

IUCrData

ISSN 2414-3146

Received 9 June 2025 Accepted 18 June 2025

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: thiocarbamate; galactose; weak hydrogen bonds; crystal structure.

CCDC reference: 2465327

Structural data: full structural data are available from iucrdata.iucr.org

2,3,4,6-Tetra-O-acetyl-1-[(dimethylcarbamothioyl)-sulfanyl]- β -D-galactopyranose

Reham A. Mohamed-Ezzat,^a Galal H. Elgemeie^b and Peter G. Jones^{c*}

^aChemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt, ^bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and ^cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-braunschweig.de

In the structure of the title compound, $C_{17}H_{25}NO_9S_2$, the bond lengths in the C–S–C moiety are almost equal at 1.7959 (8) and 1.7877 (9) Å, with a shorter formally double C–S bond of 1.6698 (9) Å at the other sulfur atom. The eightatom sequence O3–C3–C2–C1–S–C–N–C (using standard sugar numbering) shows an extended conformation. The packing involves 'weak' hydrogen bonds, whereby the three shortest C–H···O contacts combine to form layers of molecules parallel to the *ab* plane.

Structure description

Thioglycosides have been the focus of much attention because of their role as glycosyl donors in a variety of chemical processes. They can be subjected to most common manipulations of carbohydrate-protecting groups (Toshima *et al.*, 2007), and can be activated for glycosidation under a variety of conditions. An associated advantage is their stability in such processes (Lian *et al.*, 2015). Oligosaccharides and glycoconjugates have a wide range of biological roles because of the extensive variety of their molecular structures. They are particularly desirable synthetic targets in terms both of their biological significance and of the synthetic challenges they offer, and synthetic carbohydrate chemistry has long been a major area of interest in organic chemistry (Codée *et al.*, 2005). Additionally, some thioglycoside derivatives have been reported to be inhibitors of protein glycosylation (Scala *et al.*, 1997).

We have reported the structures of several thioglycosides, the most recent being four structures involving carbamimidothioate groups (Abu-Zaied *et al.*, 2024; see also references therein). Here, we report the structure of *N*,*N*-dimethylcarbamodithio(2,3,4,6-tetra-*O*-acetyl- β -D-galactopyranose), made by reacting potassium cyanocarbonimidodithioate with the protected α -D-galactopyranosyl bromide in dimethyl formamide in the

Selected geometric parameters (Å, °).						
C1-S1	1.7959 (8)	\$2-C15	1.6698 (9)			
S1-C15	1.7877 (9)	C15-N1	1.3327 (12)			
C15-S1-C1	101.77 (4)	C15-N1-C17	119.92 (9)			
N1-C15-S2	124.18 (7)	C15-N1-C16	123.38 (8)			
N1-C15-S1	112.09(7)	C17-N1-C16	116.62 (8)			
S2-C15-S1	123.71 (5)					
S1-C1-C2-C3	-179.78 (5)	C1-S1-C15-N1	170.41 (7)			
C1-C2-C3-O3	-173.98(6)	C1-S1-C15-S2	-11.04(7)			
$C_2 - C_1 - S_1 - C_{15}$	155.53 (6)	S1-C15-N1-C17	175.46 (10)			

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4\cdots O7^i$	1.00	2.45	3.2096 (11)	132
$C8-H8B\cdots O8^{ii}$	0.98	2.41	3.3157 (15)	154
$C16-H16C\cdots O10^{iii}$	0.98	2.44	3.1795 (18)	132
$C17-H17B\cdots O1^{iv}$	0.98	2.55	3.3558 (13)	139
$C1-H1\cdots S2$	1.00	2.56	3.1175 (8)	115
$C8-H8A\cdots O8^{v}$	0.98	2.66	3.3384 (15)	127

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

presence of sodium ethoxide at room temperature for 24 h. The compound has been previously reported by Li *et al.* (2016), Pluigers *et al.* (1969), Ferrier & Furneaux (1977) and Tejima & Ishiguro (1967).

The molecule of the title compound is shown in Fig. 1, with selected molecular dimensions in Table 1. Bond lengths and angles may be considered normal, *e.g.* the two almost equal C–S1 bond lengths and the shorter S2–C15, corresponding to its formal double bond nature. The atom sequence O3-C3-C2-C1-S1-C15-N1-C17 shows an extended conformation, with absolute torsion angles 155.53 (6)° for C2–C1–S1–C15 (confirming the β position of the substituent at C1) and > 170° for all others. The geometry at the nitrogen atom is planar (angle sum 359.9°).

Figure 1

The molecule of the title compound in the crystal. Ellipsoids indicate 50% probability levels.

Figure 2

Packing diagram of the title compound, viewed parallel to the *c* axis, showing the layer at $z \simeq 0.25$. Dashed lines indicate C-H···O hydrogen bonds. Hydrogen atoms not involved in the hydrogen bonds are omitted for clarity. Atoms labels correspond to the asymmetric unit.

In the absence of classical hydrogen bond donors, the packing involves 'weak' hydrogen bonds. The three shortest $C-H\cdots O$ contacts (Table 2) combine to form layers of molecules parallel to the *ab* plane at z = 1/4, 1/2, 3/4, *etc.* (Fig. 2). Layers are linked by the other two $C-H\cdots O$ contacts (Fig. 3).

A search employing the routine CONQUEST (Bruno *et al.*, 2002), part of Version 2024.3.0 of the Cambridge Database (Groom *et al.*, 2016), found only one other pyranose sugar

Figure 3

Packing diagram of the title compound, projected parallel to the *a* axis, showing the links between the layers of Fig. 2. Dashed lines indicate $C-H\cdots O$ hydrogen bonds. Hydrogen atoms not involved in the hydrogen bonds are omitted for clarity.

Least-squares fit of the title compound (purple) to YIYKEY (Padungros *et al.*, 2014) (green; coordinates taken from the CCDC). Fitted atoms are labelled.

with a dithiocarbamate substituent at the 1-position, namely 1-(*N*,*N*-diethyldithiocarbamato)-2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranose (refcode YIYKEY; Padungros *et al.*, 2014). A least-squares fit of 13 selected atoms in or near the sugar rings of both molecules (Fig. 4) was performed. In view of the markedly different protecting groups of the sugar rings, together with the opposite configurations of glucose and galactose at C4, no great similarity should be expected, but the the r.m.s. deviation of the fitted atoms is still quite low at 0.08 Å. The deviation for S2, the terminal sulfur atom of the dithiocarbamate, is appreciably higher at 0.69 Å, reflecting the slightly larger torsion angles C2–C1–S1–C15 and C1–S1–C15–S2 (162.1 and 3.0°, respectively) for YIYKEY.

Synthesis and crystallization

A mixture of potassium cyanocarbonimidodithioate (0.01 mol, 1.94 g m) and 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl bromide (0.01 mol, 4.11 g m) was reacted in dimethyl formamide (10 ml) in the presence of sodium ethoxide (0.01 mole, 0.68 g m) at room temperature for 24 h. Ice–water (10 ml) was then added and the solid product thus furnished was filtered off and recrystallized from dimethyl sulfoxide.

The title compound was obtained as a pale-yellow crystalline solid; m.p. 458–459 K; ¹H NMR (500 MHz, DMSO- d_6): δ 1.90, 1.94, 1.98, 2.09 (4 s, 12H, 4OAc), 3.29 (*s*, 3H, CH₃), 3.42 (*s*, 3H, CH₃), 3.93–3.96 (*m*, 2H, H-6), 4.25 (*t*, 1H, H-5), 5.22 (*t*, 1H, H-4), 5.28 (*t*, 1H, H-3), 5.36 (*t*, 1H, H-2), 5.79 (*d*, *J* = 10 Hz, 1H, H-1). Analysis calculated for C₁₇H₂₅NO₉S₂ (451.51): C 45.22, H 5.58, N 3.10; S 14.20. Found: C 45.20, H 5.56, N 3.10, S 14.18%. One large prism was cut to an irregular block for intensity measurements.

