

ISSN 2414-3146

Received 27 May 2025 Accepted 2 June 2025

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; solvothermal synthesis; iron(II) complex; 2,2'-bipyridine; tris(dicyanomethylidene)methanediide.

CCDC reference: 2456126

Structural data: full structural data are available from iucrdata.iucr.org

Tris(2,2'-bipyridine)iron(II) tris(dicyanomethylidene)methanediide

Said Abdelghafour Messalti,^a Fatima Setifi,^a Uwe Böhme,^b* Zouaoui Setifi^{c,a} and Mohammad Hadi Al-Douh^d*

^aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ^bInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, ^cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, and ^dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen. *Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de, m.aldouh@hu.edu.ye

The asymmetric unit of the title compound, $[Fe(C_{10}H_8N_2)_3][C\{C(CN)_2\}_3]$, contains an iron–bipyridyl unit and one third of two crystallographic independent tris(dicyanomethylidene)methanediide units. As a result of crystallographic site symmetry the ratio of cations to anions is 1:1. The tris(2,2'-bipyridine)iron(II) cation has threefold symmetry. The two crystallographic independent tris(dicyanomethylidene)methanediide ions are disordered over two atomic sites having equal occupancy. The anions have $\overline{3}$ symmetry. In the crystal, hydrogen bonds between cations and anions form complex layers parallel to (001). These are supplemented by hydrogen bonds perpendicular to the former, leading to a three-dimensional network.

Structure description

Organic cyanocarbanion anions have recently attracted considerable attention in the fields of coordination chemistry and molecular materials (Benmansour *et al.*, 2010). As a consequence of their rigidity and electronic delocalization, these organic anions provide opportunities for the generation of molecular architectures with varying dimensions and topologies (Benmansour *et al.*, 2008; Setifi *et al.*, 2010; Benamara *et al.*, 2021). Furthermore, the use of cyanocarbanion anions for the synthesis of interesting discrete and polymeric bistable materials has been recently reported (Setifi, Milin *et al.*, 2014; Cuza *et al.*, 2021). It was during the course of attempts to prepare such materials with 2,2′-bipyridine as a co-ligand that the title complex was unexpectedly obtained. We report here the molecular and supramolecular structures of a new compound based on tris(2,2′-bipyridine)iron(II) and the tris(dicyanomethylidene)methanediide dianion (tcpd^{2−}) as the counter-ion.

Selected geometr	ic parameters (Å, °)		
Fe1-N1	1.9688 (13)	C13-N3	1.067 (2)
Fe1-N2	1.9734 (13)	C14-C15	1.421 (3)
C11-C12	1.422 (3)	C15-C16	1.482 (4)
C12-C13	1.473 (3)	C16-N4	1.079 (3)
N1 ⁱ -Fe1-N1	96.73 (5)	N1-Fe1-N2	81.40 (5)
N1 ⁱ -Fe1-N2	85.75 (5)	N2-Fe1-N2 ⁱ	96.18 (5)
N1 ⁱⁱ -Fe1-N2	177.07 (5)		

Symmetry codes: (i) -y + 2, x - y + 1, z; (ii) -x + y + 1, -x + 2, z.

The crystal structure consists of an $[Fe(C_{10}H_8N_2)_3]^{2+}$ cation with a six-coordinate iron atom in a slightly distorted octahedral coordination environment and a $[C\{C(CN)_2\}_3]^{2-}$ anion (Fig. 1). At first glance, it is noticeable that two crystallographically independent anions are present. These have a site symmetry of $\overline{3}$, which means that one sixth is present in the asymmetric unit. The cation has site symmetry 3, *i.e.* it consists of an iron bipyridyl unit, with one third of the cation in the asymmetric unit. The resulting ratio of cation to anion is therefore 1:1. The two crystallographic independent tris(dicyanomethylidene)methanediide ions are disordered over two atomic sites having equal occupancy, leading to a star-like appearance.

The Fe-N distances are comparable to other tris(2,2'-bipyridine)iron(II) complexes (Healy *et al.*, 1983; Setifi, Setifi *et al.*, 2014; Addala *et al.*, 2018). The angle N1-Fe1-N2 [81.40 (5)°] is determined by the bite angle of the bipyridine

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C1-H1\cdots N1^{ii}$	0.93	2.61	3.121 (2)	115
$C10-H10\cdots N2^{i}$	0.93	2.60	3.116 (2)	115
C4-H4···N3 ⁱⁱⁱ	0.93	2.45	3.333 (3)	159
C8−H8···N3 ^{iv}	0.93	2.68	3.476 (3)	144
C3-H3···N4 ⁱⁱⁱ	0.93	2.65	3.244 (3)	122
$C10-H10\cdots N4^{v}$	0.93	2.68	3.437 (3)	139

Symmetry codes: (i) -y + 2, x - y + 1, z; (ii) -x + y + 1, -x + 2, z; (iii) -y + 1, x - y + 1, z; (iv) $x - y + \frac{2}{3}, x + \frac{1}{3}, -z + \frac{1}{3}$; (v) $-y + \frac{4}{3}, x - y + \frac{2}{3}, z - \frac{1}{3}$.

unit. The other *cis* angles in the coordination polyhedron deviate from 90° (see Table 1), as the octahedral cation is subject to compression in the direction of the threefold rotation axis.

The tris(dicyanomethylidene)methanediide dianions are disordered at the methylidene carbon atoms C12 and C15. The cyano end groups C13–N3 and C16–N4 show slightly elongated displacement ellipsoids due to the disorder at the neighbouring atoms. The cores of the anions (atoms C11/C12 and C14/C15 with their symmetry equivalents, respectively) are exactly planar. The cyano groups are twisted out of these planes (Fig. 2), making dihedral angles with it of 28.0 (2)° (N3, C13, C12, C13C, N3C) and 29.6 (2)° (N4, C16, C15, C16E, N4E). This type of distortion has been observed before (Setifi *et al.*, 2018, 2020).

Intramolecular hydrogen bonds in the tris(2,2'-bi-pyridine)iron(II) cation are C1-H1···N1 and

Figure 1

Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn with 50% probability displacement ellipsoids. Only one of the disordered set of sites is shown.

Figure 2

Side view of the anion C11-C12-C13-N3 with all symmetry-equivalent atoms (top). One of the two orientations is drawn with dashed bonds. Side view with one part of the disordered anion (bottom).

Partial packing diagram showing the hydrogen-bonding interactions $C4-H4\cdots N3$ and $C8-H8\cdots N3$ parallel to (001), as turquoise lines. Only one of the disordered set of sites is shown.

C10-H10···N2 between hydrogen atoms in *ortho* position and nitrogen atoms from neighbouring dipyridine units (Table 2). Further hydrogen bonds are present between cation and the anion consisting of C11-C12-C13-N3 with C4-H4···N3 and C8-H8···N3, which form complex layers parallel to (001) (Fig. 3). The other anion consisting of C14-C15-C16-N4 forms hydrogen bonds C3-H3···N4,

Figure 4

Partial packing diagram showing the hydrogen-bonding interactions $C3-H3\cdots N4$ parallel to (001) as turquoise lines. Only one of the disordered set of sites is shown.

Partial packing diagram showing the hydrogen-bonding interactions $C10-H10\cdots N4$ parallel to the crystallographic *c* axis, as turquoise lines. Only one of the disordered set of sites is shown.

forming layers that are also parallel to (001) (Fig. 4). Perpendicular to that are hydrogen bonds $C10-H10\cdots N4$, which link the anion to two cations perpendicular to (001) (Fig. 5). All these interactions consolidate the crystal in a three-dimensional network of hydrogen bonds.

There are more than 100 crystal structures of tris(2,2'-bipyridine)iron(II) complexes listed in the Cambridge Structural Database (Groom *et al.*, 2016). From these are five crystal structures of closely related complexes containing the tris(2,2'-bipyridine)iron(II) cation and different polynitrile anions (Setifi, Setifi *et al.*, 2014; Potočňák *et al.*, 2014; Potočňák & Váhovská, 2014; Addala *et al.*, 2018).

