

IUCrData

ISSN 2414-3146

Received 11 June 2025 Accepted 23 June 2025

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; neodymium; 2thenoyltrifluoroacetone; disorder; hydrogen bonds.

CCDC reference: 2466617

Structural data: full structural data are available from iucrdata.iucr.org

2-Methylimidazolium tetrakis(2-thenoyltrifluoro-acetonato- $\kappa^2 O, O'$)neodymium(III)

José Manuel Bravo-Arredondo,^{a,b} Sylvain Bernès,^c* Karen Mejía,^d Bertin Anzaldo,^e Erick Ramírez^f and David Moro^e

^aPosgrado en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla, Prolongación 14 Sur, IC5, 72570 Puebla, Pue., Mexico, ^bFacultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, De Apizaquito, 20 de Noviembre, 90401 Apizaco, Tlax., Mexico, ^cInstituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, ^dCentro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC8, C.U., San Manuel, 72570 Puebla, Pue., Mexico, ^eFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, *Correspondence e-mail: sylvain_bernes@hotmail.com

The title complex, $(C_4H_7N_2)[Nd(C_8H_4F_3O_2S)_4]$, is a salt formed *via* the acidbase reaction between 2-thenoyltrifluoroacetone (HTTA) and 2-methylimidazole (MeIm) in presence of neodymium(III) trifluoromethanesulfonate. The resulting compound features $[Nd(TTA)_4]^-$ anions with the central rareearth metal cation placed on a twofold rotation axis, and $[MeImH]^+$ cations, disordered over an inversion centre. Cations and anions are linked through $N-H\cdots$ O hydrogen bonds to form zigzag chains running along [001].

Structure description

2-Thenoyltrifluoroacetone (HTTA) is a β -diketone ligand with chelating ability for rareearth ions that can be used to produce highly luminescent complexes of Eu³⁺, Tb³⁺ and Sm³⁺, with high quantum yields and long luminescence lifetimes, because non-radiative decay pathways are minimized in the rigid coordination environment (Gujar *et al.*, 2019). The ligand is also able to sensitize lanthanide-centred emission *via* an efficient antenna effect. Nd³⁺ has sharp and well-defined *f*-*f* transitions, which makes it ideal for nearinfrared luminescence applications. By coordinating this metal with β -diketonates like TTA⁻, one can expect the development of more efficient luminescent materials, with practical applications in optoelectronics, catalysts and biomedicine (Ahmed *et al.*, 2020).

In this context, we synthesized the title compound, $[MeImH][Nd(TTA)_4]$ using MeIm (2-methylimidazole), HTTA, and neodymium(III) trifluoromethanesulfonate as starting materials. During the sonochemical reaction, an acid-base reaction occurs

Figure 1

Structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only one disordered cation is shown for clarity. Non-labelled S and O atoms are generated by symmetry operation 1 - x, $y, \frac{1}{2} - z$. Only H atoms belonging to the NH groups in the cation are given. The antiprismatic coordination polyhedron around Nd1 is represented in the inset.

between MeIm ($pK_b = 6.1$) and HTTA ($pK_a = 7.4$) to form the title salt. The anion is placed on the twofold rotation axis in space group C2/c, while the cation is disordered over an inversion centre, with occupancy fixed to 1/2 in the asymmetric unit. The central ion Nd³⁺ forms a slightly distorted squareantiprismatic polyhedron with eight O atoms of the TTAligands (Fig. 1). The distortion is reflected in Nd-O bond lengths in the range 2.396 (2) to 2.4758 (18) Å, which are comparable to bond lengths observed in other salts of the $[Nd(TTA)_4]^-$ anion crystallized with pyridinium (Leipoldt et al., 1977), ammonium (Cary et al., 2018) or a derivative of diphenyliodonium (Chen *et al.*, 1997). The anion $[Ln(TTA)_4]^$ has also been characterized with all other lanthanides, except with Ln = Ho and Ln = Lu. The coordination geometry is systematically close to square-antiprismatic, with idealized point group D_{4d} (e.g. Assunção et al., 2025; Ln = Eu). Ligands TTA⁻ are nearly planar: the dihedral angle between the thiophene and β -diketonate moieties is 13.91 (16) or 5.30 $(16)^{\circ}$. The angle formed between the planes of the six-

Figure 2

Part of the crystal structure, viewed nearly down [100]. One supramolecular chain is shown, with $N-H\cdots O$ hydrogen bonds represented as blue dashed bonds. All H atoms not involved in hydrogen-bonding have been omitted for clarity.