Crystal data	
Chemical formula	$C_{17}H_{25}NO_9S_2$
	451.50
Crystal system, space group	Orthornombic, $P2_12_12_1$
Temperature (K)	
<i>a</i> , <i>b</i> , <i>c</i> (A)	7.28265 (10), 8.64720 (15), 34.8789 (3)
$V(Å^3)$	2196.48 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.29
Crystal size (mm)	$0.22\times0.20\times0.15$
Data collection	
Diffractometer	XtaLAB Synergy
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.818, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	225004, 14433, 13593
R _{int}	0.045
θ values (°)	$\theta_{\rm max} = 41.4, \theta_{\rm min} = 2.3$
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.930
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.083, 1.12
No. of reflections	14433
No. of parameters	268
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.27
Absolute structure	Flack x determined using 5769 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.001 (8)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), XP (Bruker, 1998) and publCIF (Westrip, 2010).

Refinement

Table 3

Exportinental dataila

Crystal data, data collection and structure refinement details are summarized in Table 3. Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C–H 0.98, H–C–H 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C–H_{methine} 1.00, C–H_{methylene} 0.99 Å). The U(H) values were fixed for methyl groups at $1.5 \times U_{eq}$, and for other H atoms at $1.2 \times U_{eq}$ of the parent carbon atoms. Three badlyfitting reflections (deviations > 8σ) were omitted from the refinement. The absolute configuration was confirmed by the Flack x value of 0.001 (8).

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

Abu-Zaied, M. A., Nawwar, G. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 829–839.

Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.

- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Codée, J. D., Litjens, R. E., van den Bos, L. J., Overkleeft, H. S. & van der Marel, G. A. (2005). *Chem. Soc. Rev.* **34**, 769–782.
- Ferrier, R. J. & Furneaux, R. H. (1977). Carbohydr. Res. 57, 73-83.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Li, G., Noguchi, M., Kashiwagura, H., Tanaka, Y., Serizawa, K. & Shoda, S. (2016). *Tetrahedron Lett.* 57, 3529–3531.
- Lian, G., Zhang, X. & Yu, B. (2015). Carbohydr. Res. 403, 13-22.
- Padungros, P., Alberch, L. & Wei, A. (2014). J. Org. Chem. 79, 2611–2624.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

- Pluijgers, C. W., Berg, J. & Thorn, G. D. (1969). *Recl Trav. Chim. Pays Bas* **88**, 241–253.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. (1997). *Mol. Pharmacol.* 51, 1024–1033.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tejima, S. & Ishiguro, S. (1967). Chem. Pharm. Bull. 15, 255-263.
- Toshima, K. & Sasaki, K. (2007). O-Glycosidation Methods in Comprehensive Glycoscience, edited by J. Kamerling, pp. 261–311. Amsterdam: Elsevier, ISBN 9780444519672.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2025). **10**, x250544 [https://doi.org/10.1107/S2414314625005449]

2,3,4,6-Tetra-O-acetyl-1-[(dimethylcarbamothioyl)sulfanyl]-β-D-galactopyranose

Reham A. Mohamed-Ezzat, Galal H. Elgemeie and Peter G. Jones

2,3,4,6-Tetra-O-acetyl-1-[(dimethylcarbamothioyl)sulfanyl]-β-D-galactopyranose

Crystal data C17H25NO9S2 $D_{\rm x} = 1.365 {\rm Mg} {\rm m}^{-3}$ $M_r = 451.50$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 126110 reflections Orthorhombic, $P2_12_12_1$ $\theta = 2.3 - 41.3^{\circ}$ a = 7.28265 (10) Å*b* = 8.64720 (15) Å $\mu = 0.29 \text{ mm}^{-1}$ T = 100 Kc = 34.8789(3) Å $V = 2196.48 (5) \text{ Å}^3$ Block, colourless $0.22\times0.20\times0.15~mm$ Z = 4F(000) = 952Data collection XtaLAB Synergy $T_{\min} = 0.818, T_{\max} = 1.000$ 225004 measured reflections diffractometer Radiation source: micro-focus sealed X-ray 14433 independent reflections tube, PhotonJet (Mo) X-ray Source 13593 reflections with $I > 2\sigma(I)$ Mirror monochromator $R_{\rm int} = 0.045$ Detector resolution: 10.0000 pixels mm⁻¹ $\theta_{\rm max} = 41.4^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ $h = -13 \rightarrow 13$ ω scans $k = -15 \rightarrow 15$ Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) $l = -63 \rightarrow 63$ Refinement Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 0.1937P]$ $R[F^2 > 2\sigma(F^2)] = 0.031$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.083$ $(\Delta/\sigma)_{\rm max} = 0.010$ $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$ S = 1.1214433 reflections $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ 268 parameters Absolute structure: Flack x determined using 0 restraints 5769 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* Primary atom site location: dual al., 2013) Hydrogen site location: inferred from Absolute structure parameter: 0.001 (8) neighbouring sites

Fractional	atomic	coordinates	and	isotronic	or	eauivalent	isotropic	displacement	t narameters	(Å	2)
1 ruciionui	uionnic	coorainaics	unu	isonopic	01 0	guivaichi	isonopic	uspiacement	purumerers	(21	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.22016 (11)	0.52540 (10)	0.14258 (2)	0.01348 (11)
H1	0.301124	0.432274	0.144357	0.016*
C2	0.20058 (11)	0.57372 (9)	0.10035 (2)	0.01244 (11)

H2	0.119080	0.666256	0.097869	0.015*
C3	0.39260 (11)	0.60872 (9)	0.08518 (2)	0.01229 (11)
H3	0.466514	0.511270	0.084781	0.015*
C4	0.48993 (11)	0.72864 (9)	0.10985 (2)	0.01316 (10)
H4	0.620302	0.739994	0.101305	0.016*
C5	0.48404 (12)	0.67805 (10)	0.15167 (2)	0.01507 (12)
Н5	0.557771	0.581254	0.154690	0.018*
C6	0.55721 (13)	0.80002 (13)	0.17912 (3)	0.02065 (15)
H6A	0.482407	0.895388	0.177473	0.025*
H6B	0 553206	0 761446	0 205830	0.025*
C7	-0.05084(12)	0.44818(10)	0.200000	0.025
C8	-0.10298(17)	0.30603(14)	0.00923(3) 0.04748(4)	0.01900(12)
H8A	-0.004042	0.278608	0.020677	0.0290 (2)
	-0.216034	0.278098	0.023077	0.044
	0.210034	0.323320	0.055025	0.044
	-0.123073 0.44287 (12)	0.220390	0.003434	0.044°
C9	0.44387 (15)	0.5/9/1(15)	0.01/80 (3)	0.02005 (15)
	0.4443 (2)	0.6688 (2)	-0.01898 (3)	0.0349 (3)
HIOA	0.318449	0.699657	-0.025372	0.052*
H10B	0.493721	0.603806	-0.039557	0.052*
H10C	0.520872	0.761240	-0.016113	0.052*
C11	0.48662 (15)	0.99031 (11)	0.08844 (4)	0.02412 (18)
C12	0.3713 (2)	1.13341 (14)	0.08674 (6)	0.0395 (4)
H12A	0.250639	1.108055	0.075993	0.059*
H12B	0.431714	1.210509	0.070465	0.059*
H12C	0.355954	1.175358	0.112643	0.059*
C13	0.79252 (16)	0.97920 (15)	0.16185 (5)	0.0314 (2)
C14	0.98327 (19)	0.9884 (2)	0.14586 (6)	0.0408 (3)
H14A	1.061908	0.913046	0.158930	0.061*
H14B	1.032239	1.092733	0.149860	0.061*
H14C	0.980359	0.965477	0.118356	0.061*
01	0.29972 (9)	0.64895 (8)	0.16373 (2)	0.01595 (10)
02	0.13054 (9)	0.44673 (7)	0.07833 (2)	0.01412 (9)
03	0.38060 (11)	0.67005 (8)	0.04701(2)	0.01719 (11)
04	0 39544 (9)	0.87439(7)	0.10612(2)	0.01611 (10)
06	0.333(11)	0.87199(1)	0.16784(3)	0.02342(14)
07	-0.15325(10)	0.55175 (9)	0.07833(3)	0.02312(11) 0.02197(13)
08	0.10020(10) 0.49188(14)	0.33173(9) 0.44747(11)	0.07855(5) 0.02195(2)	0.02197(15) 0.02792(16)
00	0.47100(14)	0.7836(12)	0.02175(2)	0.02772(10)
010	0.04113(13) 0.60240(18)	1.08682(14)	0.07040(4)	0.0420(3)
C10 S1	0.09249(18)	1.08082(14)	0.10800(0)	0.0399(3)
51	-0.00073(3)	0.48124(3)	0.10208(2)	0.01309(4)
52 C15	0.20810(3)	0.27711(4)	0.20001(2)	0.02352(5)
	0.05929 (12)	0.35345 (11)	0.20097 (2)	0.01559 (12)
NI	-0.08300 (11)	0.32376 (11)	0.22384 (2)	0.01961 (13)
C16	-0.26558 (14)	0.39147 (15)	0.21834 (3)	0.02370 (18)
H16A	-0.254152	0.503647	0.215141	0.036*
H16B	-0.342140	0.369253	0.240783	0.036*
H16C	-0.322539	0.346774	0.195424	0.036*
C17	-0.06368 (18)	0.2123 (2)	0.25515 (4)	0.0335 (3)

data reports

H17A	-0.028969	0.111306	0.244663	0.050*
H17B	-0.180709	0.203067	0.268826	0.050*
H17C	0.031589	0.247892	0.272924	0.050*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0139 (3)	0.0139 (3)	0.0126 (2)	-0.0006 (2)	0.0018 (2)	0.0012 (2)
C2	0.0134 (3)	0.0111 (3)	0.0128 (3)	0.0005 (2)	0.0010 (2)	0.0000 (2)
C3	0.0142 (3)	0.0114 (3)	0.0112 (2)	0.0007 (2)	0.0021 (2)	0.00144 (19)
C4	0.0124 (2)	0.0112 (2)	0.0159 (3)	0.0009 (2)	0.0020 (2)	-0.0005 (2)
C5	0.0137 (3)	0.0170 (3)	0.0146 (3)	0.0001 (2)	0.0002 (2)	-0.0010 (2)
C6	0.0169 (3)	0.0255 (4)	0.0195 (3)	-0.0028 (3)	-0.0002 (3)	-0.0068 (3)
C7	0.0145 (3)	0.0150 (3)	0.0181 (3)	0.0008 (2)	-0.0015 (2)	-0.0009 (2)
C8	0.0228 (4)	0.0222 (4)	0.0421 (6)	0.0004 (3)	-0.0091 (4)	-0.0124 (4)
C9	0.0173 (3)	0.0306 (4)	0.0123 (3)	-0.0039 (3)	0.0002 (2)	-0.0016 (3)
C10	0.0389 (6)	0.0525 (8)	0.0134 (3)	-0.0133 (6)	-0.0001 (4)	0.0069 (4)
C11	0.0218 (4)	0.0125 (3)	0.0380 (5)	0.0005 (3)	0.0094 (4)	0.0044 (3)
C12	0.0348 (6)	0.0154 (4)	0.0684 (10)	0.0063 (4)	0.0162 (7)	0.0115 (5)
C13	0.0208 (4)	0.0259 (5)	0.0474 (7)	-0.0059 (3)	0.0048 (4)	-0.0147 (5)
C14	0.0215 (5)	0.0388 (7)	0.0620 (10)	-0.0095 (5)	0.0094 (5)	-0.0147 (6)
01	0.0155 (2)	0.0186 (3)	0.0138 (2)	-0.00277 (19)	0.00266 (18)	-0.0023 (2)
O2	0.0133 (2)	0.0123 (2)	0.0167 (2)	0.00077 (17)	-0.00018 (18)	-0.00223 (18)
O3	0.0224 (3)	0.0169 (2)	0.0123 (2)	-0.0007 (2)	0.00171 (19)	0.00366 (19)
O4	0.0152 (2)	0.0107 (2)	0.0225 (3)	0.00143 (18)	0.0041 (2)	0.00108 (19)
06	0.0152 (3)	0.0243 (3)	0.0308 (4)	-0.0012 (2)	-0.0009 (2)	-0.0068 (3)
07	0.0162 (3)	0.0204 (3)	0.0294 (3)	0.0049 (2)	-0.0024 (2)	-0.0041 (3)
08	0.0306 (4)	0.0338 (4)	0.0194 (3)	0.0082 (3)	-0.0021 (3)	-0.0102 (3)
09	0.0289 (4)	0.0214 (3)	0.0756 (8)	0.0018 (3)	0.0261 (5)	0.0143 (5)
O10	0.0344 (5)	0.0249 (5)	0.1202 (15)	-0.0055 (4)	0.0250 (7)	-0.0233 (7)
S1	0.01293 (7)	0.01785 (8)	0.01451 (7)	0.00059 (6)	0.00218 (6)	0.00388 (6)
S2	0.01376 (8)	0.03284 (13)	0.02396 (10)	0.00211 (8)	-0.00070 (7)	0.01238 (9)
C15	0.0137 (3)	0.0196 (3)	0.0136 (3)	-0.0015 (2)	-0.0003 (2)	0.0036 (2)
N1	0.0150 (3)	0.0284 (4)	0.0154 (3)	-0.0016 (3)	0.0019 (2)	0.0076 (3)
C16	0.0145 (3)	0.0331 (5)	0.0235 (4)	0.0011 (3)	0.0047 (3)	0.0061 (3)
C17	0.0257 (5)	0.0479 (7)	0.0270 (5)	-0.0008 (5)	0.0029 (4)	0.0226 (5)

Geometric parameters (Å, °)

C1—01	1.4216 (11)	N1—C17	1.4631 (14)
C1—C2	1.5378 (11)	N1—C16	1.4655 (13)
C1—S1	1.7959 (8)	C1—H1	1.0000
C2—O2	1.4339 (10)	C2—H2	1.0000
C2—C3	1.5255 (11)	С3—Н3	1.0000
C3—O3	1.4358 (10)	C4—H4	1.0000
C3—C4	1.5226 (11)	С5—Н5	1.0000
C4—O4	1.4419 (10)	С6—Н6А	0.9900
C4—C5	1.5234 (11)	C6—H6B	0.9900

C5—O1	1.4290 (11)	C8—H8A	0.9800
C5—C6	1.5209 (12)	C8—H8B	0.9800
C6—O6	1.4365 (13)	C8—H8C	0.9800
C7—O7	1.2079 (11)	C10—H10A	0.9800
C7—O2	1.3585 (11)	C10—H10B	0.9800
C7—C8	1,4936 (14)	C10—H10C	0.9800
C9	1 2045 (15)	C12—H12A	0.9800
C9-03	1 3639 (12)	C12—H12B	0.9800
C9-C10	1 4966 (15)	C12 H12D	0.9800
$C_{11} = 09$	1.1900(19) 1.2055(14)	C14—H14A	0.9800
$C_{11} = 04$	1.2033(14) 1.3513(12)	C14 H14B	0.9800
C11 - C12	1.4968 (16)	C14—H14C	0.9800
C_{12} C	1 2015 (18)		0.9800
C13_C13	1.2013(16) 1.3475(16)	C16 H16R	0.9800
$C_{13}^{13} = C_{14}^{14}$	1.3473(10) 1.4090(19)		0.9800
C15	1.4989(18) 1.7877(0)		0.9800
S1-C15	1.7077(9)	C17H17A	0.9800
S2	1.0098 (9)	С17—Н17В	0.9800
C15—N1	1.3327 (12)	C1/—H1/C	0.9800
01 C1 C2	100 30 (7)	C2 C3 H3	100 3
01 - 01 - 02	109.30(7) 108.81(5)	$C_2 = C_3 = H_3$	109.5
$C_2 = C_1 = S_1$	110.40 (6)	$C_3 = C_4 = H_4$	109.9
$C_2 = C_1 = S_1$	106.00 (6)	$C_5 = C_4 = H_4$	109.9
02 - 02 - 03	100.39 (0)	C_{3} C_{4} H_{5}	109.9
02-02-01	109.70(0) 107.52(6)	01—C5—H5	109.0
C_{3} C_{2} C_{4}	107.55(0) 107.51(6)	$C_0 = C_3 = H_5$	109.0
03 - 03 - 04	107.31(0) 100.82(7)		109.0
03-03-02	109.82(7)	00-00-H0A	110.4
C4 - C3 - C2	111.40(0) 109.70(7)		110.4
04-04-03	108.79(7)	06—C6—H6B	110.4
04-04-05	108.90 (6)	С5—С6—Н6В	110.4
01-07-07	109.42 (6)	H6A—C6—H6B	108.6
01-05-06	105.43 (7)	C/-C8-H8A	109.5
01	111.03 (7)	C/C8H8B	109.5
C6—C5—C4	113.18 (7)	H8A—C8—H8B	109.5
O6—C6—C5	106.69 (8)	С7—С8—Н8С	109.5
O7—C7—O2	123.08 (8)	H8A—C8—H8C	109.5
O7—C7—C8	125.92 (9)	H8B—C8—H8C	109.5
O2—C7—C8	110.99 (8)	C9—C10—H10A	109.5
08—C9—O3	123.52 (9)	C9—C10—H10B	109.5
O8—C9—C10	126.22 (11)	H10A—C10—H10B	109.5
O3—C9—C10	110.25 (11)	C9—C10—H10C	109.5
O9—C11—O4	123.65 (10)	H10A—C10—H10C	109.5
O9—C11—C12	125.51 (10)	H10B—C10—H10C	109.5
O4—C11—C12	110.83 (9)	C11—C12—H12A	109.5
O10—C13—O6	123.22 (12)	C11—C12—H12B	109.5
O10-C13-C14	126.00 (14)	H12A—C12—H12B	109.5
O6—C13—C14	110.77 (11)	C11—C12—H12C	109.5
C1	111.25 (6)	H12A—C12—H12C	109.5

C7—O2—C2	117.64 (7)	H12B—C12—H12C	109.5
С9—О3—С3	117.41 (7)	C13—C14—H14A	109.5
C11—O4—C4	117.07 (7)	C13—C14—H14B	109.5
C13—O6—C6	118.06 (9)	H14A—C14—H14B	109.5
C15—S1—C1	101.77 (4)	C13—C14—H14C	109.5
N1—C15—S2	124.18 (7)	H14A—C14—H14C	109.5
N1-C15-S1	112.09 (7)	H14B—C14—H14C	109.5
S2—C15—S1	123.71 (5)	N1-C16-H16A	109.5
C15—N1—C17	119.92 (9)	N1-C16-H16B	109.5
C15—N1—C16	123.38 (8)	H16A—C16—H16B	109.5
C17—N1—C16	116.62 (8)	N1—C16—H16C	109.5
O1—C1—H1	109.4	H16A—C16—H16C	109.5
C2	109.4	H16B—C16—H16C	109.5
S1—C1—H1	109.4	N1—C17—H17A	109.5
O2—C2—H2	110.8	N1—C17—H17B	109.5
С3—С2—Н2	110.8	H17A—C17—H17B	109.5
C1—C2—H2	110.8	N1—C17—H17C	109.5
O3—C3—H3	109.3	H17A—C17—H17C	109.5
С4—С3—Н3	109.3	H17B—C17—H17C	109.5
$O_1 C_1 C_2 O_2$	176 61 (6)	C° C^{7} O^{2} C^{2}	-178 12 (0)
C1 = C1 = C2 = O2	-62.74(7)	$C_{0} = C_{1} = 0_{2} = 0_{2}$	-1/0.12(9) -1/2.58(7)
S1 - C1 - C2 - O2	-03.74(7)	C_{3} C_{2} C_{2} C_{7} C_{7}	-142.38(7)
$C_1 = C_2 = C_3$	-170.78(5)	$C_1 - C_2 - C_2 - C_7$	7 42 (14)
S1 - C1 - C2 - C3	-1/9.78(3)	03-09-03-03	-172.48(0)
$C_2 - C_2 - C_3 - C_3$	-173.08(6)	$C_{10} - C_{9} - C_{3} - C_{3}$	-1/2.46(9) 127 50(8)
$C_1 - C_2 - C_3 - C_3$	-172.80(6)	$C_{4} C_{3} C_{3} C_{4} C_{5}$	-110.08(8)
$C_2 - C_2 - C_3 - C_4$	-54.95(8)	$C_2 = C_3 = C_3 = C_3$	-1.10(18)
$C_1 - C_2 - C_3 - C_4$	53 85 (8)	C_{12} C_{11} C_{4} C_{4}	170 06 (11)
$C_{2}^{2} - C_{3}^{2} - C_{4}^{4} - O_{4}^{4}$	-66 55 (8)	$C_{12} = C_{11} = 0_{4} = C_{4}$	-113.01.(9)
$0^{3}-0^{3}-0^{4}-0^{5}$	172 72 (7)	$C_{5} - C_{4} - O_{4} - C_{11}$	127.80 (9)
$C_{2}^{2} - C_{3}^{2} - C_{4}^{4} - C_{5}^{5}$	52 32 (8)	010-013-06-06	54(2)
04 - C4 - C5 - 01	52.52(0) 64 22 (9)	$C_{14} - C_{13} - C_{6} - C_{6}$	$-173\ 27\ (11)$
C_{3} C_{4} C_{5} C_{1}	-5458(9)	C_{5} C_{6} C_{13}	127.99 (11)
04-C4-C5-C6	-54.12(9)	01 - C1 - S1 - C15	-8452(6)
C_{3} C_{4} C_{5} C_{6}	-172 92 (7)	C_{2} C_{1} S_{1} C_{15}	155 53 (6)
01 - C5 - C6 - 06	179 61 (8)	C1 = S1 = C15 = N1	170.41(7)
C4-C5-C6-O6	-58.86(10)	C1 = S1 = C15 = S2	-11.04(7)
C2-C1-O1-C5	-65.67 (8)	S2-C15-N1-C17	-3.08(15)
S1-C1-01-C5	173.70 (6)	S1-C15-N1-C17	175.46 (10)
C6-C5-01-C1	-174.41 (7)	S2-C15-N1-C16	-179.75(9)
C4C5C1	62.66 (9)	S1-C15-N1-C16	-1.21 (13)
07—C7—O2—C2	1.12 (13)		(-)
	· /		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…O7 ⁱ	1.00	2.45	3.2096 (11)	132

data reports С8—Н8В…О8іі 0.98 2.41 3.3157 (15) 154 C16—H16C…O10ⁱⁱⁱ 0.98 2.44 3.1795 (18) 132 C17—H17B…O1^{iv} 0.98 2.55 3.3558 (13) 139 C1—H1···S23.1175 (8) 115 1.00 2.56 C8—H8A…O8^v 0.98 2.66 3.3384 (15) 127

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*-1, *y*-1, *z*; (iv) -*x*, *y*-1/2, -*z*+1/2; (v) *x*-1/2, -*y*+1/2, -*z*.