Synthesis and crystallization

A mixture of iron(II) bis(tetrafluoroborate) hexahydrate (34 mg, 0.1 mmol), 2,2'-dipyridyl (16 mg, 0.1 mmol) and dipotassium tris(dicyanomethylidene)methanediide (28 mg, 0.1 mmol), *N*,*N*-dimethylformamide (4 ml) and water (2 ml) was sonicated for 30 min. Then the reaction mixture was transferred to a Teflon-lined stainless steel reactor and placed in an oven. Subsequently, the temperature was kept 393 K for 3 days. After cooling to room temperature at a rate of 10 K h⁻¹, red plate-shaped crystals of the title compound were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The two crystallographic independent tris(dicyanomethylidene)methanediide ions are disordered over two atomic sites having equal occupancy.

Acknowledgements

The Technical Platform CRISMAT de l'Université Caen Normandie is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministèere de l'Enseignement Supéerieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Géenéerale de la Recherche Scientifique et du Déeveloppement Technologique); and the PRFU project (grant No. B00L01UN190120230003).

References

- Addala, A., Setifi, Z., Morimoto, Y., Artetxe, B., Matsumoto, T., Gutiérrez-Zorrilla, J. M. & Glidewell, C. (2018). *Acta Cryst.* E74, 1717–1726.
- Benamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). *Magnetochemistry* 7, 50.
- Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). *Coord. Chem. Rev.* **254**, 1468–1478.
- Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.
- Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
- Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Healy, P. C., Skelton, B. W. & White, A. H. (1983). Aust. J. Chem. 36, 2057–2064.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Table 3

Experimental details.

Crystal data	
Chemical formula	$[Fe(C_{10}H_8N_2)_3](C_{10}N_6)$
M _r	728.56
Crystal system, space group	Trigonal, $R\overline{3}$:H
Temperature (K)	298
a, c (Å)	17.0276 (3), 21.6388 (5)
$V(Å^3)$	5433.4 (2)
Z	6
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.46
Crystal size (mm)	$0.45 \times 0.28 \times 0.15$
Data collection	
Diffractometer	Bruker D8 VENTURE Duo
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.875, 0.922
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32654, 2780, 2269
R _{int}	0.045
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.091, 1.05
No. of reflections	2780
No. of parameters	170
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.22, -0.35

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b) and ORTEP-3 for Windows (Farrugia, 2012).

- Potočňák, I. & Váhovská, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 579–586.
- Potočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432– 436.
- Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). *Inorg. Chem.* 53, 97–104.
- Setifi, Z., Corfield, P. W. R., Setifi, F., Morgenstern, B., Hegetschweiler, K. & Kaddouri, Y. (2018). Acta Cryst. E74, 1227–1230.
- Setifi, Z., Gaamoune, B., Stoeckli-Evans, H., Rouag, D.-A. & Setifi, F. (2010). Acta Cryst. C66, m286–m289.
- Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465–469.
- Setifi, Z., Setifi, F., Dege, N., Al-Douh, M. A. & Glidewell, C. (2020). *IUCrData* 5, x201278.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2025). **10**, x250503 [https://doi.org/10.1107/S2414314625005036]

Tris(2,2'-bipyridine)iron(II) tris(dicyanomethylidene)methanediide

Said Abdelghafour Messalti, Fatima Setifi, Uwe Böhme, Zouaoui Setifi and Mohammad Hadi Al-Douh

 $D_{\rm x} = 1.336 {\rm Mg} {\rm m}^{-3}$

 $0.45 \times 0.28 \times 0.15 \text{ mm}$

 $\theta = 2.8 - 28.4^{\circ}$

 $\mu = 0.46 \text{ mm}^{-1}$ T = 298 K

Plate, red

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5342 reflections

Tris(2,2'-bipyridine)iron(II) tris(dicyanomethylidene)methanediide

Crystal data

 $[Fe(C_{10}H_8N_2)_3](C_{10}N_6)$ $M_r = 728.56$ Trigonal, $R\overline{3}:H$ a = 17.0276 (3) Å c = 21.6388 (5) Å V = 5433.4 (2) Å³ Z = 6F(000) = 2244

Data collection

	22654 1 9 1
Bruker D8 VENTURE Duo	32654 measured reflections
diffractometer	2780 independent reflections
Radiation source: sealed tube	2269 reflections with $I > 2\sigma(I)$
TRIUMPH graphite monochromator	$R_{ m int} = 0.045$
ω and φ scans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -22 \rightarrow 22$
(SADABS; Krause et al., 2015)	$k = -22 \rightarrow 22$
$T_{\min} = 0.875, \ T_{\max} = 0.922$	$l = -28 \rightarrow 27$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.05	H-atom parameters constrained
2780 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 5.2576P]$
170 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and refined with a riding model with C–H = 0.93 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	1.000000	1.000000	0.24788 (2)	0.03504 (12)	
N1	0.89912 (9)	0.99778 (9)	0.29384 (6)	0.0386 (3)	
N2	0.89822 (9)	0.90276 (9)	0.20124 (5)	0.0391 (3)	
C1	0.90642 (12)	1.05483 (12)	0.33947 (7)	0.0475 (4)	
H1	0.963517	1.093679	0.355820	0.057*	
C2	0.83306 (13)	1.05808 (13)	0.36290 (8)	0.0562 (5)	
H2	0.840747	1.098700	0.394234	0.067*	
C3	0.74830 (13)	1.00060 (14)	0.33947 (9)	0.0590 (5)	
H3	0.697874	1.002039	0.354509	0.071*	
C4	0.73902 (12)	0.94059 (13)	0.29322 (9)	0.0536 (4)	
H4	0.682084	0.900635	0.277093	0.064*	
C5	0.81535 (11)	0.94053 (11)	0.27110 (7)	0.0408 (3)	
C6	0.81457 (11)	0.88191 (11)	0.22107 (7)	0.0423 (3)	
C7	0.73688 (13)	0.81059 (13)	0.19582 (9)	0.0593 (5)	
H7	0.679985	0.798009	0.209532	0.071*	
C8	0.74465 (14)	0.75829 (14)	0.15005 (10)	0.0685 (6)	
H8	0.693155	0.709862	0.132822	0.082*	
С9	0.82930 (14)	0.77881 (13)	0.13043 (9)	0.0609 (5)	
H9	0.836022	0.744194	0.099887	0.073*	
C10	0.90415 (12)	0.85113 (12)	0.15642 (7)	0.0491 (4)	
H10	0.961322	0.865004	0.142456	0.059*	
C11	0.333333	0.666667	0.166667	0.0315 (7)	
C12	0.27300 (19)	0.57138 (18)	0.16798 (14)	0.0356 (6)	0.5
C13	0.30840 (13)	0.51355 (11)	0.19074 (8)	0.0512 (4)	
N3	0.29929 (17)	0.45296 (12)	0.21194 (10)	0.0919 (7)	
C14	0.666667	0.333333	0.333333	0.0427 (8)	
C15	0.5716 (2)	0.2721 (3)	0.33372 (16)	0.0504 (8)	0.5
C16	0.51371 (14)	0.30692 (18)	0.35854 (9)	0.0707 (6)	
N4	0.45347 (15)	0.2971 (2)	0.38184 (11)	0.1096 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.03581 (14)	0.03581 (14)	0.03350 (19)	0.01790 (7)	0.000	0.000
N1	0.0407 (7)	0.0398 (7)	0.0371 (6)	0.0215 (6)	-0.0010 (5)	-0.0020 (5)
N2	0.0416 (7)	0.0391 (7)	0.0361 (6)	0.0199 (6)	0.0000 (5)	-0.0012 (5)
C1	0.0495 (9)	0.0523 (10)	0.0438 (8)	0.0277 (8)	-0.0018 (7)	-0.0088 (7)
C2	0.0636 (11)	0.0616 (11)	0.0539 (10)	0.0391 (10)	0.0022 (9)	-0.0113 (8)
C3	0.0543 (11)	0.0693 (12)	0.0665 (11)	0.0408 (10)	0.0069 (9)	-0.0051 (9)
C4	0.0417 (9)	0.0602 (11)	0.0618 (10)	0.0277 (8)	-0.0010 (8)	-0.0054 (8)
C5	0.0399 (8)	0.0422 (8)	0.0423 (8)	0.0220 (7)	-0.0005 (6)	-0.0001 (6)
C6	0.0404 (8)	0.0414 (8)	0.0440 (8)	0.0196 (7)	-0.0028 (6)	-0.0026 (6)
C7	0.0424 (9)	0.0580 (11)	0.0672 (11)	0.0174 (9)	-0.0047 (8)	-0.0150 (9)
C8	0.0539 (11)	0.0600 (12)	0.0746 (13)	0.0158 (10)	-0.0121 (10)	-0.0258 (10)
C9	0.0646 (12)	0.0551 (11)	0.0564 (10)	0.0251 (9)	-0.0038 (9)	-0.0197 (9)

