P21/c. The mol­ecular structure of 1 is presented in Figs. 2[link] and 3[link] and selected bond lengths and bond angles are given in Table 1[link]. The asymmetric unit contains half a mol­ecule of 1, which shows C2h symmetry. The distance from the coordinating iodine center I1 to Pt1 is 2.61205 (15) Å, showing a slight elongation with respect to its educt structure trans-[PtI2(NCPh)2] (2) (2.6052 (8) Å; Viola et al., 2018[Viola, E., Donzello, M. P., Ercolani, C., Rizzoli, C. & Lever, A. B. P. (2018). Inorg. Chim. Acta, 480, 101-107.]). The distance from the coordinating sulfur atom S1 to Pt1 is 2.3183 (5) Å. The S1—Pt1 bond is 0.015 Å longer than in the analogous chlorine compound trans-[PtCl2(SMePh)2] (3) reported by Ahlgrén (CSD LEQSUW; Vigo et al., 2006[Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376-2383.]). This elongation may be explained by the thermodynamic trans-effect of the opposite halide ligand. Therefore, similar compounds with iodido ligands such as trans-[PtI2(SMe2)2] (4) (CSD RAYNOU; Lövqvist et al., 1996[Lövqvist, K. C., Wendt, O. F. & Leipoldt, J. G. (1996). Acta Chem. Scand. 50, 1069-1073.]) and trans-[PtI2(tetra­hydro­thio­phene)2] (5) (CSD SIRPAK; Oskarsson et al., 1990[Oskarsson, Å., Norén, B., Svensson, C. & Elding, L. I. (1990). Acta Cryst. B46, 748-752.]) show S—Pt bond lengths in the same range at 2.310 (2) and 2.310 (1) Å, respectively. Both complexes also have similar bond lengths for the Pt—I bond [2.6039 (8) Å in 4 and 2.606 (1) Å in 5]. The chelate complexes cis-di­iodo-[1,2-bis(phenyl­sulfan­yl)ethane]­platinum(II) (CSD ZAJWUC; Marangoni et al., 1995[Marangoni, G., Pitteri, B., Bertolasi, V. & Gilli, P. (1995). Inorg. Chim. Acta, 234, 173-179.]) and cis-(1,4-di­thiane-S,S′)di­iodoplatinum(II) (CSD HUFQAA; Johansson & Engelbrecht, 2001[Johansson, M. H. & Engelbrecht, H. P. (2001). Acta Cryst. E57, m114-m116.]) are reported to display Pt—I bond lengths of 2.606 (1) and 2.6035 (5) Å, respectively, and somewhat shorter mean Pt—S bond lengths of 2.265 (2) and 2.2751 (16) Å, respectively.

Table 1
Selected geometric parameters (Å, °)

Pt1—I1 2.6121 (2) S1—C2 1.782 (2)
Pt1—S1 2.3183 (5) S1—C1 1.800 (2)
       
I1i—Pt1—I1 180.0 S1—Pt1—I1 85.641 (14)
S1—Pt1—I1i 94.359 (14) C2—S1—C1 103.46 (11)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Mol­ecular structure of 1 in the unit cell.
[Figure 3]
Figure 3
Asymmetric unit of 1 with labeled atoms.

All further bonds have characteristic dimensions (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The coordination sphere around the platinum center is square-planar. The angles I1—Pt1—I1 and S1—Pt1—S1 are 180°. However, the angle I1—Pt1—S1 of 85.641 (14)° is somewhat more acute. This slight deviation from the ideal angle of 90° is also reported for the chlorido derivative 3 and the dimethyl sulfide analog 4, as well as in the tetra­hydro­thio­phene analog 5. The sulfur center shows a distorted tetra­hedral environment with angles C1—S1—Pt1 = 111.00 (8)°, C2—S1—Pt1 = 104.52 (7)° and C2—S1—C1 = 103.46 (11)°.

