metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2-(di­methyl­amino-κN)-α,α-di­phenyl­benzene­methano­lato-κO](tetra­hydro­furan-κO)magnesium(II)

aDepartment of Chemistry, Faculty of Sciences, Al al-Bayt University, PO Box 130040, Mafraq 25113, Jordan
*Correspondence e-mail: harbialmasri@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 September 2019; accepted 16 October 2019; online 31 October 2019)

The title magnesium complex, [Mg(C21H20NO2)2(C4H8O)]n, exhibits two N,O-bidentate 2-(di­methyl­amino)-α,α-di­phenyl­benzene­methano­late ligands, form­ing two six-membered chelate rings. The distorted square-pyramidal coordination sphere of the MgII atom is completed by the O atom of a tetra­hydro­furan ligand, with its O atom in the apical position. The O and N atoms are in a mutual trans arrangement. Except for two C—H⋯π inter­actions, no significant inter­molecular inter­actions are observed in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds with O,N- or N,N-bidentate functionalities can be reacted with many main-group and transition-metal compounds, in which they act as hemilabile ligands, forming six- or seven-membered chelate rings (Al-Masri et al., 2004a[Al-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. & Hey-Hawkins, E. (2004a). Tetrahedron, 60, 333-339.]). As a continuation of our work on the syntheses and crystal structures of such complexes (Al-Masri et al., 2004b[Al-Masri, H. T., Sieler, J., Lönnecke, P., Junk, P. C. & Hey-Hawkins, E. (2004b). Inorg. Chem. 43, 7162-7169.]), herein the synthesis and mol­ecular and crystal structures of a magnesium(II) complex with two N,O-chelating ligands, (I), are reported.

The crystal structure of complex (I) (Fig. 1[link]) exhibits a monomeric mol­ecule with two N,O-bidentate 2-(di­methyl­amino)-α,α-di­phenyl­benzene­methano­late ligands, forming two six-membered chelate rings. The MgII atom is penta­coordinated by the pair of N,O-bidentate ligands in a mutual trans orientation, and by the O atom of the tetra­hydro­furan (THF) mol­ecule. The six-membered chelate rings adopt screw-boat conformations, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of Q = 0.694 (5) Å, θ = 109.6 (5)° and φ = 154.4 (5)° for the Mg1/O1/C19/C1/C2/N1 ring, and Q = 0.687 (5) Å, θ = 70.6 (5)° and φ = 28.9 (5)° for the Mg1/N2/C23/C22/C40/O2 ring. The coordination geometry around the Mg atom tends towards square pyramidal, as evidenced by the τ5 parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.38 (ideal values: τ5 = 1 for a trigonal bipyramid and 0 for a square pyramid).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level.

To the best of my knowledge, there is only one other structurally characterized monomeric complex with five-coordinated magnesium(II) and bidentate N,O-chelating ligands, namely [(CMe2 PhBTP)2Mg(THF)], (II) (Li et al., 2012[Li, C.-Y., Su, J.-K., Yu, C.-J., Tai, Y.-E., Lin, C.-H. & Ko, B.-T. (2012). Inorg. Chem. Commun. 20, 60-65.]).

The basal plane in (I) is occupied by pairs of N and O atoms from the two N,O-bidentate ligands (O1, N1, O2 and N2). The MgII atom is displaced by 0.4931 (19) Å from the basal plane in the direction of the apical O3 atom. The distances between the MgII atom and basal atoms O1, O2, N1 and N2 are 1.887 (4), 1.891 (4), 2.306 (6) and 2.277 (5) Å, respectively, for (I). The corresponding angles of O1—Mg1—N1 = 83.25 (19)°, O1—Mg1—N2 = 89.85 (19)°, O2—Mg1–N1= 90.97 (19)° and O2—Mg1—N2 = 84.29 (19)° and their sum (348.36°; ideal = 360°) confirm the distortion towards trigonal bipyramidal. The angles N2—Mg1—N1 [162.9 (2)°] and O2—Mg1—O1 [140.1 (2)°] are narrower than N1—Mg—N4 [178.22 (8)°] and O1—Mg—O2 [147.42 (8)°] in (II).

The Mg—O bonds in (I) are slightly shorter than the distances [1.9113 (17) and 1.9099 (16) Å] in (II). The apical position being occupied by the O atom of the THF mol­ecule, with an Mg—O3 bond length of 2.095 (4) Å, is somewhat longer than the corresponding Mg—O(THF) bond of 2.0501 (17) Å in (II). The Mg—N bond lengths for (I) are similar, but are longer than for (II) [2.144 (2) and 2.159 (2) Å] (Li et al., 2012[Li, C.-Y., Su, J.-K., Yu, C.-J., Tai, Y.-E., Lin, C.-H. & Ko, B.-T. (2012). Inorg. Chem. Commun. 20, 60-65.]) or in other complexes with N-containing ligands, including [MgBr2(NHMe2)3] [2.159 (5), 2.177 (3) and 2.177 (3) Å; Vitze et al., 2009[Vitze, H., Lerner, H.-W. & Bolte, M. (2009). Acta Cryst. E65, m888.]], the dimeric complex MgII [(SalenMe)Mg(OBn)]2 [2.161 (2) and 2.260 (2) Å; Wua et al., 2005[Wua, J.-C., Huanga, B.-H., Hsueha, M.-L., Laib, S.-L. & Lin, C.-C. (2005). Polymer, 46, 9784-9792.]], [(N,N,O-tridentate ketiminate ligand)Mg(μ-OBn)]2 [2.123 (3) and 2.262 (3) Å; Tang et al., 2007[Tang, H.-Y., Chen, H.-Y., Huang, J.-H. & Lin, C.-C. (2007). Macromolecules, 40, 8855-8860.]] and di-μ-chlorido-bis­{[N,N′-di­cyclo­hexyl-N′′,N′′-bis­(tri­methyl­sil­yl)guanidinato-κ2N,N′](tetra­hydro­furan-κO)magnesium(II)} [2.0734 (18) and 2.1247 (17) Å; Cheng, 2011[Cheng, J. (2011). Acta Cryst. E67, m987.]].

Except for two C—H⋯Cg inter­actions, namely C20—H20CCg6(−x, −y + 1, −z) = 3.871 (8) Å and C41—H41CCg6(−x, −y + 1, −z + 1) = 3.790 (8) Å (Cg6 and Cg4 are the centroids of the C28–C33 and C13–C18 rings, respectively), no other significant inter­molecular inter­actions exist. The packing of the mol­ecules is shown in Fig. 2[link].

[Figure 2]
Figure 2
Packing view of the title complex along the a axis.

Synthesis and crystallization

A 100 ml Schlenk flask was charged with 1-HOCPh2-2-NMe2C6H4 (0.48 g, 1.6 mmol) and THF (50 ml). (n-Bu)2Mg (0.8 ml, 0.8 mmol) was then added dropwise at 273 K. The solution was warmed to room temperature and left to stir for about 1 h. The solvent was removed and the remaining solid washed with n-hexane. Colourless crystals were obtained from a THF solution at 269 K in 80% yield. 1H NMR (CDCl3, 400 MHz): δ 2.41 [br, 12H, N(CH3)2], 3.26 (THF), 6.22–7.31 (m, vbr, 28H, C6H4 and C6H5). 13C NMR (CDCl3, 100 MHz): δ 44.4, 45.7 [N(CH3)2], 56.9 (THF), 66.8, 112.5, 113.9, 118.1, 124.9, 127.7, 128.4, 137.1, 145.5, 152.6, 161.7.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Mg(C21H20NO2)2(C4H8O)]
Mr 701.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 208
a, b, c (Å) 9.5014 (15), 13.801 (2), 15.834 (3)
α, β, γ (°) 66.375 (4), 89.911 (4), 81.735 (4)
V3) 1878.9 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.989, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 6887, 5408, 2783
Rint 0.061
θmax (°) 23.3
(sin θ/λ)max−1) 0.555
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.250, 1.09
No. of reflections 5408
No. of parameters 469
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.33
Computer programs: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[2-(dimethylamino-κN)-α,α-diphenylbenzenemethanolato-κO](tetrahydrofuran-κO)magnesium(II) top
Crystal data top
[Mg(C21H20NO2)2(C4H8O)]Z = 2
Mr = 701.17F(000) = 748
Triclinic, P1char
Hall symbol: -P 1Dx = 1.239 Mg m3
a = 9.5014 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.801 (2) ÅCell parameters from 6887 reflections
c = 15.834 (3) Åθ = 1.4–23.3°
α = 66.375 (4)°µ = 0.09 mm1
β = 89.911 (4)°T = 208 K
γ = 81.735 (4)°Plate, colorless
V = 1878.9 (5) Å30.15 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX area detector
diffractometer
5408 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Phi and ω scansθmax = 23.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.989, Tmax = 0.993k = 1513
6887 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.250H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1205P)2]
where P = (Fo2 + 2Fc2)/3
5408 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were positioned geometrically (C—H = 0.93–0.97?Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.1554 (2)0.50201 (16)0.24814 (14)0.0261 (5)
O10.1102 (4)0.3872 (3)0.3537 (3)0.0292 (10)
O20.0645 (4)0.6179 (3)0.1421 (3)0.0282 (10)
O30.3757 (4)0.5028 (4)0.2476 (3)0.0413 (12)
N10.1431 (5)0.3850 (4)0.1785 (3)0.0315 (13)
N20.0968 (5)0.6150 (4)0.3196 (3)0.0302 (13)
C10.2249 (6)0.2298 (5)0.3302 (4)0.0279 (15)
C20.2241 (6)0.2794 (5)0.2314 (4)0.0297 (15)
C30.3067 (7)0.2242 (5)0.1876 (5)0.0390 (17)
H30.30310.25400.12270.047*
C40.3934 (7)0.1279 (6)0.2344 (5)0.0437 (19)
H40.44990.09490.20160.052*
C50.3973 (7)0.0804 (5)0.3285 (5)0.0398 (18)
H50.45590.01450.36130.048*
C60.3127 (7)0.1314 (5)0.3748 (5)0.0368 (17)
H60.31470.09790.43960.044*
C70.0133 (6)0.2342 (5)0.4035 (4)0.0283 (15)
C80.1289 (6)0.2962 (5)0.4213 (4)0.0312 (16)
H80.11770.36240.42210.037*
C90.2602 (7)0.2618 (6)0.4378 (5)0.0417 (18)
H90.33640.30520.44960.050*
C100.2816 (8)0.1655 (6)0.4373 (5)0.048 (2)
H100.37030.14190.44990.058*
C110.1671 (8)0.1044 (6)0.4175 (5)0.048 (2)
H110.17940.03910.41520.057*
C120.0359 (7)0.1381 (5)0.4013 (5)0.0417 (18)
H120.03970.09500.38860.050*
C130.2103 (6)0.2382 (5)0.4881 (4)0.0279 (15)
C140.3345 (7)0.2805 (5)0.4934 (5)0.0404 (18)
H140.36850.32840.43920.048*
C150.4076 (8)0.2524 (6)0.5781 (5)0.049 (2)
H150.49000.28160.58080.058*
C160.3590 (8)0.1814 (6)0.6583 (5)0.0460 (19)
H160.40860.16220.71540.055*
C170.2375 (8)0.1387 (5)0.6542 (5)0.0409 (18)
H170.20460.09010.70840.049*
C180.1641 (7)0.1681 (5)0.5695 (5)0.0366 (17)
H180.08080.13940.56760.044*
C190.1316 (6)0.2769 (5)0.3901 (4)0.0265 (15)
C200.0118 (7)0.3809 (5)0.1751 (5)0.0378 (17)
H20A0.06310.45210.13930.057*
H20B0.04400.35470.23740.057*
H20C0.02980.33310.14650.057*
C210.1823 (8)0.4356 (5)0.0812 (4)0.0419 (18)
H21A0.12410.50530.05050.063*
H21B0.16640.39060.04940.063*
H21C0.28210.44390.08020.063*
C220.1243 (6)0.7708 (5)0.1704 (4)0.0289 (15)
C230.1367 (6)0.7208 (5)0.2690 (4)0.0302 (16)
C240.1913 (7)0.7727 (5)0.3169 (5)0.0380 (17)
H240.19470.74130.38180.046*
C250.2409 (7)0.8686 (5)0.2738 (5)0.0435 (19)
H250.27710.90140.30900.052*
C260.2372 (7)0.9166 (5)0.1781 (5)0.0394 (18)
H260.27350.98090.14770.047*
C270.1783 (7)0.8672 (5)0.1284 (5)0.0356 (17)
H270.17470.90010.06350.043*
C280.1133 (7)0.7659 (5)0.0112 (4)0.0310 (16)
C290.2492 (7)0.7159 (5)0.0031 (5)0.0405 (18)
H290.29950.66220.05620.049*
C300.3110 (8)0.7438 (6)0.0809 (5)0.049 (2)
H300.40210.70940.08470.059*
C310.2372 (8)0.8228 (6)0.1596 (5)0.053 (2)
H310.27900.84190.21680.063*
C320.1054 (8)0.8729 (6)0.1549 (5)0.048 (2)
H320.05550.92590.20840.057*
C330.0444 (7)0.8446 (5)0.0691 (4)0.0363 (17)
H330.04620.88030.06610.044*
C340.1109 (6)0.7775 (5)0.0944 (4)0.0249 (15)
C350.1616 (7)0.8754 (5)0.0983 (5)0.0394 (18)
H350.09700.91430.11070.047*
C360.3063 (8)0.9166 (6)0.0843 (5)0.047 (2)
H360.33820.98230.08810.056*
C370.4032 (8)0.8619 (6)0.0648 (5)0.050 (2)
H370.50090.88970.05510.060*
C380.3532 (7)0.7650 (6)0.0599 (5)0.047 (2)
H380.41760.72660.04650.057*
C390.2086 (7)0.7241 (6)0.0746 (4)0.0390 (18)
H390.17690.65830.07090.047*
C400.0491 (6)0.7286 (5)0.1068 (4)0.0284 (15)
C410.0609 (6)0.6210 (5)0.3222 (5)0.0355 (17)
H41A0.08410.54970.35540.053*
H41B0.10340.65060.25960.053*
H41C0.09770.66640.35320.053*
C420.1561 (8)0.5613 (5)0.4173 (4)0.0433 (18)
H42A0.12590.49170.44630.065*
H42B0.12150.60480.45050.065*
H42C0.25930.55230.41870.065*
C430.4484 (7)0.5857 (6)0.2551 (6)0.054 (2)
H43A0.41690.60130.30790.065*
H43B0.42920.65170.19880.065*
C440.6045 (8)0.5402 (7)0.2684 (6)0.065 (3)
H44A0.66270.59710.24140.078*
H44B0.63370.50030.33410.078*
C450.6175 (8)0.4679 (7)0.2189 (6)0.063 (2)
H45A0.70140.41230.24300.076*
H45B0.62400.50800.15250.076*
C460.4823 (7)0.4202 (6)0.2386 (5)0.048 (2)
H46A0.45340.40230.18790.057*
H46B0.49510.35510.29580.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0268 (12)0.0277 (11)0.0243 (12)0.0074 (9)0.0041 (9)0.0102 (9)
O10.037 (3)0.025 (2)0.023 (2)0.0056 (19)0.0079 (19)0.0076 (19)
O20.036 (3)0.028 (2)0.020 (2)0.0043 (19)0.0021 (19)0.0098 (19)
O30.027 (3)0.048 (3)0.049 (3)0.007 (2)0.006 (2)0.020 (2)
N10.036 (3)0.037 (3)0.022 (3)0.008 (3)0.006 (2)0.012 (3)
N20.036 (3)0.034 (3)0.024 (3)0.009 (2)0.002 (2)0.013 (3)
C10.030 (4)0.030 (4)0.030 (4)0.011 (3)0.008 (3)0.016 (3)
C20.034 (4)0.036 (4)0.028 (4)0.011 (3)0.006 (3)0.020 (3)
C30.040 (4)0.042 (4)0.040 (4)0.005 (3)0.007 (3)0.021 (4)
C40.032 (4)0.054 (5)0.062 (6)0.007 (4)0.013 (4)0.041 (4)
C50.038 (4)0.039 (4)0.048 (5)0.002 (3)0.003 (4)0.024 (4)
C60.042 (4)0.034 (4)0.038 (4)0.005 (3)0.007 (3)0.018 (3)
C70.030 (4)0.033 (4)0.021 (4)0.007 (3)0.004 (3)0.009 (3)
C80.034 (4)0.039 (4)0.028 (4)0.013 (3)0.004 (3)0.019 (3)
C90.035 (4)0.051 (5)0.039 (5)0.004 (3)0.010 (3)0.018 (4)
C100.036 (4)0.057 (5)0.048 (5)0.017 (4)0.006 (4)0.013 (4)
C110.048 (5)0.035 (4)0.060 (6)0.022 (4)0.005 (4)0.015 (4)
C120.045 (5)0.035 (4)0.047 (5)0.007 (3)0.010 (4)0.018 (4)
C130.024 (4)0.031 (4)0.029 (4)0.000 (3)0.006 (3)0.014 (3)
C140.042 (4)0.047 (4)0.027 (4)0.009 (3)0.007 (3)0.009 (3)
C150.037 (4)0.071 (5)0.037 (5)0.010 (4)0.002 (4)0.021 (4)
C160.047 (5)0.050 (5)0.036 (5)0.009 (4)0.002 (4)0.017 (4)
C170.051 (5)0.045 (4)0.022 (4)0.008 (4)0.005 (3)0.008 (3)
C180.040 (4)0.040 (4)0.033 (4)0.009 (3)0.003 (3)0.018 (3)
C190.030 (4)0.028 (4)0.022 (4)0.005 (3)0.003 (3)0.011 (3)
C200.039 (4)0.041 (4)0.033 (4)0.009 (3)0.000 (3)0.013 (3)
C210.059 (5)0.043 (4)0.025 (4)0.006 (3)0.011 (3)0.016 (3)
C220.029 (4)0.031 (4)0.027 (4)0.001 (3)0.003 (3)0.013 (3)
C230.034 (4)0.029 (4)0.030 (4)0.007 (3)0.002 (3)0.013 (3)
C240.047 (4)0.035 (4)0.029 (4)0.007 (3)0.004 (3)0.010 (3)
C250.048 (5)0.042 (4)0.046 (5)0.012 (4)0.007 (4)0.022 (4)
C260.029 (4)0.032 (4)0.056 (5)0.011 (3)0.002 (3)0.016 (4)
C270.036 (4)0.032 (4)0.036 (4)0.011 (3)0.002 (3)0.009 (3)
C280.035 (4)0.034 (4)0.027 (4)0.007 (3)0.001 (3)0.014 (3)
C290.035 (4)0.047 (4)0.035 (4)0.001 (3)0.002 (3)0.014 (4)
C300.033 (4)0.073 (6)0.047 (5)0.017 (4)0.017 (4)0.027 (4)
C310.061 (6)0.072 (6)0.033 (5)0.032 (5)0.018 (4)0.023 (4)
C320.051 (5)0.059 (5)0.023 (4)0.011 (4)0.003 (3)0.005 (4)
C330.042 (4)0.038 (4)0.027 (4)0.005 (3)0.007 (3)0.012 (3)
C340.024 (3)0.030 (4)0.016 (3)0.002 (3)0.005 (3)0.006 (3)
C350.040 (5)0.046 (4)0.029 (4)0.007 (4)0.004 (3)0.012 (3)
C360.046 (5)0.048 (5)0.036 (5)0.008 (4)0.003 (4)0.012 (4)
C370.029 (4)0.067 (6)0.039 (5)0.003 (4)0.005 (3)0.009 (4)
C380.030 (4)0.067 (5)0.040 (5)0.009 (4)0.001 (3)0.016 (4)
C390.034 (4)0.049 (4)0.033 (4)0.006 (3)0.000 (3)0.016 (4)
C400.032 (4)0.029 (4)0.025 (4)0.007 (3)0.001 (3)0.010 (3)
C410.037 (4)0.044 (4)0.034 (4)0.014 (3)0.013 (3)0.021 (3)
C420.065 (5)0.042 (4)0.022 (4)0.010 (4)0.001 (3)0.012 (3)
C430.037 (5)0.056 (5)0.067 (6)0.011 (4)0.002 (4)0.021 (4)
C440.036 (5)0.058 (5)0.079 (7)0.009 (4)0.006 (4)0.004 (5)
C450.036 (5)0.069 (6)0.066 (6)0.011 (4)0.014 (4)0.008 (5)
C460.032 (4)0.058 (5)0.055 (5)0.005 (4)0.004 (4)0.026 (4)
Geometric parameters (Å, º) top
Mg1—O11.887 (4)C21—H21B0.9700
Mg1—O21.891 (4)C21—H21C0.9700
Mg1—O32.095 (4)C22—C271.401 (8)
Mg1—N22.277 (5)C22—C231.429 (8)
Mg1—N12.306 (6)C22—C401.566 (9)
O1—C191.378 (7)C23—C241.378 (9)
O2—C401.386 (7)C24—C251.376 (9)
O3—C431.461 (8)C24—H240.9400
O3—C461.464 (8)C25—C261.387 (10)
N1—C21.456 (8)C25—H250.9400
N1—C201.484 (8)C26—C271.393 (9)
N1—C211.486 (8)C26—H260.9400
N2—C231.462 (7)C27—H270.9400
N2—C411.490 (7)C28—C331.384 (9)
N2—C421.492 (8)C28—C291.405 (9)
C1—C61.396 (9)C28—C401.547 (9)
C1—C21.433 (9)C29—C301.383 (10)
C1—C191.560 (8)C29—H290.9400
C2—C31.389 (9)C30—C311.389 (10)
C3—C41.375 (9)C30—H300.9400
C3—H30.9400C31—C321.358 (10)
C4—C51.365 (10)C31—H310.9400
C4—H40.9400C32—C331.403 (9)
C5—C61.388 (9)C32—H320.9400
C5—H50.9400C33—H330.9400
C6—H60.9400C34—C391.373 (9)
C7—C121.387 (9)C34—C351.393 (9)
C7—C81.393 (8)C34—C401.550 (8)
C7—C191.556 (8)C35—C361.392 (9)
C8—C91.386 (9)C35—H350.9400
C8—H80.9400C36—C371.377 (10)
C9—C101.375 (9)C36—H360.9400
C9—H90.9400C37—C381.387 (10)
C10—C111.393 (10)C37—H370.9400
C10—H100.9400C38—C391.391 (9)
C11—C121.381 (9)C38—H380.9400
C11—H110.9400C39—H390.9400
C12—H120.9400C41—H41A0.9700
C13—C181.382 (9)C41—H41B0.9700
C13—C141.407 (9)C41—H41C0.9700
C13—C191.575 (9)C42—H42A0.9700
C14—C151.393 (9)C42—H42B0.9700
C14—H140.9400C42—H42C0.9700
C15—C161.384 (9)C43—C441.505 (10)
C15—H150.9400C43—H43A0.9800
C16—C171.382 (9)C43—H43B0.9800
C16—H160.9400C44—C451.489 (12)
C17—C181.390 (9)C44—H44A0.9800
C17—H170.9400C44—H44B0.9800
C18—H180.9400C45—C461.503 (9)
C20—H20A0.9700C45—H45A0.9800
C20—H20B0.9700C45—H45B0.9800
C20—H20C0.9700C46—H46A0.9800
C21—H21A0.9700C46—H46B0.9800
O1—Mg1—O2140.1 (2)H21B—C21—H21C109.5
O1—Mg1—O3110.6 (2)C27—C22—C23116.9 (6)
O2—Mg1—O3109.3 (2)C27—C22—C40118.1 (5)
O1—Mg1—N289.85 (19)C23—C22—C40125.0 (5)
O2—Mg1—N284.29 (19)C24—C23—C22118.9 (6)
O3—Mg1—N298.27 (19)C24—C23—N2119.6 (6)
O1—Mg1—N183.25 (19)C22—C23—N2121.4 (5)
O2—Mg1—N190.97 (19)C25—C24—C23122.8 (7)
O3—Mg1—N198.81 (19)C25—C24—H24118.6
N2—Mg1—N1162.9 (2)C23—C24—H24118.6
C19—O1—Mg1138.6 (4)C24—C25—C26119.8 (6)
C40—O2—Mg1136.4 (4)C24—C25—H25120.1
C43—O3—C46108.7 (5)C26—C25—H25120.1
C43—O3—Mg1126.0 (4)C25—C26—C27118.3 (6)
C46—O3—Mg1125.3 (4)C25—C26—H26120.8
C2—N1—C20111.2 (5)C27—C26—H26120.8
C2—N1—C21114.3 (5)C26—C27—C22123.1 (6)
C20—N1—C21106.7 (5)C26—C27—H27118.4
C2—N1—Mg1112.5 (4)C22—C27—H27118.4
C20—N1—Mg1102.3 (4)C33—C28—C29116.7 (6)
C21—N1—Mg1109.0 (4)C33—C28—C40124.4 (6)
C23—N2—C41111.3 (5)C29—C28—C40118.9 (5)
C23—N2—C42114.0 (5)C30—C29—C28121.7 (6)
C41—N2—C42106.7 (5)C30—C29—H29119.2
C23—N2—Mg1112.8 (4)C28—C29—H29119.2
C41—N2—Mg1102.3 (3)C29—C30—C31119.5 (7)
C42—N2—Mg1108.8 (4)C29—C30—H30120.2
C6—C1—C2117.2 (6)C31—C30—H30120.2
C6—C1—C19118.3 (5)C32—C31—C30120.7 (7)
C2—C1—C19124.5 (5)C32—C31—H31119.7
C3—C2—C1117.6 (6)C30—C31—H31119.7
C3—C2—N1120.7 (6)C31—C32—C33119.3 (7)
C1—C2—N1121.7 (5)C31—C32—H32120.4
C4—C3—C2123.2 (7)C33—C32—H32120.4
C4—C3—H3118.4C28—C33—C32122.2 (7)
C2—C3—H3118.4C28—C33—H33118.9
C5—C4—C3119.9 (6)C32—C33—H33118.9
C5—C4—H4120.1C39—C34—C35117.5 (6)
C3—C4—H4120.1C39—C34—C40118.7 (6)
C4—C5—C6118.6 (7)C35—C34—C40123.8 (6)
C4—C5—H5120.7C36—C35—C34121.2 (7)
C6—C5—H5120.7C36—C35—H35119.4
C5—C6—C1123.4 (7)C34—C35—H35119.4
C5—C6—H6118.3C37—C36—C35120.7 (7)
C1—C6—H6118.3C37—C36—H36119.7
C12—C7—C8117.4 (6)C35—C36—H36119.7
C12—C7—C19125.3 (6)C36—C37—C38118.5 (7)
C8—C7—C19117.4 (5)C36—C37—H37120.8
C9—C8—C7121.0 (6)C38—C37—H37120.8
C9—C8—H8119.5C37—C38—C39120.5 (7)
C7—C8—H8119.5C37—C38—H38119.8
C10—C9—C8121.6 (6)C39—C38—H38119.8
C10—C9—H9119.2C34—C39—C38121.7 (7)
C8—C9—H9119.2C34—C39—H39119.2
C9—C10—C11117.6 (6)C38—C39—H39119.2
C9—C10—H10121.2O2—C40—C28106.9 (5)
C11—C10—H10121.2O2—C40—C34110.3 (5)
C12—C11—C10121.1 (7)C28—C40—C34109.0 (5)
C12—C11—H11119.5O2—C40—C22113.1 (5)
C10—C11—H11119.5C28—C40—C22110.0 (5)
C11—C12—C7121.4 (6)C34—C40—C22107.4 (5)
C11—C12—H12119.3N2—C41—H41A109.5
C7—C12—H12119.3N2—C41—H41B109.5
C18—C13—C14117.7 (6)H41A—C41—H41B109.5
C18—C13—C19124.8 (6)N2—C41—H41C109.5
C14—C13—C19117.5 (5)H41A—C41—H41C109.5
C15—C14—C13120.7 (6)H41B—C41—H41C109.5
C15—C14—H14119.6N2—C42—H42A109.5
C13—C14—H14119.6N2—C42—H42B109.5
C16—C15—C14120.1 (7)H42A—C42—H42B109.5
C16—C15—H15119.9N2—C42—H42C109.5
C14—C15—H15119.9H42A—C42—H42C109.5
C17—C16—C15119.8 (7)H42B—C42—H42C109.5
C17—C16—H16120.1O3—C43—C44105.3 (6)
C15—C16—H16120.1O3—C43—H43A110.7
C16—C17—C18119.8 (7)C44—C43—H43A110.7
C16—C17—H17120.1O3—C43—H43B110.7
C18—C17—H17120.1C44—C43—H43B110.7
C13—C18—C17121.8 (6)H43A—C43—H43B108.8
C13—C18—H18119.1C45—C44—C43103.7 (7)
C17—C18—H18119.1C45—C44—H44A111.0
O1—C19—C7110.7 (5)C43—C44—H44A111.0
O1—C19—C1113.0 (5)C45—C44—H44B111.0
C7—C19—C1109.6 (5)C43—C44—H44B111.0
O1—C19—C13106.3 (5)H44A—C44—H44B109.0
C7—C19—C13108.0 (5)C44—C45—C46103.2 (6)
C1—C19—C13109.0 (5)C44—C45—H45A111.1
N1—C20—H20A109.5C46—C45—H45A111.1
N1—C20—H20B109.5C44—C45—H45B111.1
H20A—C20—H20B109.5C46—C45—H45B111.1
N1—C20—H20C109.5H45A—C45—H45B109.1
H20A—C20—H20C109.5O3—C46—C45105.4 (6)
H20B—C20—H20C109.5O3—C46—H46A110.7
N1—C21—H21A109.5C45—C46—H46A110.7
N1—C21—H21B109.5O3—C46—H46B110.7
H21A—C21—H21B109.5C45—C46—H46B110.7
N1—C21—H21C109.5H46A—C46—H46B108.8
H21A—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20C···O10.972.573.095 (8)114
C21—H21A···O20.972.533.105 (8)118
C41—H41C···O20.972.583.103 (8)114
C42—H42A···O10.972.463.037 (8)118
 

Acknowledgements

The author thanks Dr Mohammed Fattouhi for useful discussions.

Funding information

Funding for this research was provided by: Deanship of Scientific Research at Al al-Bayt University (grant No. 8635/ 2017).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAl-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. & Hey-Hawkins, E. (2004a). Tetrahedron, 60, 333–339.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Masri, H. T., Sieler, J., Lönnecke, P., Junk, P. C. & Hey-Hawkins, E. (2004b). Inorg. Chem. 43, 7162–7169.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. (2011). Acta Cryst. E67, m987.  CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, C.-Y., Su, J.-K., Yu, C.-J., Tai, Y.-E., Lin, C.-H. & Ko, B.-T. (2012). Inorg. Chem. Commun. 20, 60–65.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, H.-Y., Chen, H.-Y., Huang, J.-H. & Lin, C.-C. (2007). Macromolecules, 40, 8855–8860.  Web of Science CSD CrossRef CAS Google Scholar
First citationVitze, H., Lerner, H.-W. & Bolte, M. (2009). Acta Cryst. E65, m888.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWua, J.-C., Huanga, B.-H., Hsueha, M.-L., Laib, S.-L. & Lin, C.-C. (2005). Polymer, 46, 9784–9792.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds