

ISSN 2414-3146

Received 24 April 2025 Accepted 4 June 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; chelating ligand; palladium(0) complex; diphosphine ligand.

CCDC reference: 2456579

Structural data: full structural data are available from iucrdata.iucr.org

data reports

{ α, α' -Bis[(*tert*-butyl)(6-methoxypyridin-2-yl)phosphino]-o-xylene}(η^2 -N-methylmaleinimide)palladium(0) toluene hemisolvate

Stefan Müller,^{a,b} Anke Spannenberg,^c Helfried Neumann,^c* Robert Franke^{a,b} and Matthias Beller^c

^aEvonik Oxeno GmbH, Paul-Baumann-Str. 1, 45772 Marl, Germany, ^bLehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany, and ^cLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Correspondence e-mail: helfried.neumann@catalysis.de

The solvated title compound, $[Pd(C_5H_5NO_2)(C_{28}H_{38}N_2O_2P_2)] \cdot 0.5C_7H_8$, consists of a palladium(0) atom coordinated by a chelating α, α' -bis[(*tert*-butyl)(6methoxypyridin-2-yl)phosphino]o-xylene ligand and an η^2 -coordinating *N*methylmaleinimide molecule to generate a 16 electron complex in which the metal atom has a pseudo-square-planar coordination environment. The cocrystallized toluene solvent molecule is disordered about an inversion centre by symmetry. Weak $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds connect the components in the extended structure.

Structure description

The parent ligand α, α' -bis(di-*tert*-butylphosphino)-*o*-xylene shows a high activity in the palladium-catalysed methoxycarbonylation of olefins and is used in the Lucite Alpha process, where, on the hundred-thousand-tonne scale, ethylene is methoxycarbonylated to methyl propionate (Eastham *et al.*, 2004). The substitution of one *tert*-butyl group by pyridyl gives α, α' -bis[2-pyridyl(*tert*-butyl)phosphino]-*o*-xylene, which shows a much higher activity in the palladium-catalysed methoxycarbonylation than the parent ligand (Dong *et al.*, 2017). Here, a palladium complex with α, α' -bis[(*tert*-butyl)(6-methoxy-pyridin-2-yl)phosphino]-*o*-xylene, C₂₈H₃₈N₂O₂P₂, is described, in which the metal is additionally η^2 -coordinated by the double bond of *N*-methylmaleinimide, C₅H₅NO₂. Thus, the central palladium atom has an oxidation number of 0 and exists as a 16-electron complex with pseudo-square-planar coordination environment. Since the phosphine ligand can exist as two diastereomers consisting of the *meso* and the racemic forms, the palladium complex can also occur in *meso* and racemic forms. The *meso* form has a mirror plane and the phosphorous atoms are identical giving only one signal in the ³¹P NMR

Table 1Selected geometri	c parameters (Å, °).	
Pd1-C30	2.1174 (17)	Pd1-P1	2.2965 (4)
Pd1-C31	2.1343 (17)	Pd1-P2	2.3058 (4)
C30-Pd1-C31	39.36 (7)	C30-Pd1-P2	149.41 (5)
C30-Pd1-P1	107.67 (5)	C31-Pd1-P2	111.69 (5)
C31-Pd1-P1	146.86 (5)	P1-Pd1-P2	101.314 (15)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O4^i$	0.95	2.54	3.480 (2)	172
$C12-H12\cdots O3^{ii}$	0.95	2.37	3.281 (3)	161
$C38-H38\cdots N2^{iii}$	0.95	2.60	3.462 (5)	151

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z; (iii) x - 1, y, z.

spectrum, while the racemic form is asymmetric. Consequently, the phosphorous atoms in the latter form can couple with each other, showing two doublets in the ³¹P NMR spectrum. The racemic diastereomer is the major product of the ligand and the crystals arise in racemic form: in the arbitrarily chosen asymmetric molecule (Fig. 1), both the P atoms have *R* configurations. The dihedral angles between the central C2–C7 ring and pendant N1/C9–C13 and N2/C19–C23 rings are 30.92 (10) and 68.65 (10)°, respectively. The C29–C32/N3 ring of the *N*-methylmaleinimide ligand and the Pd1/C30/C31 grouping subtend a dihedral angle of 73.49 (14)°. Selected geometrical data are listed in Table 1. In the crystal, weak C–H···O and C–H···N hydrogen bonds (Table 2) link the molecules.