3. Supra­molecular features

While a repetition of the mol­ecular structure of 1 can be seen along the [100] axis and the [001] axis, as shown in Fig. 4[link], the crystal packing along the [010] axis is defined by C—H⋯π inter­actions of the C2–C7 phenyl ring and H1Bi [symmetry code: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z] with a distance between the phenyl ring and H1Bi of 2.5377 (10) Å (Fig. 5[link]). This inter­action can also be visualized by a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface mapped over dnorm in the range from −0.0074 to 1.1829 a.u. is shown in Fig. 6[link], with the close contact between H1Bi and the C2–C7 plane indicated by the red spot. The contributions of the different types of inter­molecular inter­actions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 7[link]. The contribution of the H⋯H inter­actions, with a value of 39.8%, has the largest share of the crystal packing of 1. The remaining hydrogen–heteronuclear inter­actions have a smaller share with a 15.7% contribution for I⋯H, a 14.4% contribution for C⋯H and a 3.6% contribution for S⋯H. The heteronuclear I⋯H and C⋯H inter­actions appear as spikes.

[Figure 4]
Figure 4
The packing of the solid-state structure of 1 along the [100] axis.
[Figure 5]
Figure 5
The packing of the solid-state structure of 1 along the [010] axis [symmetry code: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z].
[Figure 6]
Figure 6
Hirshfeld surface analysis of 1 showing close contacts in the crystal. The π-inter­action between hydrogen atom H1Bi and the phenyl ring C2–C7 is indicated by the red spot [symmetry code: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z].
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for compound 1, showing (a) all contributions, and (b)–(d) delineated into the contributions of atoms within specific inter­acting pairs (blue areas).

4. Database survey

By a search in the Cambridge Crystallographic Database (WebCSD, November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), various structures of dihalide transition-metal complexes with the same ligand motif as 1 were found. To compare the most similar structures, only dihalide transition metal complexes with the bis­[(methyl­sulfan­yl)benzene] ligand and its oxidized derivative are focused on now. The already compared structure trans-di­chloro-bis­[meth­yl(phen­yl)sulfan­yl]platinum (LEQSUW; Vigo et al., 2006[Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376-2383.]) has been published, as well as its palladium derivative with (SARWEP; Oilunkaniemi et al., 2006[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2006). Main Group Chem. 5, 125-136.]) and without (LEQSOQ; Vigo et al., 2006[Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376-2383.]) inserted benzene. In addition, cis-di­chloro­bis­(methyl­phenyl­sulfoxide)­palladium has been published independently by two different research groups [JISWUD (Antolini et al., 1991[Antolini, L., Folli, U., Iarossi, D., Schenetti, L. & Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 955-961.]) and JISWUD01 (Gama de Almeida et al., 1992[Almeida, S. G. de, Hubbard, J. L. & Farrell, N. (1992). Inorg. Chim. Acta, 193, 149-157.])]. Further examples of PtI2 thio­ether complexes are cis-di­iodo-(1,4,7-tri­thia­cyclo­nonane-S,S′)platinum(II) (ACUXAX; Grant et al., 2001[Grant, G. J., Brandow, C. G., Galas, D. F., Davis, J. P., Pennington, W. T., Valente, E. J. & Zubkowski, J. D. (2001). Polyhedron, 20, 3333-3342.]), di­iodo-(2,9-dimethyl-1,10-phenanthroline)(di­methyl­sulfide)­platinum(II) (BERTIC; Fanizzi et al., 2004[Fanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705-1713.]), and di­iodo-(5-phenyl-1-thia-5-phospha­cyclo-octane-P,S)platinum(II) (KEJHEM; Toto et al., 1990[Toto, S. D., Olmstead, M. M., Arbuckle, B. W., Bharadwaj, P. K. & Musker, K. W. (1990). Inorg. Chem. 29, 691-699.]).

Similar complexes were also structurally characterized by our research groups and include cis-[PtBr2{(PhSCH2)2SiPh2}] (ECOHAG; Knorr et al., 2004[Knorr, M., Peindy, H. M., Guyon, F., Sachdev, H. & Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955-1961.]) and cis-[PtI2{(PhSCH2)2SiPh2}]·DCM (ECOHIO, Knorr et al., 2004[Knorr, M., Peindy, H. M., Guyon, F., Sachdev, H. & Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955-1961.]), which were determined in order to investigate the trans-influence of different halide ligands on the Pt—S bond. Further examples of di­thio­ether complexes stemming from our laboratories are cis-[PtCl2{(PhSCH2)2Si2Me4}] (MEDYOK; Peindy et al., 2006[Peindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. & Strohmann, C. (2006). Organometallics, 25, 1472-1479.]) and cis-[PtI2{(PhSCH2)2Si2Me4}]·DCM (MEDZIF; Peindy et al., 2006[Peindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. & Strohmann, C. (2006). Organometallics, 25, 1472-1479.]).

5. Synthesis and crystallization

trans-Di­iodo­bis­[(methyl­sulfan­yl)benzene]­platinum (1) was synthesized by adding methyl­phenyl sulfide (37 mg, 0.30 mmol, 1.50 eq.) dissolved in 0.5 mL of di­chloro­methane via a microsyringe to a solution of bis­(benzo­nitrile)­diiodo­platinum (65 mg, 0.10 mmol, 1.00 eq.) in di­chloro­methane (3 mL) and stirring overnight at room temperature. trans-Di­iodo­bis­[(methyl­sulfan­yl)benzene]­platinum (1, 557 mg, 0.80 mmol, 80%) was isolated as red crystals after layering with heptane.

Calculated for C14H16I2PtS2 (697.30 g mol−1): C, 24.11; H, 2.32; S, 9.20. Found: C, 23.92; H, 2.21; S, 9.05%.

1H NMR (400MHz, CDCl3): δ = 3.01 (s, 3JPtH = 48 Hz, 6H; CH3), 7.05–7.73 (m, 10H; phen­yl) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso (H) = 1.5Ueq(C) for CH3 hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula [PtI2(C7H8I)2]
Mr 697.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.5796 (3), 9.5104 (3), 9.7960 (3)
β (°) 107.645 (1)
V3) 850.48 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 12.11
Crystal size (mm) 0.31 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.263, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 27554, 4125, 4033
Rint 0.038
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.17
No. of reflections 4125
No. of parameters 89
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.26, −1.80
Computer programs: APEX2 and SAINT V8.38A (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT V8.38A (Bruker, 2018); data reduction: SAINT V8.38A (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diiodidobis[(methylsulfanyl)benzene-κS]platinum(II) top
Crystal data top
[PtI2(C7H8I)2]F(000) = 632
Mr = 697.28Dx = 2.723 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5796 (3) ÅCell parameters from 9775 reflections
b = 9.5104 (3) Åθ = 3.1–36.3°
c = 9.7960 (3) ŵ = 12.11 mm1
β = 107.645 (1)°T = 100 K
V = 850.48 (5) Å3Prism, red
Z = 20.31 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
4125 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4033 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 36.3°, θmin = 2.2°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.263, Tmax = 0.498l = 1616
27554 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0193P)2 + 1.6484P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.002
4125 reflectionsΔρmax = 2.26 e Å3
89 parametersΔρmin = 1.79 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.5000000.01069 (3)
I10.67448 (2)0.70668 (2)0.48539 (2)0.01650 (4)
S10.66656 (6)0.45396 (6)0.72234 (6)0.01359 (8)
C30.7382 (3)0.1669 (2)0.7476 (2)0.0159 (3)
H30.6688010.1546470.7983520.019*
C70.8623 (2)0.3176 (2)0.6213 (3)0.0168 (4)
H70.8766380.4078680.5863510.020*
C20.7595 (2)0.2989 (2)0.6957 (2)0.0134 (3)
C10.5743 (3)0.3994 (3)0.8486 (2)0.0188 (4)
H1A0.5180200.4783700.8688930.028*
H1B0.6468550.3686460.9375130.028*
H1C0.5078820.3213300.8079680.028*
C40.8199 (3)0.0527 (3)0.7244 (3)0.0200 (4)
H40.8060580.0376090.7596120.024*
C50.9216 (3)0.0705 (3)0.6501 (3)0.0216 (4)
H50.9764780.0075120.6339930.026*
C60.9426 (3)0.2037 (3)0.5991 (3)0.0209 (4)
H61.0124720.2161300.5490050.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01172 (5)0.00914 (5)0.01237 (5)0.00010 (3)0.00539 (3)0.00002 (3)
I10.01712 (6)0.01357 (6)0.02033 (7)0.00397 (4)0.00794 (5)0.00006 (4)
S10.0149 (2)0.0124 (2)0.01360 (19)0.00016 (15)0.00455 (16)0.00055 (15)
C30.0176 (8)0.0150 (8)0.0162 (8)0.0008 (7)0.0067 (7)0.0012 (7)
C70.0142 (8)0.0170 (9)0.0205 (9)0.0018 (7)0.0073 (7)0.0004 (7)
C20.0135 (8)0.0132 (8)0.0134 (8)0.0002 (6)0.0039 (6)0.0010 (6)
C10.0226 (10)0.0214 (10)0.0147 (8)0.0047 (8)0.0092 (7)0.0018 (7)
C40.0229 (10)0.0164 (9)0.0206 (10)0.0038 (7)0.0063 (8)0.0029 (7)
C50.0194 (10)0.0210 (10)0.0244 (11)0.0073 (8)0.0065 (8)0.0001 (8)
C60.0149 (9)0.0243 (11)0.0257 (11)0.0010 (8)0.0094 (8)0.0012 (8)
Geometric parameters (Å, º) top
Pt1—I12.6121 (1)C7—C21.403 (3)
Pt1—I1i2.6120 (1)C7—C61.383 (3)
Pt1—S1i2.3183 (5)C1—H1A0.9800
Pt1—S12.3183 (5)C1—H1B0.9800
S1—C21.782 (2)C1—H1C0.9800
S1—C11.800 (2)C4—H40.9500
C3—H30.9500C4—C51.392 (4)
C3—C21.393 (3)C5—H50.9500
C3—C41.397 (3)C5—C61.398 (4)
C7—H70.9500C6—H60.9500
I1i—Pt1—I1180.0C7—C2—S1115.60 (17)
S1i—Pt1—I194.358 (14)S1—C1—H1A109.5
S1—Pt1—I1i94.359 (14)S1—C1—H1B109.5
S1—Pt1—I185.641 (14)S1—C1—H1C109.5
S1i—Pt1—I1i85.643 (14)H1A—C1—H1B109.5
S1—Pt1—S1i180.0H1A—C1—H1C109.5
C2—S1—Pt1104.52 (7)H1B—C1—H1C109.5
C2—S1—C1103.46 (11)C3—C4—H4119.8
C1—S1—Pt1111.00 (8)C5—C4—C3120.4 (2)
C2—C3—H3120.3C5—C4—H4119.8
C2—C3—C4119.3 (2)C4—C5—H5120.1
C4—C3—H3120.3C4—C5—C6119.7 (2)
C2—C7—H7120.2C6—C5—H5120.1
C6—C7—H7120.2C7—C6—C5120.4 (2)
C6—C7—C2119.6 (2)C7—C6—H6119.8
C3—C2—S1123.88 (17)C5—C6—H6119.8
C3—C2—C7120.5 (2)
Pt1—S1—C2—C3107.26 (19)C1—S1—C2—C7168.90 (18)
Pt1—S1—C2—C774.82 (17)C4—C3—C2—S1178.09 (18)
C3—C4—C5—C60.4 (4)C4—C3—C2—C70.3 (3)
C2—C3—C4—C50.0 (4)C4—C5—C6—C70.5 (4)
C2—C7—C6—C50.2 (4)C6—C7—C2—S1178.21 (19)
C1—S1—C2—C39.0 (2)C6—C7—C2—C30.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters for compound 1 (Å, °) top
Pt1–I12.61205 (15)I1–Pt1–I1i180.0
Pt1–S12.3183 (5)S1–Pt1–I185.641 (14)
S1–C21.782 (2)S1–Pt1–I1i94.359 (14)
S1–C11.800 (2)C2–S1–C1103.46 (11)
 

References

First citationAbel, E. W., Bhargava, S. K. & Orrell, K. G. (1984). Progr. Inorg. Chem, 32, 1–118.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAlmeida, S. G. de, Hubbard, J. L. & Farrell, N. (1992). Inorg. Chim. Acta, 193, 149–157.  CSD CrossRef Web of Science Google Scholar
First citationAntolini, L., Folli, U., Iarossi, D., Schenetti, L. & Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 955–961.  CrossRef Google Scholar
First citationArrayás, R. G. & Carretero, J. C. (2011). Chem. Commun. 47, 2207–2211.  Google Scholar
First citationAwaleh, M. O., Badia, A., Brisse, F. & Bu, X.-H. (2006). Inorg. Chem. 45, 1560–1574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClement, S., Guyard, L., Knorr, M., Villafane, F., Strohmann, C. & Kubicki, M. M. (2007). Eur. J. Inorg. Chem. pp. 5052–5061.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705–1713.  CrossRef Google Scholar
First citationGrant, G. J., Brandow, C. G., Galas, D. F., Davis, J. P., Pennington, W. T., Valente, E. J. & Zubkowski, J. D. (2001). Polyhedron, 20, 3333–3342.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohansson, M. H. & Engelbrecht, H. P. (2001). Acta Cryst. E57, m114–m116.  CrossRef IUCr Journals Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M., Peindy, H. M., Guyon, F., Sachdev, H. & Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955–1961.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLövqvist, K. C., Wendt, O. F. & Leipoldt, J. G. (1996). Acta Chem. Scand. 50, 1069–1073.  Google Scholar
First citationMarangoni, G., Pitteri, B., Bertolasi, V. & Gilli, P. (1995). Inorg. Chim. Acta, 234, 173–179.  CSD CrossRef CAS Web of Science Google Scholar
First citationMasdeu-Bultó, A. M., Diéguez, M., Martin, E. & Gómez, M. (2003). Coord. Chem. Rev. 242, 159–201.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMurray, S. G. & Hartley, F. R. (1981). Chem. Rev. 81, 365–414.  CrossRef CAS Web of Science Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2006). Main Group Chem. 5, 125–136.  CrossRef CAS Google Scholar
First citationOskarsson, Å., Norén, B., Svensson, C. & Elding, L. I. (1990). Acta Cryst. B46, 748–752.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. & Strohmann, C. (2006). Organometallics, 25, 1472–1479.  CrossRef CAS Google Scholar
First citationPeindy, H. M., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828.  CrossRef Google Scholar
First citationPeindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479–482.  CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Strohmann, C., Tissot, J.-B., Clément, S., Mehdi, A., Richeter, S., Viau, L. & Knorr, M. (2017). Chem. Eur. J. 23, 16479–16483.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToto, S. D., Olmstead, M. M., Arbuckle, B. W., Bharadwaj, P. K. & Musker, K. W. (1990). Inorg. Chem. 29, 691–699.  CrossRef CAS Google Scholar
First citationVigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376–2383.  CrossRef CAS Google Scholar
First citationViola, E., Donzello, M. P., Ercolani, C., Rizzoli, C. & Lever, A. B. P. (2018). Inorg. Chim. Acta, 480, 101–107.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds