

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 April 2023
Accepted 24 April 2023

Edited by J. Reibenspies, Texas A \& M University, USA

Keywords: crystal structure; Hirshfeld surface analysis; dithioether.

CCDC reference: 2258409
Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure and Hirshfeld analysis of trans-diiodidobis[(methylsulfanyl)benzene-kS]platinum(II)

Annika Schmidt, ${ }^{\text {a }}$ Isabelle Jourdain, ${ }^{\mathbf{b}}$ Michael Knorr ${ }^{\mathbf{b}}$ and Carsten Strohmann ${ }^{\text {a }}$.

${ }^{\text {a }}$ TU Dortmund University, Institute for Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and
blnstitut UTINAM CNRS UMR 6213, Equipe "Matériaux et Surfaces Fonctionnels", Université de Franche-Comté, Faculté des Sciences et des Techniques La Bouloie - 16 Route de Gray, 25030 BESANÇON CEDEX, France. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The title complex, $\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{I}_{2}\right)_{2}\right]$, represents a further example of a squareplanar $\mathrm{Pt}^{\mathrm{II}}$-dithioether complex. It crystallizes in the monoclinic space group $P 2{ }_{1} / c$. Additional Hirshfeld analyses indicate a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction along the [010] axis to be the most important packing factor.

1. Chemical context

Dithioethers are a quite useful class of ligands for various transition-metal complexes and their coordination chemistry is well documented (Murray \& Hartley, 1981). As a result of the soft character of the sulfur center, they preferably bond to soft transition metals like the coinage metals $(\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au})$, mercury(II), or catalytically active noble metals such as rhodium(I), iridium(I), palladium(II) or platinum(II). Apart from structural aspects (Marangoni et al., 1995) and the investigation of inversion dynamics occurring at the coordinated sulfur atoms (Abel et al., 1984), these complexes have been reported to have several applications in homogeneous catalysis (Masdeu-Bulto et al., 2003; Arrayás \& Carretero, 2011). They can form interesting luminescent cluster-like structures (Knorr et al., 2014; Peindy et al., 2007) and even coordination polymers by coordination to Cu^{I} and Ag^{I} (Raghuvanshi et al., 2017; Awaleh et al., 2006). Depending on the metal coordination sphere and the remaining ligands, the preparation of dithioether complexes may yield different isomers. In particular, the isomerism of chalcogenoether complexes with palladium and platinum has been intensively investigated (Vigo et al., 2006) and the presence of both transand cis-isomers in solution and the solid state were proven. The clarification of the trans-cis isomerism is therefore of importance.

In the past, our groups have investigated the coordination of chelating dithioethers such as the vinylic ferrocenyl-dithioether $Z-[(\mathrm{ArS})(\mathrm{H}) \mathrm{C}=\mathrm{C}(\mathrm{SAr})-\mathrm{Fc}]$ or the silylated compounds $\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{SiPh}_{2}$ and $\mathrm{PhSCH}_{2} \mathrm{Si}(\mathrm{Me})-\mathrm{Si}(\mathrm{Me})-$ $\mathrm{CH}_{2} \mathrm{SPh}_{2}$ yielding $\left[\mathrm{Fc}-\{\mathrm{C}(\mathrm{S}-p\right.$-tolyl $)=\mathrm{C}(\mathrm{S}-p$-tolyl $\left.)(\mathrm{H})\} \mathrm{PtCl}_{2}\right]$, cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{Si}_{2} \mathrm{Me}_{4}\right\}\right]$ and cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2}-\right.\right.$ $\left.\left.\mathrm{SiPh}_{2}\right\}\right]$ and converted them via metathesis in the presence of NaI to their corresponding diiodo derivatives (Clement et al., 2007; Knorr et al., 2004; Peindy et al., 2006). We have also shown that the tetrakis(thioether) $\left(\mathrm{PhSCH}_{2}\right)_{4} \mathrm{Si}$ can be ligated