Synthesis and crystallization

17.98 mg (0.0845 mmol) of $[(\eta^3 \text{-allyl})-\eta^5 \text{-cyclopentadienyl}]$ palladium complex was dissolved in 3 ml of absolute heptane and the red solution was filtrated over Celite into a 25 ml flask. A solution made of 42 mg (0.0845 mmol) of the ligand $\alpha, \alpha' \text{-bis}[(tert\text{-butyl})(6\text{-methoxypyridin-2-yl})phosphino]-o-$

Figure 1

The molecular structure of the title compound. Displacement ellipsoids correspond to 30% probability level. Hydrogen atoms are omitted for clarity. The toluene solvent molecule is shown with one of its possible orientations.

Table 3	
Experimental details.	
Crystal data	
Chemical formula	[Pd(C ₅ H ₅ NO ₂)(C ₂₈ H ₃₈₋
	$N_2O_2P_2)].0.5C_7H_8$
$M_{\rm r}$	760.11
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	9.5548 (2), 10.7020 (3), 18.4654 (5)
$lpha,eta,\gamma(^\circ)$	74.0508 (10), 86.9998 (10), 76.0888 (9)
$V(Å^3)$	1762.06 (8)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	5.45
Crystal size (mm)	$0.19 \times 0.08 \times 0.03$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin. Tmax	0.42, 0.85
No. of measured, independent and	27460, 6223, 5975
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.057, 1.06
No. of reflections	6223
No. of parameters	456
No. of restraints	43
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.32

Computer programs: *APEX2* (Bruker, 2014), *SAINT* (Bruker, 2013), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019/1* (Sheldrick, 2015*b*), *XP* in *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

xylene and 9.29 mg (0.0845 mmol) *N*-methylmaleinimide in 7 ml of heptane were added slowly to the deep-red filtrate. The reaction solution was decolourized to pale pink, and a bright-yellow precipitate was formed. After 2 days the reaction solution was decantated and the white solid was washed three times with 5 ml heptane each. After drying in a vacuum, 42 mg (70%) of a white solid was obtained. A phosphorous NMR of the complex was recorded using toluene- d_8 as a solvent.

³¹P NMR (121 Hz, toluene- d_8) δ 26.10 (s), 23.71 (d, J = 27.7 Hz), 23.04 (d, J = 27.6 Hz).

The singlet signal is associated with the *meso* form of the palladium complex, while the two doublets belong to the racemic title complex. Since the NMR solution was slightly cloudy, 0.8 ml of toluene- d_8 were added and the solution was filtrated over Celite. The clear solution was transferred under argon into a 4 ml vial, which was located in a bigger Schlenk flask filled with glass sticks. After closing by a septum, 10 ml of pentane were added *via* syringe into the larger Schlenk flask and the septum was replaced by a stopper. After 3 days, tiny crystals of the title compound, suitable for X-ray analysis, were formed by diffusion of pentane into the toluene phase.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H30 and H31 could be found from

the difference-Fourier map and were refined freely. AFIX 66 and *DFIX* commands in *SHELXL* were used to optimize the geometry of the half-occupied toluene molecule and the SIMU instruction was included to equalize the displacement parameters of their non-hydrogen atoms (C34–C40).

References

- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2014). APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, K., Fang, X., Gülak, S., Franke, R., Spannenberg, A., Neumann, H., Jackstell, R. & Beller, M. (2017). *Nat. Commun.* 8, 14117–14124.
- Eastham, G. R., Cameron, P. A., Tooze, R. P., Cavell, K. J., Edwards, P. G. & Coleman, D. L. (2004). World Patent. WO2004014552A1.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2025). **10**, x250508 [https://doi.org/10.1107/S2414314625005085]

 $\{\alpha, \alpha'$ -Bis[(*tert*-butyl)(6-methoxypyridin-2-yl)phosphino]-*o*-xylene}(η^2 -*N*-methyl-maleinimide)palladium(0) toluene hemisolvate

Stefan Müller, Anke Spannenberg, Helfried Neumann, Robert Franke and Matthias Beller

 $(\alpha, \alpha'-Bis[(tert-butyl)(6-methoxypyridin-2-yl)phosphino]-o-xylene}(\eta^2-N-methylmaleinimide)palladium(0) toluene hemisolvate$

Crystal data

 $[Pd(C_5H_5NO_2)(C_{28}H_{38}N_2O_2P_2)] \cdot 0.5C_7H_8$ $M_r = 760.11$ Triclinic, P1 a = 9.5548 (2) Å b = 10.7020 (3) Å c = 18.4654 (5) Å a = 74.0508 (10)° $\beta = 86.9998$ (10)° $\gamma = 76.0888$ (9)° V = 1762.06 (8) Å³

Data collection

```
Bruker APEXII CCD
diffractometer
Radiation source: microfocus
Multilayer monochromator
\varphi and \omega scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
T_{\min} = 0.42, T_{\max} = 0.85
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.057$ S = 1.066223 reflections 456 parameters 43 restraints Primary atom site location: dual Z = 2 F(000) = 790 $D_x = 1.433 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9834 reflections $\theta = 2.5-66.6^{\circ}$ $\mu = 5.45 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.19 \times 0.08 \times 0.03 \text{ mm}$

27460 measured reflections 6223 independent reflections 5975 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 66.7^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -10 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -21 \rightarrow 21$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0327P)^2 + 0.6517P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.93696 (19)	0.27389 (19)	0.26501 (10)	0.0219 (4)	
H1A	1.038026	0.265442	0.248101	0.026*	
H1B	0.911415	0.351279	0.286668	0.026*	
C2	0.92856 (19)	0.14923 (19)	0.32643 (10)	0.0208 (4)	
C3	1.0378 (2)	0.0339 (2)	0.33169 (11)	0.0264 (4)	
Н3	1.112812	0.034881	0.295842	0.032*	
C4	1.0385 (2)	-0.0822 (2)	0.38842 (13)	0.0317 (4)	
H4	1.112981	-0.160168	0.390936	0.038*	
C5	0.9305 (2)	-0.0842 (2)	0.44141 (12)	0.0329 (5)	
Н5	0.930161	-0.163591	0.480292	0.039*	
C6	0.8230 (2)	0.0302 (2)	0.43723 (11)	0.0271 (4)	
H6	0.750048	0.028730	0.474249	0.033*	
C7	0.81861 (19)	0.14829 (19)	0.37994 (10)	0.0209 (4)	
C8	0.70393 (19)	0.27224 (19)	0.38093 (10)	0.0217 (4)	
H8A	0.748903	0.349664	0.366498	0.026*	
H8B	0.670427	0.263624	0.433334	0.026*	
C9	0.9288 (2)	0.18911 (19)	0.13448 (10)	0.0227 (4)	
C10	0.9108 (2)	0.0574 (2)	0.15543 (11)	0.0271 (4)	
C11	0.9976 (2)	-0.0365 (2)	0.12297 (13)	0.0359 (5)	
H11	0.988207	-0.126339	0.136391	0.043*	
C12	1.0977 (2)	0.0040 (3)	0.07083 (13)	0.0403 (5)	
H12	1.158779	-0.057616	0.047661	0.048*	
C13	1.1076 (2)	0.1352 (3)	0.05293 (13)	0.0397 (5)	
H13	1.176471	0.162079	0.016699	0.048*	
C14	0.8098 (3)	-0.1042 (2)	0.24477 (16)	0.0447 (6)	
H14A	0.788263	-0.149860	0.208870	0.067*	
H14B	0.737396	-0.107416	0.284441	0.067*	
H14C	0.905612	-0.148857	0.267321	0.067*	
C15	0.8384 (2)	0.47990 (18)	0.12717 (11)	0.0239 (4)	
C16	0.9905 (2)	0.5028 (2)	0.12827 (12)	0.0314 (4)	
H16A	1.058980	0.435590	0.109059	0.047*	
H16B	1.017764	0.495027	0.180035	0.047*	
H16C	0.992061	0.592304	0.096426	0.047*	
C17	0.7880 (2)	0.5048 (2)	0.04594 (12)	0.0339 (5)	
H17A	0.790373	0.596066	0.017312	0.051*	
H17B	0.689335	0.493195	0.045913	0.051*	
H17C	0.852119	0.440888	0.022626	0.051*	
C18	0.7345 (2)	0.5786 (2)	0.16348 (14)	0.0365 (5)	
H18A	0.737224	0.670312	0.135890	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H18B	0.763806	0.561504	0.216044	0.055*
H18C	0.636309	0.566724	0.161636	0.055*
C19	0.47054 (19)	0.48686 (18)	0.32103 (11)	0.0217 (4)
C20	0.3886 (2)	0.58387 (18)	0.26075 (11)	0.0233 (4)
C21	0.3500 (2)	0.7168 (2)	0.26300 (13)	0.0299 (4)
H21	0.297344	0.784371	0.222513	0.036*
C22	0.3900(2)	0.7482 (2)	0.32514 (14)	0.0373 (5)
H22	0.366071	0.838214	0.327934	0.045*
C23	0.4650 (3)	0.6476 (2)	0.38326 (15)	0.0406 (5)
H23	0.488761	0.670010	0.426669	0.049*
C24	0.3017 (2)	0.6378 (2)	0.13411 (12)	0.0342 (5)
H24A	0.207408	0.693147	0.141900	0.051*
H24B	0.292520	0.592165	0.095883	0.051*
H24C	0.370151	0.694553	0.117083	0.051*
C25	0.4107 (2)	0.22225 (18)	0.37693 (10)	0.0211 (4)
C26	0.2622 (2)	0.2889 (2)	0.33945 (11)	0.0278 (4)
H26A	0.190948	0.241256	0.366123	0.042*
H26B	0.266164	0.285940	0.286793	0.042*
H26C	0.234534	0.382210	0.341447	0.042*
C27	0.4047 (2)	0.2302 (2)	0.45863 (11)	0.0276 (4)
H27A	0.389840	0.323658	0.459359	0.041*
H27B	0.495543	0.177977	0.484686	0.041*
H27C	0.324687	0.193929	0.484133	0.041*
C28	0.4531 (2)	0.07631 (19)	0.37335 (11)	0.0283 (4)
H28A	0.549613	0.033947	0.395548	0.042*
H28B	0.453223	0.073754	0.320696	0.042*
H28C	0.383498	0.028081	0.401506	0.042*
C29	0.5627 (2)	0.1729 (2)	0.07110 (10)	0.0238 (4)
C30	0.5027 (2)	0.29784 (19)	0.09226 (10)	0.0207 (4)
C31	0.39618 (19)	0.27265 (19)	0.14840 (10)	0.0208 (4)
C32	0.3922 (2)	0.13104 (19)	0.16241 (10)	0.0229 (4)
C33	0.5262 (3)	-0.0605 (2)	0.11249 (14)	0.0378 (5)
H33A	0.450360	-0.073669	0.083619	0.057*
H33B	0.530729	-0.119478	0.163797	0.057*
H33C	0.619208	-0.081624	0.088129	0.057*
N1	1.02564 (19)	0.22701 (19)	0.08374 (10)	0.0318 (4)
N2	0.5060 (2)	0.51956 (18)	0.38144 (10)	0.0316 (4)
N3	0.49423 (18)	0.07741 (16)	0.11534 (9)	0.0249 (3)
01	0.80689 (16)	0.03170 (14)	0.20648 (9)	0.0319 (3)
O2	0.35302 (15)	0.54032 (13)	0.20356 (8)	0.0267 (3)
O3	0.65229 (16)	0.15087 (16)	0.02391 (8)	0.0345 (3)
O4	0.31817 (16)	0.06561 (16)	0.20498 (8)	0.0327 (3)
P1	0.81919 (4)	0.30985 (4)	0.18162 (2)	0.01687 (9)
P2	0.54364 (4)	0.31042 (4)	0.31899 (2)	0.01620 (9)
Pd1	0.58477 (2)	0.29018 (2)	0.19811 (2)	0.01527 (5)
H30	0.500 (3)	0.380 (3)	0.0561 (15)	0.040 (7)*
H31	0.316 (3)	0.330 (3)	0.1550 (14)	0.033 (6)*
C34	0.0369 (5)	0.4754 (5)	0.5408 (3)	0.0581 (15)

0.5

C35	0.1062 (5)	0.5331 (4)	0.4767 (4)	0.060 (3)	0.5	
H35	0.200799	0.544515	0.480700	0.072*	0.5	
C36	0.0370 (7)	0.5742 (5)	0.4069 (3)	0.089(2)	0.5	
H36	0.084303	0.613630	0.363106	0.107*	0.5	
C37	-0.1015 (7)	0.5575 (5)	0.4011 (3)	0.089 (3)	0.5	
H37	-0.148770	0.585542	0.353366	0.106*	0.5	
C38	-0.1707 (5)	0.4997 (5)	0.4652 (3)	0.0645 (16)	0.5	
H38	-0.265348	0.488339	0.461220	0.077*	0.5	
C39	-0.1015 (5)	0.4587 (4)	0.5350 (3)	0.061 (3)	0.5	
H39	-0.148854	0.419223	0.578814	0.074*	0.5	
C40	0.1089 (12)	0.4269 (10)	0.6172 (6)	0.103 (4)	0.5	
H40A	0.042980	0.389700	0.654788	0.155*	0.5	
H40B	0.196761	0.357626	0.616414	0.155*	0.5	
H40C	0.133824	0.501869	0.630119	0.155*	0.5	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
C1	0.0191 (9)	0.0263 (9)	0.0203 (9)	-0.0080 (7)	-0.0011 (7)	-0.0037 (7)
C2	0.0181 (9)	0.0250 (9)	0.0190 (9)	-0.0058(7)	-0.0041(7)	-0.0038(7)
C3	0.0178 (9)	0.0324 (10)	0.0274 (10)	-0.0033(7)	0.0005 (7)	-0.0078(8)
C4	0.0232 (10)	0.0272 (10)	0.0382 (11)	0.0018 (8)	-0.0024 (8)	-0.0044 (9)
C5	0.0288 (11)	0.0294 (10)	0.0308 (11)	-0.0038 (8)	-0.0027(8)	0.0056 (8)
C6	0.0206 (9)	0.0344 (10)	0.0220 (9)	-0.0055 (8)	0.0005 (7)	-0.0014 (8)
C7	0.0177 (9)	0.0261 (9)	0.0193 (9)	-0.0053 (7)	-0.0032 (6)	-0.0062 (7)
C8	0.0197 (9)	0.0274 (9)	0.0191 (9)	-0.0043 (7)	-0.0004 (7)	-0.0092 (7)
C9	0.0190 (9)	0.0262 (9)	0.0202 (9)	0.0012 (7)	-0.0015 (7)	-0.0073 (7)
C10	0.0246 (10)	0.0284 (10)	0.0268 (10)	0.0001 (8)	-0.0044 (7)	-0.0097 (8)
C11	0.0337 (11)	0.0308 (11)	0.0410 (12)	0.0052 (9)	-0.0069 (9)	-0.0158 (9)
C12	0.0326 (12)	0.0479 (14)	0.0365 (12)	0.0119 (10)	-0.0020 (9)	-0.0231 (10)
C13	0.0295 (11)	0.0528 (14)	0.0324 (11)	0.0020 (10)	0.0090 (9)	-0.0160 (10)
C14	0.0527 (15)	0.0245 (11)	0.0551 (15)	-0.0122 (10)	0.0019 (11)	-0.0055 (10)
C15	0.0202 (9)	0.0211 (9)	0.0272 (10)	-0.0064 (7)	0.0038 (7)	-0.0008 (7)
C16	0.0257 (10)	0.0325 (11)	0.0341 (11)	-0.0142 (8)	0.0024 (8)	0.0000 (8)
C17	0.0323 (11)	0.0350 (11)	0.0278 (11)	-0.0122 (9)	-0.0026 (8)	0.0067 (8)
C18	0.0367 (12)	0.0205 (10)	0.0486 (13)	-0.0057 (8)	0.0117 (10)	-0.0062 (9)
C19	0.0191 (9)	0.0207 (9)	0.0266 (9)	-0.0040 (7)	0.0042 (7)	-0.0099 (7)
C20	0.0212 (9)	0.0209 (9)	0.0278 (10)	-0.0053 (7)	0.0056 (7)	-0.0071 (7)
C21	0.0288 (10)	0.0205 (9)	0.0395 (12)	-0.0036 (8)	0.0067 (8)	-0.0096 (8)
C22	0.0375 (12)	0.0239 (10)	0.0564 (14)	-0.0057 (9)	0.0075 (10)	-0.0232 (10)
C23	0.0432 (13)	0.0380 (12)	0.0502 (14)	-0.0044 (10)	-0.0023 (10)	-0.0317 (11)
C24	0.0393 (12)	0.0258 (10)	0.0308 (11)	-0.0025 (8)	-0.0102 (9)	0.0006 (8)
C25	0.0216 (9)	0.0240 (9)	0.0187 (9)	-0.0087 (7)	0.0029 (7)	-0.0047 (7)
C26	0.0204 (9)	0.0356 (11)	0.0272 (10)	-0.0105 (8)	0.0023 (7)	-0.0053 (8)
C27	0.0294 (10)	0.0348 (10)	0.0201 (9)	-0.0112 (8)	0.0056 (7)	-0.0074 (8)
C28	0.0349 (11)	0.0240 (10)	0.0270 (10)	-0.0121 (8)	0.0017 (8)	-0.0043 (8)
C29	0.0238 (9)	0.0329 (10)	0.0180 (9)	-0.0094 (8)	-0.0015 (7)	-0.0098 (7)
C30	0.0230 (9)	0.0239 (9)	0.0155 (8)	-0.0068 (7)	-0.0047 (7)	-0.0037 (7)

C31	0.0159 (9)	0.0262 (9)	0.0212 (9)	-0.0026 (7)	-0.0032 (7)	-0.0092 (7)
C32	0.0207 (9)	0.0306 (10)	0.0206 (9)	-0.0088 (7)	-0.0014 (7)	-0.0096 (7)
C33	0.0478 (14)	0.0267 (11)	0.0427 (13)	-0.0076 (9)	0.0027 (10)	-0.0172 (9)
N1	0.0263 (9)	0.0379 (10)	0.0278 (9)	-0.0016 (7)	0.0059 (7)	-0.0093 (7)
N2	0.0337 (9)	0.0321 (9)	0.0324 (9)	-0.0027 (7)	-0.0032 (7)	-0.0182 (7)
N3	0.0278 (8)	0.0246 (8)	0.0264 (8)	-0.0092 (6)	0.0039 (6)	-0.0115 (7)
01	0.0336 (8)	0.0201 (7)	0.0396 (8)	-0.0038 (6)	0.0051 (6)	-0.0071 (6)
O2	0.0333 (7)	0.0175 (6)	0.0255 (7)	0.0008 (5)	-0.0056 (5)	-0.0045 (5)
03	0.0344 (8)	0.0497 (9)	0.0267 (7)	-0.0140 (7)	0.0114 (6)	-0.0206 (7)
O4	0.0329 (8)	0.0432 (8)	0.0292 (7)	-0.0227 (7)	0.0070 (6)	-0.0110 (6)
P1	0.0154 (2)	0.0181 (2)	0.0162 (2)	-0.00396 (15)	0.00148 (15)	-0.00328 (16)
P2	0.0158 (2)	0.0173 (2)	0.0159 (2)	-0.00310 (15)	0.00078 (15)	-0.00596 (16)
Pd1	0.01458 (7)	0.01625 (7)	0.01513 (7)	-0.00324 (5)	0.00050 (4)	-0.00487 (5)
C34	0.044 (3)	0.030 (2)	0.102 (4)	-0.007 (2)	-0.013 (3)	-0.020 (3)
C35	0.051 (5)	0.035 (4)	0.101 (5)	-0.015 (4)	0.030 (4)	-0.029 (4)
C36	0.122 (5)	0.047 (3)	0.092 (5)	-0.008 (4)	0.039 (5)	-0.026 (3)
C37	0.129 (7)	0.053 (5)	0.087 (5)	-0.003 (5)	-0.014 (5)	-0.038 (4)
C38	0.077 (4)	0.045 (3)	0.078 (4)	-0.002 (3)	-0.014 (3)	-0.036 (3)
C39	0.042 (4)	0.042 (4)	0.103 (5)	-0.001 (4)	-0.013 (4)	-0.029 (4)
C40	0.118 (8)	0.045 (4)	0.144 (8)	-0.016 (5)	-0.085 (7)	-0.007 (5)

Geometric parameters (Å, °)

C1—C2	1.511 (2)	C22—C23	1.378 (4)
C1—P1	1.8528 (18)	C22—H22	0.9500
C1—H1A	0.9900	C23—N2	1.341 (3)
C1—H1B	0.9900	C23—H23	0.9500
C2—C3	1.396 (3)	C24—O2	1.434 (2)
C2—C7	1.404 (3)	C24—H24A	0.9800
C3—C4	1.386 (3)	C24—H24B	0.9800
С3—Н3	0.9500	C24—H24C	0.9800
C4—C5	1.384 (3)	C25—C27	1.531 (3)
C4—H4	0.9500	C25—C26	1.532 (3)
C5—C6	1.383 (3)	C25—C28	1.535 (3)
С5—Н5	0.9500	C25—P2	1.8779 (18)
C6—C7	1.401 (3)	C26—H26A	0.9800
С6—Н6	0.9500	C26—H26B	0.9800
С7—С8	1.508 (2)	C26—H26C	0.9800
C8—P2	1.8564 (18)	C27—H27A	0.9800
C8—H8A	0.9900	С27—Н27В	0.9800
C8—H8B	0.9900	C27—H27C	0.9800
C9—N1	1.334 (3)	C28—H28A	0.9800
C9—C10	1.405 (3)	C28—H28B	0.9800
C9—P1	1.8427 (19)	C28—H28C	0.9800
C10-01	1.357 (3)	C29—O3	1.219 (2)
C10-C11	1.391 (3)	C29—N3	1.395 (2)
C11—C12	1.379 (4)	C29—C30	1.471 (3)
C11—H11	0.9500	C30—C31	1.432 (3)

C12—C13	1.376 (4)	Pd1—C30	2.1174 (17)
C12—H12	0.9500	Pd1—C31	2.1343 (17)
C13—N1	1.339 (3)	С30—Н30	0.95 (3)
C13—H13	0.9500	C31—C32	1.475 (3)
C14—O1	1.427 (3)	C31—H31	0.88 (3)
C14—H14A	0.9800	C32—O4	1.219 (2)
C14—H14B	0.9800	C32—N3	1.397 (2)
C14—H14C	0.9800	C33—N3	1.449 (3)
C15—C17	1.532 (3)	С33—Н33А	0.9800
C15—C16	1.533 (3)	С33—Н33В	0.9800
C15—C18	1.538 (3)	С33—Н33С	0.9800
C15—P1	1.8687 (18)	Pd1—P1	2.2965 (4)
C16—H16A	0.9800	Pd1—P2	2.3058 (4)
C16—H16B	0.9800	C34—C35	1.3900
C16—H16C	0.9800	C34—C39	1.3900
С17—Н17А	0.9800	C34—C40	1.503 (8)
С17—Н17В	0.9800	C35—C36	1.3900
C17—H17C	0.9800	C35—H35	0.9500
C18—H18A	0.9800	C36—C37	1.3900
C18—H18B	0.9800	C36—H36	0.9500
C18—H18C	0.9800	C37—C38	1.3900
C19—N2	1 339 (3)	C37—H37	0.9500
C19 - C20	1 413 (3)	$C_{38} - C_{39}$	1 3900
C19—P2	1 8593 (18)	C38—H38	0.9500
C_{20}	1 353 (2)	C39—H39	0.9500
$C_{20} = C_{21}$	1 393 (3)	C40—H40A	0.9800
C_{21} C_{22}	1 376 (3)	C40-H40B	0.9800
C21—H21	0.9500	C40-H40C	0.9800
021 1121	0.9500		0.9000
C2—C1—P1	115.20 (13)	C27—C25—C28	111.00 (16)
C2—C1—H1A	108.5	C26—C25—C28	109.01 (16)
P1—C1—H1A	108.5	C27—C25—P2	113.04 (13)
C2—C1—H1B	108.5	C26—C25—P2	107.15 (12)
P1—C1—H1B	108.5	C28—C25—P2	107.33 (12)
H1A—C1—H1B	107.5	C25—C26—H26A	109.5
C3—C2—C7	119.52 (17)	C25—C26—H26B	109.5
C3—C2—C1	118.43 (17)	H26A—C26—H26B	109.5
C7—C2—C1	121.98 (17)	С25—С26—Н26С	109.5
C4—C3—C2	121.02 (18)	H26A—C26—H26C	109.5
С4—С3—Н3	119.5	H26B—C26—H26C	109.5
С2—С3—Н3	119.5	С25—С27—Н27А	109.5
C5—C4—C3	119.93 (19)	С25—С27—Н27В	109.5
C5—C4—H4	120.0	H27A—C27—H27B	109.5
C3—C4—H4	120.0	C25—C27—H27C	109.5
C6—C5—C4	119.41 (19)	H27A—C27—H27C	109.5
С6—С5—Н5	120.3	H27B—C27—H27C	109.5
C4—C5—H5	120.3	C25—C28—H28A	109.5
C5—C6—C7	121.84 (18)	C25—C28—H28B	109.5

С5—С6—Н6	119.1	H28A—C28—H28B	109.5
С7—С6—Н6	119.1	С25—С28—Н28С	109.5
C6—C7—C2	118.26 (17)	H28A—C28—H28C	109.5
C6—C7—C8	119.43 (17)	H28B—C28—H28C	109.5
C2-C7-C8	122.14 (16)	O3—C29—N3	123.79 (19)
C7—C8—P2	116.59 (13)	03-C29-C30	129.50 (18)
C7—C8—H8A	108.1	N3—C29—C30	106.70 (16)
P2-C8-H8A	108.1	$C_{31} - C_{30} - C_{29}$	107.62 (16)
C7—C8—H8B	108.1	C_{31} C_{30} P_{d1}	70.96 (10)
P2-C8-H8B	108.1	C_{29} C_{30} P_{d1}	$111 \ 37 \ (12)$
H8A - C8 - H8B	107.3	$C_{31} - C_{30} - H_{30}$	125 4 (16)
N1 - C9 - C10	121 87 (18)	C_{29} C_{30} H_{30}	129.1(10) 119.0(16)
N1P1	119 68 (15)	Pd1H30	112.6 (16)
C10 - C9 - P1	119.00 (15)	C_{30} C_{31} C_{32}	107.13(16)
$C_{10} = C_{10} = C_{11}$	124.5(2)	$C_{30} = C_{31} = C_{32}$	60 68 (10)
01 - 010 - 010	124.5(2) 116 40 (17)	$C_{30} = C_{31} = C_{31}$	110.84(12)
$C_{11} = C_{10} = C_{9}$	110.40(17)	$C_{32} = C_{31} = 1 \text{ d} 1$	110.04(12) 126.7(16)
$C_{11} = C_{10} = C_{9}$	119.1(2) 118.4(2)	$C_{30} = C_{31} = H_{31}$	120.7(10)
$C_{12} = C_{11} = C_{10}$	110.4 (2)	C_{32} C_{31} C	110.1(10)
	120.8	Pui—C31—H31	114.0(10)
C10-C11-H11	120.8	$04 - C_{32} - N_{3}$	122.77(18)
C13 - C12 - C11	118.9 (2)	04-032-031	130.48 (18)
C13—C12—H12	120.5	$N_{3} = C_{32} = C_{31}$	106.75 (16)
CII—CI2—HI2	120.5	N3-C33-H33A	109.5
NI-C13-C12	123.7 (2)	N3—C33—H33B	109.5
NI-CI3-HI3	118.2	H33A—C33—H33B	109.5
С12—С13—Н13	118.2	N3—C33—H33C	109.5
O1—C14—H14A	109.5	H33A—C33—H33C	109.5
O1—C14—H14B	109.5	Н33В—С33—Н33С	109.5
H14A—C14—H14B	109.5	C9—N1—C13	118.1 (2)
O1—C14—H14C	109.5	C19—N2—C23	118.76 (19)
H14A—C14—H14C	109.5	C29—N3—C32	111.78 (16)
H14B—C14—H14C	109.5	C29—N3—C33	123.69 (17)
C17—C15—C16	110.28 (16)	C32—N3—C33	124.53 (17)
C17—C15—C18	108.77 (17)	C10—O1—C14	118.36 (17)
C16—C15—C18	108.78 (17)	C20—O2—C24	118.15 (15)
C17—C15—P1	108.17 (14)	C9—P1—C1	98.98 (8)
C16—C15—P1	114.86 (13)	C9—P1—C15	107.32 (9)
C18—C15—P1	105.75 (13)	C1—P1—C15	102.25 (8)
C15—C16—H16A	109.5	C9—P1—Pd1	112.72 (6)
C15—C16—H16B	109.5	C1—P1—Pd1	119.64 (6)
H16A—C16—H16B	109.5	C15—P1—Pd1	114.18 (6)
C15—C16—H16C	109.5	C8—P2—C19	98.06 (8)
H16A—C16—H16C	109.5	C8—P2—C25	106.08 (8)
H16B—C16—H16C	109.5	C19—P2—C25	102.72 (8)
С15—С17—Н17А	109.5	C8—P2—Pd1	117.16 (6)
С15—С17—Н17В	109.5	C19—P2—Pd1	112.36 (6)
H17A—C17—H17B	109.5	C25—P2—Pd1	117.81 (6)
C15—C17—H17C	109.5	C30—Pd1—C31	39.36 (7)

H17A—C17—H17C	109.5	C30—Pd1—P1	107.67 (5)
H17B—C17—H17C	109.5	C31—Pd1—P1	146.86 (5)
C15—C18—H18A	109.5	C30—Pd1—P2	149.41 (5)
C15—C18—H18B	109.5	C31—Pd1—P2	111.69 (5)
H18A—C18—H18B	109.5	P1—Pd1—P2	101.314 (15)
C15—C18—H18C	109.5	C35—C34—C39	120.0
H18A—C18—H18C	109.5	C35—C34—C40	121.8 (6)
H18B—C18—H18C	109.5	C39—C34—C40	118.2 (6)
N2-C19-C20	121.18 (17)	C34—C35—C36	120.0
N2—C19—P2	116.31 (14)	С34—С35—Н35	120.0
C20—C19—P2	122.42 (14)	С36—С35—Н35	120.0
O2—C20—C21	124.05 (18)	C35—C36—C37	120.0
O2—C20—C19	116.89 (16)	С35—С36—Н36	120.0
C21—C20—C19	119.06 (18)	С37—С36—Н36	120.0
C22—C21—C20	118.6 (2)	C38—C37—C36	120.0
C22—C21—H21	120.7	С38—С37—Н37	120.0
C20—C21—H21	120.7	С36—С37—Н37	120.0
C21—C22—C23	119.22 (19)	C39—C38—C37	120.0
C21—C22—H22	120.4	С39—С38—Н38	120.0
С23—С22—Н22	120.4	С37—С38—Н38	120.0
N2—C23—C22	123.1 (2)	C38—C39—C34	120.0
N2—C23—H23	118.4	С38—С39—Н39	120.0
С22—С23—Н23	118.4	С34—С39—Н39	120.0
O2—C24—H24A	109.5	C34—C40—H40A	109.5
O2—C24—H24B	109.5	C34—C40—H40B	109.5
H24A—C24—H24B	109.5	H40A—C40—H40B	109.5
O2—C24—H24C	109.5	C34—C40—H40C	109.5
H24A—C24—H24C	109.5	H40A—C40—H40C	109.5
H24B—C24—H24C	109.5	H40B—C40—H40C	109.5
C27—C25—C26	109.17 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
C3—H3…O4 ⁱ	0.95	2.54	3.480 (2)	172	
С12—Н12…ОЗіі	0.95	2.37	3.281 (3)	161	
C38—H38…N2 ⁱⁱⁱ	0.95	2.60	3.462 (5)	151	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+2, –*y*, –*z*; (iii) *x*−1, *y*, *z*.