Table 1			
Hydrogen-bond	geometry (Å,	°).

, ,		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO3^{i}$ $N2-H2A\cdotsO3$	0.86	2.03	2.865 (6) 2 904 (6)	163 168
112/11/05	0.00	2.00	2.904 (0)	100

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2 Experimental details

Experimental details.	
Crystal data	
Chemical formula	$(C_4H_7N_2)[Nd(C_8H_4F_3O_2S)_4]$
M _r	1112.04
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	295
a, b, c (Å)	17.3191 (4), 12.6547 (2), 20.5387 (4)
β (°)	103.772 (2)
$V(Å^3)$	4372.01 (15)
Z	4
Radiation type	Ag $K\alpha$, $\lambda = 0.56083$ Å
$\mu \text{ (mm}^{-1})$	0.78
Crystal size (mm)	$0.31 \times 0.26 \times 0.24$
Data collection	
Diffractometer	Stoe Stadivari
Absorption correction	Multi-scan (X-AREA; Stoe & Cie 2019)
T_{\min}, T_{\max}	0.556, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	97427, 8697, 7163
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.782
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.113, 1.06
No. of reflections	8697
No. of parameters	313
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.70, -0.90

Computer programs: X-AREA (Stoe & Cie, 2019), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

membered chelate rings Nd1–O1–C1–C2–C3–O3 and Nd1–O11–C11–C12–C13–O13 in the asymmetric unit is 89.45 $(7)^{\circ}$, indicating an almost orthogonal arrangement for the independent TTA[–] ligands.

Supramolecular analysis of the title compound reveals intermolecular contacts between anions and cations, involving NH groups in the cation as donors and O3 as acceptor (Table 1 and Fig. 2). Zigzag chains alternating cations and anions are formed, running along [001]. These chains are stacked in the crystal with no significant contacts. Since cations are then sandwiched by two thiophene rings belonging to neighbouring anions along the chain, weak π - π interactions consolidate the crystal structure. In the asymmetric unit, the centroid-tocentroid separation between the thiophene ring S2 and the imidazole ring is 4.212 (6) Å, and corresponding mean planes form a dihedral angle of 23.4 (6)°.

Synthesis and crystallization

Crystals of $[MeImH][Nd(TTA)_4]$ were prepared *via* a sonochemical route using an Nd³⁺:HTTA = 1:2.5 stoichiometric ratio, starting from 1 mmol (0.591 g) of $Nd(CF_3SO_3)_3$ dissolved in 25 ml of methanol and mixed with 25 ml of the ligand solution [2.5 mmol (0.555 g) of HTTA and 2 mmol (0.164 g) of MeIm] in deionized water. All solutions were stirred, mixed, and sonicated at room temperature using an Ultrasonic Processor equipment UP400St, applying a frequency of 24 kHz and power of 400 W with 1 pulsation per second for 20 min, until precipitation occurred. After a few hours at room temperature, the precipitate was separated from the mother liquor by centrifugation and washed with deionized water to remove soluble byproducts and/or excess of precursor materials. The dried product was kept at 343 K overnight, affording single crystals suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The cation $[MeImH]^+$ is placed close to an inversion centre, and is thus equally disordered over two positions by symmetry. The occupancy for the cation in the asymmetric unit was fixed to 1/2. All H atoms were placed in idealized positions (Sheldrick, 2015*b*).

Funding information

Funding for this research was provided by: CONAHCyT (grant No. 268178; scholarship No. 175419 to J. M. Bravo-Arredondo; scholarship No. 546339 to E. Ramírez).