Figure 1
Synthesis scheme for trans- $\left.\mathrm{PtI}_{2}(\mathrm{SMePh})_{2}\right]$ (1).
on HgBr_{2} in a chelating manner (Peindy et al., 2005). In a similar manner, we also prepared, as shown in Fig. 1, the complex cis- $\left[\mathrm{PtI}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{SPh}\right\}_{2}\right]\right.$. When attempting to recrystallize this poorly soluble compound from hot toluene, partial cleavage of the $\mathrm{Si}-\mathrm{CH}_{2} \mathrm{Ph}$ bond occurred, yielding trans- $\left.-\mathrm{PtI}_{2}(\mathrm{SMePh})_{2}\right]$ 1, albeit in a quite low yield of 10%. Alternatively, this air-stable complex could be prepared in a much improved yield of 80% by reaction of bis(benzonitrile)diiodoplatinum with 2 equivalents of methyl phenyl sulfide (thioanisol) MeSPh using dichloromethane as solvent. This compound was characterized by NMR spectroscopy in solution and exhibits a singlet resonance for the two magnetically equivalent methyl groups at $\delta 3.01 \mathrm{ppm}$, flanked by ${ }^{195} \mathrm{Pt}$ satellites due to a ${ }^{3} J_{\mathrm{PtH}}$ coupling of 48 Hz . Furthermore, we report herein on the solid-state structure and structural analysis of trans-diiodidobis[(methylsulfanyl)benzene- κS]platinum(II) (1). In addition, the results of a Hirshfeld analysis of the intermolecular interactions are presented.

2. Structural commentary

trans-Diiodidobis[(methylsulfanyl)benzene- κ S]platinum(II) (1) crystallizes from dichloromethane in the monoclinic crystal system, space group $P 2_{1} / c$. The molecular structure of $\mathbf{1}$ is

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{I} 1$	$2.6121(2)$	$\mathrm{S} 1-\mathrm{C} 2$	$1.782(2)$
$\mathrm{Pt} 1-\mathrm{S} 1$	$2.3183(5)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.800(2)$
$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{I} 1$	180.0	$\mathrm{~S} 1-\mathrm{Pt} 1-\mathrm{I} 1$	$85.641(14)$
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{I} 1^{\mathrm{i}}$	$94.359(14)$	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	$103.46(11)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
 Molecular structure of $\mathbf{1}$ in the unit cell.
presented in Figs. 2 and 3 and selected bond lengths and bond angles are given in Table 1. The asymmetric unit contains half a molecule of $\mathbf{1}$, which shows $C_{2 h}$ symmetry. The distance from the coordinating iodine center I1 to Pt 1 is $2.61205(15) \AA$, showing a slight elongation with respect to its educt structure

Figure 3
Asymmetric unit of $\mathbf{1}$ with labeled atoms.
trans $-\left[\mathrm{PtI}_{2}(\mathrm{NCPh})_{2}\right]$ (2) (2.6052 (8) \AA; Viola et al., 2018). The distance from the coordinating sulfur atom S 1 to Pt 1 is 2.3183 (5) \AA. The $\mathrm{S} 1-\mathrm{Pt} 1$ bond is $0.015 \AA$ longer than in the analogous chlorine compound trans- $\left[\mathrm{PtCl}_{2}(\mathrm{SMePh})_{2}\right]$ (3) reported by Ahlgrén (CSD LEQSUW; Vigo et al., 2006). This elongation may be explained by the thermodynamic transeffect of the opposite halide ligand. Therefore, similar compounds with iodido ligands such as trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right]$ (4) (CSD RAYNOU; Lövqvist et al., 1996) and trans-[$\mathrm{PtI}_{2}($ tetrahydrothiophene) ${ }_{2}$] (5) (CSD SIRPAK; Oskarsson et al., 1990) show S-Pt bond lengths in the same range at 2.310 (2) and 2.310 (1) \AA, respectively. Both complexes also have similar bond lengths for the $\mathrm{Pt}-\mathrm{I}$ bond $[2.6039$ (8) \AA in 4 and 2.606 (1) \AA in 5]. The chelate complexes cis-diiodo-[1,2-bis(phenylsulfanyl)ethane]platinum(II) (CSD ZAJWUC; Marangoni et al., 1995) and cis-(1,4-dithiane-S, S^{\prime})diiodoplatinum(II) (CSD HUFQAA; Johansson \& Engelbrecht, 2001) are reported to display $\mathrm{Pt}-\mathrm{I}$ bond lengths of 2.606 (1) and 2.6035 (5) \AA, respectively, and somewhat shorter mean $\mathrm{Pt}-\mathrm{S}$ bond lengths of 2.265 (2) and 2.2751 (16) \AA, respectively.

All further bonds have characteristic dimensions (Allen et al., 1987). The coordination sphere around the platinum center is square-planar. The angles $\mathrm{I} 1-\mathrm{Pt} 1-\mathrm{I} 1$ and $\mathrm{S} 1-\mathrm{Pt} 1-$

Figure 4
The packing of the solid-state structure of $\mathbf{1}$ along the [100] axis.

S 1 are 180°. However, the angle $\mathrm{I} 1-\mathrm{Pt} 1-\mathrm{S} 1$ of $85.641(14)^{\circ}$ is somewhat more acute. This slight deviation from the ideal angle of 90° is also reported for the chlorido derivative 3 and the dimethyl sulfide analog $\mathbf{4}$, as well as in the tetrahydrothiophene analog 5. The sulfur center shows a distorted tetrahedral environment with angles $\mathrm{C} 1-\mathrm{S} 1-\mathrm{Pt} 1=$ $111.00(8)^{\circ}, \mathrm{C} 2-\mathrm{S} 1-\mathrm{Pt} 1=104.52(7)^{\circ}$ and $\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1=$ $103.46(11)^{\circ}$.

3. Supramolecular features

While a repetition of the molecular structure of $\mathbf{1}$ can be seen along the [100] axis and the [001] axis, as shown in Fig. 4, the crystal packing along the [010] axis is defined by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions of the $\mathrm{C} 2-\mathrm{C} 7$ phenyl ring and $\mathrm{H} 1 B^{\mathrm{i}}$ [symmetry code: (i) $\left.x, \frac{1}{2}-y,-\frac{1}{2}+z\right]$ with a distance between the phenyl ring and $\mathrm{H} 1 B^{\mathrm{i}}$ of 2.5377 (10) \AA (Fig. 5). This interaction can also be visualized by a Hirshfeld surface analysis (Spackman \& Jayatilaka, 2009) generated by CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface mapped over $d_{\text {norm }}$ in the range from -0.0074 to 1.1829 a.u. is shown in Fig. 6, with the close contact between $\mathrm{H} 1 B^{\mathrm{i}}$ and the $\mathrm{C} 2-\mathrm{C} 7$ plane indicated by the red spot. The contributions of the different types of intermolecular interactions for $\mathbf{1}$ are shown in the twodimensional fingerprint plots (McKinnon et al., 2007) in Fig. 7. The contribution of the $\mathrm{H} \cdots \mathrm{H}$ interactions, with a value of 39.8%, has the largest share of the crystal packing of $\mathbf{1}$. The remaining hydrogen-heteronuclear interactions have a smaller share with a 15.7% contribution for $\mathrm{I} \cdots \mathrm{H}$, a 14.4% contribution for $\mathrm{C} \cdots \mathrm{H}$ and a 3.6% contribution for $\mathrm{S} \cdots \mathrm{H}$.

Figure 5
The packing of the solid-state structure of $\mathbf{1}$ along the [010] axis [symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}+z$].

Figure 6
Hirshfeld surface analysis of $\mathbf{1}$ showing close contacts in the crystal. The π-interaction between hydrogen atom $\mathrm{H} 1 B^{\mathrm{i}}$ and the phenyl ring $\mathrm{C} 2-\mathrm{C} 7$ is indicated by the red spot [symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}+z$].

The heteronuclear $\mathrm{I} \cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{H}$ interactions appear as spikes.

Figure 7
Two-dimensional fingerprint plots for compound 1, showing (a) all contributions, and $(b)-(d)$ delineated into the contributions of atoms within specific interacting pairs (blue areas).

4. Database survey

By a search in the Cambridge Crystallographic Database (WebCSD, November 2022; Groom et al., 2016), various structures of dihalide transition-metal complexes with the same ligand motif as $\mathbf{1}$ were found. To compare the most similar structures, only dihalide transition metal complexes with the bis[(methylsulfanyl)benzene] ligand and its oxidized derivative are focused on now. The already compared structure trans-dichloro-bis[methyl(phenyl)sulfanyl]platinum (LEQSUW; Vigo et al., 2006) has been published, as well as its palladium derivative with (SARWEP; Oilunkaniemi et al., 2006) and without (LEQSOQ; Vigo et al., 2006) inserted benzene. In addition, cis-dichlorobis(methylphenylsulfoxide)palladium has been published independently by two different research groups [JISWUD (Antolini et al., 1991) and JISWUD01 (Gama de Almeida et al., 1992)]. Further examples of PtI_{2} thioether complexes are cis-diiodo-(1,4,7-trithia-cyclononane- S, S^{\prime})platinum(II) (ACUXAX; Grant et al., 2001), diiodo-(2,9-dimethyl-1,10-phenanthroline)(dimethylsulfide)platinum(II) (BERTIC; Fanizzi et al., 2004), and diiodo-(5-phenyl-1-thia-5-phosphacyclo-octane- P, S) platinum(II) (KEJHEM; Toto et al., 1990).

Similar complexes were also structurally characterized by our research groups and include cis-[$\left.\mathrm{PtBr}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{SiPh}_{2}\right\}\right]$ (ECOHAG; Knorr et al., 2004) and cis-[$\mathrm{PtI}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2-}\right.$ $\left.\left.\mathrm{SiPh}_{2}\right\}\right] \cdot \mathrm{DCM}$ (ECOHIO, Knorr et al., 2004), which were determined in order to investigate the trans-influence of different halide ligands on the $\mathrm{Pt}-\mathrm{S}$ bond. Further examples of dithioether complexes stemming from our laboratories are cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{Si}_{2} \mathrm{Me}_{4}\right\}\right]$ (MEDYOK; Peindy et al., 2006) and cis-[$\left.\mathrm{PtI}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{Si}_{2} \mathrm{Me}_{4}\right\}\right] \cdot \mathrm{DCM}$ (MEDZIF; Peindy et al., 2006).

5. Synthesis and crystallization

trans-Diiodobis[(methylsulfanyl)benzene]platinum (1) was synthesized by adding methylphenyl sulfide $(37 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.50 \mathrm{eq}$.) dissolved in 0.5 mL of dichloromethane via a microsyringe to a solution of bis(benzonitrile)diiodoplatinum ($65 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dichloromethane (3 mL) and stirring overnight at room temperature. trans-Diiodobis[(methylsulfanyl)benzene]platinum (1, $557 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$) was isolated as red crystals after layering with heptane.

Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{PtS}_{2}\left(697.30 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C}, 24.11 ; \mathrm{H}$, 2.32; S, 9.20. Found: C, 23.92; H, 2.21; S, 9.05\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.01\left(s,{ }^{3} J_{\mathrm{PtH}}=48 \mathrm{~Hz}, 6 \mathrm{H}\right.$; CH_{3}), 7.05-7.73 ($\mathrm{m}, 10 \mathrm{H}$; phenyl) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and CH hydrogen atoms and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3} hydrogen atoms.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{I}\right)_{2}\right]$
M_{r}	697.28
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$9.5796(3), 9.5104(3), 9.7960(3)$
$\beta\left({ }^{\circ}\right)$	$107.645(1)$
$V\left(\AA^{3}\right)$	$850.48(5)$
Z	2
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	12.11
Crystal size (mm)	$0.31 \times 0.25 \times 0.20$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Krause et
Absorption correction	$a l ., 2015)$
	$0.263,0.498$
$T_{\text {min }}, T_{\text {max }}$	$27554,4125,4033$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.038
$R_{\text {int }}$	0.833
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.021,0.053,1.17$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	4125
No. of reflections	89
No. of parameters	H -atom parameters constrained
H-atom treatment	$2.26,-1.80$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX2 and SAINT V8.38A (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

References

Abel, E. W., Bhargava, S. K. \& Orrell, K. G. (1984). Progr. Inorg. Chem, 32, 1-118.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Almeida, S. G. de, Hubbard, J. L. \& Farrell, N. (1992). Inorg. Chim. Acta, 193, 149-157.
Antolini, L., Folli, U., Iarossi, D., Schenetti, L. \& Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 955-961.
Arrayás, R. G. \& Carretero, J. C. (2011). Chem. Commun. 47, 22072211.

Awaleh, M. O., Badia, A., Brisse, F. \& Bu, X.-H. (2006). Inorg. Chem. 45, 1560-1574.
Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Clement, S., Guyard, L., Knorr, M., Villafane, F., Strohmann, C. \& Kubicki, M. M. (2007). Eur. J. Inorg. Chem. pp. 5052-5061.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Fanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. \& Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705-1713.