References

- Ahmed, Z., Avila, H. C., Carvalho, R. S., Kai, J., Resende, J. A. L. C., Bandini, E., Barbieri, A. & Cremona, M. (2020). *New J. Chem.* 44, 14161–14170.
- Assunção, I. P., Costa, I. F., Blois, L., Felinto, M. C. F. C., Deflon, V. M., Ando, R. A., Malta, O. L. & Brito, H. F. (2025). *RSC Adv.* 15, 435–445.
- Cary, S. K., Livshits, M., Cross, J. N., Ferrier, M. G., Mocko, V., Stein, B. W., Kozimor, S. A., Scott, B. L. & Rack, J. J. (2018). *Inorg. Chem.* 57, 3782–3797.
- Chen, B.-T., Zhang, Y.-G., Gao, L., Wang, M.-Z., Jin, L. P. & Cai, G. L. (1997). Acta Chim. Sinica 55, 553–561.
- Gujar, R. B., Verma, P. K., Ansari, S. A. & Mohapatra, P. K. (2019). New J. Chem. 43, 13675–13680.
- Leipoldt, J. G., Bok, L. D. C., Basson, S. S., Laubscher, A. E. & van Vollenhoven, J. S. (1977). *J. Inorg. Nucl. Chem.* **39**, 301–303.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stoe & Cie (2019). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2025). **10**, x250569 [https://doi.org/10.1107/S2414314625005693]

2-Methylimidazolium tetrakis(2-thenoyltrifluoroacetonato- $\kappa^2 O, O'$)neodymium(III)

José Manuel Bravo-Arredondo, Sylvain Bernès, Karen Mejía, Bertin Anzaldo, Erick Ramírez and David Moro

2-Methylimidazolium tetrakis(2-thenoyltrifluoroacetonato- $\kappa^2 O, O'$) neodymium(III)

.56083 Å .22785 reflections
L
100 tions ections $r > 2\sigma(I)$
cation: difference Fourier : inferred from hstrained 9P) ² + 6.0925P] C ²)/3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nd1	0.500000	0.38687 (2)	0.250000	0.03908 (6)	

S1	0.36020 (8)	0.07268 (11)	0.11099 (5)	0.0853 (3)	
01	0.41250 (13)	0.23740 (15)	0.21178 (10)	0.0508 (4)	
C1	0.39885 (15)	0.1532 (2)	0.23872 (13)	0.0435 (5)	
F1	0.3888 (2)	0.2515 (3)	0.45231 (13)	0.1088 (10)	
C2	0.41016 (19)	0.1387 (2)	0.30859 (14)	0.0508 (6)	
H2	0.400999	0.072079	0.324391	0.061*	
F2	0.51077 (18)	0.2131 (2)	0.46517 (11)	0.0966 (8)	
S2	0.32140 (5)	0.68267 (7)	0.30984 (5)	0.0663 (2)	
F3	0.4226 (3)	0.0935 (2)	0.43956 (12)	0.1309 (15)	
03	0.45289 (13)	0.31300 (15)	0.34528 (10)	0.0519 (4)	
C3	0.43400 (18)	0.2183 (2)	0.35402 (13)	0.0499 (6)	
C4	0.4388 (3)	0.1920 (3)	0.42796 (17)	0.0738 (11)	
F4	0.71200 (14)	0.6641 (2)	0.43086 (17)	0.1057 (10)	
C5	0.36846 (18)	0.0630 (2)	0.19456 (14)	0.0508 (6)	
F5	0.73633 (12)	0.50159 (18)	0.43148 (12)	0.0720 (5)	
F6	0.74347 (15)	0.5903 (4)	0.34738 (16)	0.1279 (14)	
C6	0.3428 (3)	-0.0367 (3)	0.21092 (18)	0.0749 (11)	
H6	0.342232	-0.058169	0.254091	0.090*	
C7	0.3182 (4)	-0.0996 (3)	0.1533 (3)	0.1059 (19)	
H7	0.298623	-0.167868	0.154069	0.127*	
C8	0.3258 (3)	-0.0518 (4)	0.0976 (2)	0.0946 (15)	
H8	0.313345	-0.083671	0.055615	0.114*	
C11	0.47677 (16)	0.61847 (19)	0.33016 (14)	0.0446 (5)	
011	0.44749 (11)	0.53626 (15)	0.30053 (10)	0.0489 (4)	
C12	0.56012 (17)	0.6335 (2)	0.35716 (17)	0.0511 (6)	
H12	0.578136	0.699386	0.374301	0.061*	
C13	0.61449 (15)	0.5539(2)	0.35866 (14)	0.0455 (5)	
013	0.60391 (12)	0.46054 (15)	0.33646 (10)	0.0500 (4)	
C14	0.70171 (17)	0.5786 (3)	0.39209 (18)	0.0564 (7)	
C15	0.42182 (15)	0.7013 (2)	0.34063 (13)	0.0442 (5)	
C16	0.43723 (18)	0.7944 (2)	0.37833 (15)	0.0521 (6)	
H16	0.487658	0.819560	0.398658	0.063*	
C17	0.3646 (2)	0.8451 (3)	0.38110 (18)	0.0625 (8)	
H17	0.362778	0.907832	0.404259	0.075*	
C18	0.2991 (2)	0.7944 (3)	0.3473 (2)	0.0672 (9)	
H18	0.247536	0.817743	0.344799	0.081*	
N1	0.5374 (5)	0.5365 (5)	0.5489 (3)	0.0672 (17)	0.5
H1A	0.529815	0.579440	0.579218	0.081*	0.5
N2	0.5165 (6)	0.4413 (6)	0.4631 (3)	0.0714 (19)	0.5
H2A	0.492977	0.410787	0.426307	0.086*	0.5
C21	0.4825 (6)	0.5068 (19)	0.4964 (11)	0.070 (4)	0.5
C22	0.5920 (11)	0.4282 (12)	0.4934 (7)	0.079 (4)	0.5
H22	0.627250	0.383783	0.478873	0.094*	0.5
C23	0.6100 (10)	0.4887 (11)	0.5485 (6)	0.073 (3)	0.5
H23	0.658822	0.496792	0.578961	0.087*	0.5
C24	0.3995 (9)	0.5422 (14)	0.4791 (8)	0.097 (5)	0.5
H24A	0.365313	0.483663	0.482293	0.146*	0.5
H24B	0.386518	0.569207	0.434144	0.146*	0.5

						data reports
H24C	0.392314	0.5968	802	0.509566	0.146*	0.5
Atomic d	displacement parat	neters (\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Nd1	0.04478 (10)	0.03509 (8)	0.03947 (9)	0.000	0.01416 (7)	0.000
S1	0.1074 (8)	0.0947 (7)	0.0497 (4)	-0.0175 (6)	0.0106 (5)	-0.0124 (4)
01	0.0579 (11)	0.0472 (9)	0.0457 (9)	-0.0091 (8)	0.0094 (8)	-0.0007 (7)
C1	0.0419 (11)	0.0438 (11)	0.0446 (12)	-0.0046 (9)	0.0095 (9)	-0.0045 (9)
F1	0.141 (3)	0.132 (2)	0.0769 (16)	-0.033 (2)	0.0713 (18)	-0.0225 (15)
C2	0.0627 (16)	0.0455 (12)	0.0450 (13)	-0.0166 (11)	0.0146 (12)	-0.0038 (9)
F2	0.117 (2)	0.116 (2)	0.0475 (11)	-0.0292 (17)	0.0014 (12)	0.0016 (12)
S2	0.0474 (4)	0.0646 (5)	0.0862 (6)	0.0010 (3)	0.0143 (4)	-0.0178 (4)
F3	0.254 (4)	0.0848 (16)	0.0529 (13)	-0.078 (2)	0.0341 (19)	0.0033 (11)
O3	0.0697 (12)	0.0464 (9)	0.0460 (9)	-0.0154 (8)	0.0265 (9)	-0.0084 (7)
C3	0.0585 (15)	0.0526 (13)	0.0419 (12)	-0.0170 (12)	0.0185 (11)	-0.0056 (10)
C4	0.108 (3)	0.070 (2)	0.0467 (15)	-0.036 (2)	0.0250 (18)	-0.0092 (14)
F4	0.0641 (13)	0.0690 (14)	0.160 (3)	0.0003 (11)	-0.0209 (15)	-0.0394 (16)
C5	0.0529 (14)	0.0501 (13)	0.0461 (13)	-0.0021 (11)	0.0051 (11)	-0.0091 (10)
F5	0.0547 (10)	0.0712 (12)	0.0823 (14)	0.0083 (9)	0.0007 (10)	0.0047 (10)
F6	0.0552 (13)	0.243 (4)	0.0871 (19)	-0.0286 (18)	0.0194 (13)	0.047 (2)
C6	0.113 (3)	0.0473 (15)	0.0555 (17)	-0.0206 (17)	0.0030 (19)	-0.0096 (13)
C7	0.153 (5)	0.060 (2)	0.089(3)	-0.025 (3)	-0.002 (3)	-0.023 (2)
C8	0.104 (3)	0.093 (3)	0.072 (3)	-0.003 (3)	-0.007(2)	-0.040(2)
C11	0.0472 (12)	0.0408 (11)	0.0480 (12)	-0.0004 (9)	0.0154 (10)	-0.0020 (9)
011	0.0450 (9)	0.0439 (9)	0.0598 (11)	-0.0013 (7)	0.0163 (8)	-0.0127 (8)
C12	0.0442 (12)	0.0396 (11)	0.0690 (17)	-0.0025 (9)	0.0123 (12)	-0.0091 (11)
C13	0.0429 (12)	0.0436 (11)	0.0504 (13)	-0.0022 (9)	0.0117 (10)	0.0001 (9)
013	0.0503 (10)	0.0433 (9)	0.0548 (11)	0.0033 (7)	0.0089 (8)	-0.0053 (7)
C14	0.0434 (13)	0.0528 (14)	0.0712 (19)	-0.0011 (11)	0.0100 (13)	0.0008 (13)
C15	0.0433 (12)	0.0419 (11)	0.0485 (12)	0.0015 (9)	0.0133 (10)	-0.0030 (9)
C16	0.0554 (15)	0.0487 (13)	0.0519 (14)	0.0109 (11)	0.0123 (12)	-0.0075 (11)
C17	0.0682 (19)	0.0487 (14)	0.074 (2)	0.0105 (14)	0.0232 (16)	-0.0099 (14)
C18	0.0555 (17)	0.0618 (18)	0.088 (2)	0.0146 (14)	0.0246 (17)	-0.0015 (16)
N1	0.099 (5)	0.060 (3)	0.048 (3)	-0.021 (4)	0.029 (4)	-0.013 (2)
N2	0.108 (6)	0.066 (4)	0.048 (3)	-0.035 (4)	0.033 (4)	-0.017 (3)
C21	0.095 (11)	0.070 (6)	0.048 (5)	-0.032 (10)	0.026 (9)	-0.004 (4)
C22	0.104 (10)	0.066 (5)	0.077 (8)	-0.023 (5)	0.043 (8)	-0.013 (5)
C23	0.086 (7)	0.074 (6)	0.057 (5)	-0.027 (5)	0.017 (5)	-0.004 (4)
C24	0.084 (8)	0.113 (19)	0.091 (15)	-0.030 (11)	0.016 (12)	0.023 (9)

Geometric parameters (Å, °)

Nd1—O13 ⁱ	2.396 (2)	С7—Н7	0.9300
Nd1-013	2.396 (2)	C8—H8	0.9300
Nd1—O1 ⁱ	2.4340 (19)	C11—O11	1.250 (3)
Nd1-01	2.4340 (19)	C11—C12	1.430 (4)
Nd1—O11 ⁱ	2.4346 (18)	C11—C15	1.466 (3)

Nd1-011	2 4346 (17)	C12—C13	1 374 (4)
Nd1—O3	2.4758 (18)	C12—H12	0.9300
Nd1—O3 ⁱ	2 4758 (18)	C13—013	1 263 (3)
S1—C8	1 683 (5)	C13—C14	1.535 (4)
\$1—C5	1 693 (3)	C_{15} $-C_{16}$	1.000(1)
01-C1	1 249 (3)	C_{16} C_{17}	1.100(1) 1 424(4)
C1 - C2	1.249(3) 1 413(4)	C16H16	0.9300
C1 $C2$	1.475(4)	C_{17} C_{18}	1.345(5)
E1 - C4	1 330 (5)	C17_H17	0.9300
$C^2 C^3$	1.350(3) 1.360(4)	C18 H18	0.9300
C2 H2	0.0300	N1 C21	1.31(2)
C_2 C_4	0.9300	N1 C23	1.31(2) 1.308(10)
12 - 04	1.525(5)	NI HIA	0.8600
S2	1.090(4) 1.720(2)	NI-HIA N2 C21	0.8000
52	1.720(3)	N2	1.30(2)
$F_3 = C_4$	1.312(4)		1.32(2)
03-03	1.200 (3)	N2—H2A	0.8600
	1.538 (4)	C21—C24	1.47 (2)
F4—C14	1.330 (4)	C22—C23	1.340 (13)
C5—C6	1.404 (4)	С22—Н22	0.9300
F5—C14	1.316 (4)	C23—H23	0.9300
F6—C14	1.306 (4)	C24—H24A	0.9600
C6—C7	1.406 (5)	C24—H24B	0.9600
С6—Н6	0.9300	C24—H24C	0.9600
С7—С8	1.327 (8)		
013 ¹ —Nd1—013	134.20 (9)	С6—С7—Н7	123.4
O13 ¹ —Nd1—O1 ¹	147.31 (7)	C7—C8—S1	112.9 (3)
$O13 - Nd1 - O1^{1}$	76.30 (7)	С7—С8—Н8	123.5
O13 ¹ —Nd1—O1	76.30 (7)	S1—C8—H8	123.5
O13—Nd1—O1	147.31 (7)	O11—C11—C12	123.6 (2)
O1 ⁱ —Nd1—O1	78.00 (10)	O11—C11—C15	117.7 (2)
$O13^{i}$ $Nd1$ $O11^{i}$	70.90 (6)	C12—C11—C15	118.6 (2)
O13—Nd1—O11 ⁱ	73.91 (7)	C11—O11—Nd1	134.77 (17)
O1 ⁱ —Nd1—O11 ⁱ	118.29 (7)	C13—C12—C11	122.3 (2)
01—Nd1—011 ⁱ	137.14 (7)	C13—C12—H12	118.9
O13 ⁱ —Nd1—O11	73.91 (7)	C11—C12—H12	118.9
O13—Nd1—O11	70.90 (6)	O13—C13—C12	129.6 (3)
O1 ⁱ —Nd1—O11	137.15 (7)	O13—C13—C14	113.2 (2)
O1—Nd1—O11	118.28 (7)	C12—C13—C14	117.2 (2)
O11 ⁱ —Nd1—O11	78.11 (9)	C13—O13—Nd1	130.54 (18)
O13 ⁱ —Nd1—O3	113.71 (7)	F6—C14—F5	105.6 (3)
O13—Nd1—O3	83.79 (7)	F6—C14—F4	108.1 (3)
O1 ⁱ —Nd1—O3	75.45 (7)	F5	105.0 (3)
O1—Nd1—O3	70.39 (6)	F6-C14-C13	111.0 (3)
O11 ⁱ —Nd1—O3	148.98 (7)	F5-C14-C13	112.3 (3)
O11—Nd1—O3	74.30 (7)	F4	114.3 (3)
O13 ⁱ —Nd1—O3 ⁱ	83.79 (7)	C16—C15—C11	129.7 (3)
$013 - Nd1 - 03^{i}$	113.71 (7)	C16—C15—S2	111.2 (2)

O1 ⁱ —Nd1—O3 ⁱ	70.39 (6)	C11—C15—S2	118.89 (19)
O1—Nd1—O3 ⁱ	75.45 (7)	C15—C16—C17	110.3 (3)
O11 ⁱ —Nd1—O3 ⁱ	74.30 (7)	C15—C16—H16	124.8
O11—Nd1—O3 ⁱ	148.98 (7)	C17—C16—H16	124.8
O3—Nd1—O3 ⁱ	135.63 (9)	C18—C17—C16	114.2 (3)
C8—S1—C5	92.2 (2)	C18—C17—H17	122.9
C1	133.56 (17)	С16—С17—Н17	122.9
01	124 5 (2)	C17 - C18 - S2	112.1(2)
01 - C1 - C5	1177(2)	C17 - C18 - H18	124.0
$C^2 - C^1 - C^5$	117.8 (2)	S2-C18-H18	124.0
C_{3} C_{2} C_{1}	122.9(2)	$C_{21} = N_{1} = C_{23}$	110.4(10)
C_{3} C_{2} H_{2}	118.6	C_{21} N1-H1A	124.8
$C_1 C_2 H_2$	118.6	C_{23} N1 H1A	124.0
C18 S2 C15	02 21 (16)	C_{23} C_{23} C_{23} C_{23}	124.0 110.7 (9)
$C_{10} = 52 = C_{10}$	32.21(10) 127.00(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.6
$C_3 = C_3 = C_2$	127.90(10) 120.2(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.0
03 - 03 - 02	130.3(3)	C_{22} N_{2} C_{21} N_{1}	124.0
03-03-04	112.9(2)	N2 C21 C24	100.3(10)
$C_2 = C_3 = C_4$	110.8(3)	$N_2 = C_2 I = C_2 4$	12/.4(1/)
$F_3 = C_4 = F_2$	107.4 (4)	N1 = C21 = C24	120.1(18)
$F_3 - C_4 - F_1$	106.5 (4)	N2-C22-C23	109.4 (17)
$F_2 = C_4 = F_1$	106.0 (3)	$N_2 = C_{22} = H_{22}$	125.3
F_{3} C_{4} C_{3}	114.9 (3)	C23—C22—H22	125.3
F2—C4—C3	110.4 (3)	C22—C23—N1	102.9 (15)
F1—C4—C3	111.2 (4)	С22—С23—Н23	128.6
C6—C5—C1	129.4 (3)	N1—C23—H23	128.6
C6—C5—S1	110.7 (2)	С21—С24—Н24А	109.5
C1—C5—S1	119.9 (2)	C21—C24—H24B	109.5
C5—C6—C7	110.9 (4)	H24A—C24—H24B	109.5
С5—С6—Н6	124.5	C21—C24—H24C	109.5
С7—С6—Н6	124.5	H24A—C24—H24C	109.5
C8—C7—C6	113.3 (4)	H24B—C24—H24C	109.5
С8—С7—Н7	123.4		
Nd1—O1—C1—C2	25.1 (4)	C11—C12—C13—O13	2.6 (5)
Nd1—O1—C1—C5	-155.3 (2)	C11—C12—C13—C14	-177.1 (3)
O1—C1—C2—C3	3.2 (5)	C12—C13—O13—Nd1	23.9 (5)
C5—C1—C2—C3	-176.4 (3)	C14—C13—O13—Nd1	-156.4 (2)
Nd1—O3—C3—C2	-22.7 (5)	O13—C13—C14—F6	74.2 (4)
Nd1—O3—C3—C4	157.8 (2)	C12—C13—C14—F6	-106.0 (4)
C1—C2—C3—O3	-3.1 (6)	O13—C13—C14—F5	-43.7 (4)
C1—C2—C3—C4	176.4 (3)	C12—C13—C14—F5	136.0 (3)
O3—C3—C4—F3	-177.5 (4)	O13—C13—C14—F4	-163.1 (3)
C2—C3—C4—F3	2.9 (6)	C12-C13-C14-F4	16.6 (4)
O3—C3—C4—F2	-55.9 (4)	O11—C11—C15—C16	171.8 (3)
C2—C3—C4—F2	124.5 (3)	C12-C11-C15-C16	-5.0 (4)
O3—C3—C4—F1	61.5 (4)	O11—C11—C15—S2	-1.8 (3)
C2—C3—C4—F1	-118.1 (3)	C12—C11—C15—S2	-178.7 (2)
O1—C1—C5—C6	-174.7 (3)	C18—S2—C15—C16	-1.2 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0(5) 4.9(4) -175.5(2) -1.1(3) 179.3(3) 179.9(4) 0.3(5) 0.9(8) -1.8(8) 1.7(5) -16.4(4) 166.90(18) -6.8(5) 169.9(3)	$\begin{array}{c} C18 & S2 & C15 & C11 \\ C11 & C15 & C16 & C17 \\ S2 & C15 & C16 & C17 \\ C15 & C16 & C17 & C18 \\ C16 & C17 & C18 & S2 \\ C15 & S2 & C18 & C17 \\ C22 & N2 & C21 & N1 \\ C22 & N2 & C21 & C24 \\ C23 & N1 & C21 & N2 \\ C23 & N1 & C21 & C24 \\ C21 & N2 & C22 & C23 \\ N2 & C22 & C23 & N1 \\ C21 & N1 & C23 & C22 \\ \end{array}$	173.5 (2) -172.8 (3) 1.2 (3) -0.6 (4) -0.3 (4) 0.9 (3) 0.3 (19) 179.8 (18) 0.7 (18) -178.7 (17) -1 (2) 1.6 (19) -1.5 (18)	
--	--	---	---	--

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17…F3 ⁱⁱ	0.93	2.60	3.429 (4)	149
N1—H1A···O3 ⁱⁱⁱ	0.86	2.03	2.865 (6)	163
N2—H2A···O3	0.86	2.06	2.904 (6)	168
C24—H24 <i>B</i> ···S2	0.96	2.91	3.852 (15)	167

Symmetry codes: (ii) *x*, *y*+1, *z*; (iii) –*x*+1, –*y*+1, –*z*+1.