Grant, G. J., Brandow, C. G., Galas, D. F., Davis, J. P., Pennington, W. T., Valente, E. J. \& Zubkowski, J. D. (2001). Polyhedron, 20, 3333-3342.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Johansson, M. H. \& Engelbrecht, H. P. (2001). Acta Cryst. E57, m114m116.
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. \& Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.
Knorr, M., Peindy, H. M., Guyon, F., Sachdev, H. \& Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955-1961.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lövqvist, K. C., Wendt, O. F. \& Leipoldt, J. G. (1996). Acta Chem. Scand. 50, 1069-1073.
Marangoni, G., Pitteri, B., Bertolasi, V. \& Gilli, P. (1995). Inorg. Chim. Acta, 234, 173-179.
Masdeu-Bultó, A. M., Diéguez, M., Martin, E. \& Gómez, M. (2003). Coord. Chem. Rev. 242, 159-201.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Murray, S. G. \& Hartley, F. R. (1981). Chem. Rev. 81, 365-414.
Oilunkaniemi, R., Laitinen, R. S. \& Ahlgrén, M. (2006). Main Group Chem. 5, 125-136.
Oskarsson, Å., Norén, B., Svensson, C. \& Elding, L. I. (1990). Acta Cryst. B46, 748-752.
Peindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. \& Strohmann, C. (2006). Organometallics, 25, 1472-1479.
Peindy, H. M., Guyon, F., Khatyr, A., Knorr, M. \& Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823-1828.

Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A. A., Islas, S. A., Rabinovich, D., Golen, J. A. \& Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479-482.
Raghuvanshi, A., Strohmann, C., Tissot, J.-B., Clément, S., Mehdi, A., Richeter, S., Viau, L. \& Knorr, M. (2017). Chem. Eur. J. 23, 1647916483.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Toto, S. D., Olmstead, M. M., Arbuckle, B. W., Bharadwaj, P. K. \& Musker, K. W. (1990). Inorg. Chem. 29, 691-699.
Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. \& Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376-2383.
Viola, E., Donzello, M. P., Ercolani, C., Rizzoli, C. \& Lever, A. B. P. (2018). Inorg. Chim. Acta, 480, 101-107.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure and Hirshfeld analysis of trans-diiodidobis[(methyl-sulfanyl)benzene- κ S] platinum(II)

Annika Schmidt, Isabelle Jourdain, Michael Knorr and Carsten Strohmann

Computing details

Data collection: APEX2 (Bruker, 2018); cell refinement: SAINT V8.38A (Bruker, 2018); data reduction: SAINT V8.38A (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diiodidobis[(methylsulfanyl)benzene- κ S $]$ platinum(II)

Crystal data

[$\mathrm{PtI}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{I}\right)_{2}$]
$M_{r}=697.28$
Monoclinic, $P 2_{1} / c$
$a=9.5796$ (3) Å
$b=9.5104$ (3) \AA
$c=9.7960(3) \AA$
$\beta=107.645(1)^{\circ}$
$V=850.48(5) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: microfocus sealed X-ray tube, Incoatec $\mathrm{I} \mu \mathrm{s}$
HELIOS mirror optics monochromator
Detector resolution: 10.4167 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.17$
4125 reflections
89 parameters
0 restraints
Primary atom site location: dual
$F(000)=632$
$D_{\mathrm{x}}=2.723 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9775 reflections
$\theta=3.1-36.3^{\circ}$
$\mu=12.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, red
$0.31 \times 0.25 \times 0.20 \mathrm{~mm}$
$T_{\text {min }}=0.263, T_{\text {max }}=0.498$
27554 measured reflections
4125 independent reflections
4033 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0193 P)^{2}+1.6484 P\right]$ where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=2.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.79 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pt1	0.500000	0.500000	0.500000	$0.01069(3)$
I1	$0.67448(2)$	$0.70668(2)$	$0.48539(2)$	$0.01650(4)$
S1	$0.66656(6)$	$0.45396(6)$	$0.72234(6)$	$0.01359(8)$
C3	$0.7382(3)$	$0.1669(2)$	$0.7476(2)$	$0.0159(3)$
H3	0.668801	0.154647	0.798352	0.019^{*}
C7	$0.8623(2)$	$0.3176(2)$	$0.6213(3)$	$0.0168(4)$
H7	0.876638	0.407868	0.586351	0.020^{*}
C2	$0.7595(2)$	$0.2989(2)$	$0.6957(2)$	$0.0134(3)$
C1	$0.5743(3)$	$0.3994(3)$	$0.8486(2)$	$0.0188(4)$
H1A	0.518020	0.478370	0.868893	0.028^{*}
H1B	0.646855	0.368646	0.937513	0.028^{*}
H1C	0.507882	0.321330	0.807968	0.028^{*}
C4	$0.8199(3)$	$0.0527(3)$	$0.7244(3)$	$0.0200(4)$
H4	0.806058	-0.037609	0.759612	0.024^{*}
C5	$0.9216(3)$	$0.0705(3)$	$0.6501(3)$	$0.0216(4)$
H5	0.976478	-0.007512	0.633993	0.026^{*}
C6	$0.9426(3)$	$0.2037(3)$	$0.5991(3)$	$0.0209(4)$
H6	1.012472	0.216130	0.549005	0.025^{*}

Atomic displacement parameters $\left(\hbar^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.01172(5)$	$0.00914(5)$	$0.01237(5)$	$0.00010(3)$	$0.00539(3)$	$0.00002(3)$
I1	$0.01712(6)$	$0.01357(6)$	$0.02033(7)$	$-0.00397(4)$	$0.00794(5)$	$0.00006(4)$
S1	$0.0149(2)$	$0.0124(2)$	$0.01360(19)$	$-0.00016(15)$	$0.00455(16)$	$-0.00055(15)$
C3	$0.0176(8)$	$0.0150(8)$	$0.0162(8)$	$0.0008(7)$	$0.0067(7)$	$0.0012(7)$
C7	$0.0142(8)$	$0.0170(9)$	$0.0205(9)$	$-0.0018(7)$	$0.0073(7)$	$-0.0004(7)$
C2	$0.0135(8)$	$0.0132(8)$	$0.0134(8)$	$-0.0002(6)$	$0.0039(6)$	$-0.0010(6)$
C1	$0.0226(10)$	$0.0214(10)$	$0.0147(8)$	$0.0047(8)$	$0.0092(7)$	$0.0018(7)$
C4	$0.0229(10)$	$0.0164(9)$	$0.0206(10)$	$0.0038(7)$	$0.0063(8)$	$0.0029(7)$
C5	$0.0194(10)$	$0.0210(10)$	$0.0244(11)$	$0.0073(8)$	$0.0065(8)$	$-0.0001(8)$
C6	$0.0149(9)$	$0.0243(11)$	$0.0257(11)$	$0.0010(8)$	$0.0094(8)$	$-0.0012(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pt} 1-\mathrm{I} 1$	$2.6121(1)$	$\mathrm{C} 7-\mathrm{C} 2$	$1.403(3)$
$\mathrm{Pt} 1-\mathrm{I} 1^{\mathrm{i}}$	$2.6120(1)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.383(3)$
$\mathrm{Pt} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.3183(5)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{Pt} 1 — \mathrm{~S} 1$	$2.3183(5)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800

S1-C2	1.782 (2)	C1-H1C	0.9800
S1-C1	1.800 (2)	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
C3-H3	0.9500	C4-C5	1.392 (4)
C3-C2	1.393 (3)	C5-H5	0.9500
C3-C4	1.397 (3)	C5-C6	1.398 (4)
C7-H7	0.9500	C6-H6	0.9500
$\mathrm{I} 1{ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{I} 1$	180.0	C7-C2-S1	115.60 (17)
$\mathrm{S} 1^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{I} 1$	94.358 (14)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
S1-Pt1-I1 ${ }^{\text {i }}$	94.359 (14)	S1-C1-H1B	109.5
S1-Pt1-I1	85.641 (14)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{I} 1^{\mathrm{i}}$	85.643 (14)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{S} 1^{\text {i }}$	180.0	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{Pt} 1$	104.52 (7)	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	103.46 (11)	C3-C4-H4	119.8
C1-S1-Pt1	111.00 (8)	C5-C4-C3	120.4 (2)
C2-C3-H3	120.3	C5-C4-H4	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.3 (2)	C4-C5-H5	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3	C4-C5-C6	119.7 (2)
C2-C7-H7	120.2	C6-C5-H5	120.1
C6-C7-H7	120.2	C7-C6-C5	120.4 (2)
C6-C7-C2	119.6 (2)	C7-C6-H6	119.8
C3-C2-S1	123.88 (17)	C5-C6-H6	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	120.5 (2)		
$\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	-107.26 (19)	C1-S1-C2-C7	-168.90 (18)
$\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 7$	74.82 (17)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	-178.09 (18)
C3-C4-C5-C6	0.4 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	-0.3 (3)
C2-C3-C4-C5	0.0 (4)	C4-C5-C6-C7	-0.5 (4)
C2-C7-C6-C5	0.2 (4)	C6-C7-C2-S1	178.21 (19)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	9.0 (2)	C6-C7-C2-C3	0.2 (3)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