C10	0.0407(0)	0.0509 (10)	0.0441 (0)	0.0221 (9)	0.0011(7)	0.009(.7)
C10	0.0497(9)	0.0508 (10)	0.0441(8)	0.0231(8)	0.0011(7)	-0.0086 (7)
C11	0.0298 (10)	0.0298 (10)	0.0348 (16)	0.0149 (5)	0.000	0.000
C12	0.0305 (13)	0.0306 (14)	0.0452 (15)	0.0148 (11)	-0.0008 (12)	-0.0012 (11)
C13	0.0638 (11)	0.0358 (8)	0.0563 (10)	0.0267 (8)	-0.0048 (8)	0.0013 (7)
N3	0.133 (2)	0.0465 (10)	0.0953 (14)	0.0447 (12)	-0.0088 (14)	0.0143 (10)
C14	0.0450 (13)	0.0450 (13)	0.0380 (18)	0.0225 (6)	0.000	0.000
C15	0.0471 (19)	0.052 (2)	0.0479 (17)	0.0216 (16)	0.0006 (14)	0.0005 (15)
C16	0.0480 (11)	0.1100 (18)	0.0564 (11)	0.0412 (12)	-0.0070 (9)	-0.0067 (11)
N4	0.0566 (12)	0.183 (3)	0.0910 (15)	0.0611 (15)	-0.0082 (11)	-0.0235 (16)

Geometric parameters (Å, °)

Fe1—N1 ⁱ	1.9688 (13)	С9—Н9	0.9300
Fe1—N1 ⁱⁱ	1.9688 (13)	C10—H10	0.9300
Fe1—N1	1.9688 (13)	C11—C12 ⁱⁱⁱ	1.422 (3)
Fe1—N2	1.9734 (13)	C11—C12 ^{iv}	1.422 (3)
Fe1—N2 ⁱ	1.9734 (13)	C11—C12	1.422 (3)
Fe1—N2 ⁱⁱ	1.9734 (13)	C11—C12 ^v	1.422 (3)
N1—C1	1.346 (2)	C11—C12 ^{vi}	1.422 (3)
N1—C5	1.355 (2)	C11—C12 ^{vii}	1.422 (3)
N2—C10	1.346 (2)	C12—C12 ⁱⁱⁱ	1.423 (3)
N2—C6	1.354 (2)	C12C12 ^{vii}	1.423 (3)
C1—C2	1.375 (2)	C12—C13	1.473 (3)
C1—H1	0.9300	C12—C13 ^{vii}	1.492 (3)
C2—C3	1.373 (3)	C13—N3	1.067 (2)
С2—Н2	0.9300	C14—C15 ^{viii}	1.421 (3)
C3—C4	1.382 (3)	C14—C15 ^{ix}	1.421 (3)
С3—Н3	0.9300	C14—C15	1.421 (3)
C4—C5	1.386 (2)	C14—C15 ^x	1.421 (3)
C4—H4	0.9300	C14—C15 ^{xi}	1.421 (3)
C5—C6	1.468 (2)	C14—C15 ^{xii}	1.422 (3)
C6—C7	1.384 (2)	C15—C15 ^{viii}	1.421 (3)
C7—C8	1.382 (3)	C15—C15 ^{xii}	1.422 (3)
С7—Н7	0.9300	C15—C16	1.482 (4)
C8—C9	1.370 (3)	C15—C16 ^{xii}	1.482 (4)
С8—Н8	0.9300	C16—N4	1.079 (3)
С9—С10	1.374 (2)		
N1 ⁱ —Fe1—N1 ⁱⁱ	96.74 (5)	C12 ⁱⁱⁱ —C11—C12 ^v	60.040 (9)
N1 ⁱ —Fe1—N1	96.73 (5)	C12 ^{iv} —C11—C12 ^v	119.960 (9)
N1 ⁱⁱ —Fe1—N1	96.74 (5)	C12—C11—C12 ^v	119.960 (9)
N1 ⁱ —Fe1—N2	85.75 (5)	$C12^{iii}$ — $C11$ — $C12^{vi}$	119.964 (10)
N1 ⁱⁱ —Fe1—N2	177.07 (5)	$C12^{iv}$ — $C11$ — $C12^{vi}$	60.037 (9)
N1—Fe1—N2	81.40 (5)	C12-C11-C12 ^{vi}	180.0
N1 ⁱ —Fe1—N2 ⁱ	81.40 (5)	$C12^{v}$ — $C11$ — $C12^{vi}$	60.043 (9)
N1 ⁱⁱ —Fe1—N2 ⁱ	85.75 (5)	C12 ⁱⁱⁱ —C11—C12 ^{vii}	119.962 (9)
N1—Fe1—N2 ⁱ	177.07 (5)	$C12^{iv}$ — $C11$ — $C12^{vii}$	60.037 (9)
N2—Fe1—N2 ⁱ	96.18 (5)	C12-C11-C12 ^{vii}	60.042 (9)

$N1^{i}$ —Fe1— $N2^{ii}$	177.07 (5)	$C12^{v}$ — $C11$ — $C12^{vii}$	180.0
N1 ⁱⁱ —Fe1—N2 ⁱⁱ	81.40 (5)	$C12^{vi}$ — $C11$ — $C12^{vii}$	119.955 (9)
N1—Fe1—N2 ⁱⁱ	85.75 (5)	$C_{11} - C_{12} - C_{12}^{iii}$	59.978 (4)
N2—Fe1—N2 ⁱⁱ	96 18 (5)	$C_{11} - C_{12} - C_{12}^{vii}$	59 981 (5)
$N2^{i}$ Fe1 $N2^{ii}$	96 18 (5)	$C12^{iii}$ $C12^{-C12^{vii}}$	119 84 (3)
C1-N1-C5	118 01 (14)	$C_{11} - C_{12} - C_{13}$	117.8(2)
C1—N1—Fe1	126 27 (11)	$C12^{iii}$ $C12^{-C13}$	62.0(2)
C5—N1—Fel	115 13 (10)	$C12^{vii}$ $C12^$	162.7(4)
C10-N2-C6	118.00 (14)	$C_{11} - C_{12} - C_{13}^{vii}$	102.7(1)
C10 - N2 - Ee1	126 53 (11)	$C12^{iii}$ $C12^{-C13^{vii}}$	1561(4)
C6-N2-Fe1	115 18 (10)	C_{12}^{vii} C_{12}^{vii} C_{13}^{vii}	60.6.(2)
N1 - C1 - C2	122 79 (16)	$C_{12} = C_{12} = C_{13}$	125.6(2)
N1_C1_H1	118.6	N3_C13_C12	123.0(2)
C2_C1_H1	118.6	N_{3} C13 C12	151.0(3)
$C_2 = C_1 = III$	110.18 (16)	$C_{12} = C_{13} = C_{12}$	57.34(18)
$C_{3} = C_{2} = C_{1}$	120.4	C12 - C13 - C12	1800(2)
C_{3} C_{2} H_{2}	120.4	$C15^{viii}$ $C14$ $C15$	180.0(2)
$C_1 = C_2 = H_2$	120.4	$C15^{\circ} - C14 - C15$	110,005(4)
$C_2 = C_3 = C_4$	119.04 (17)	$C15^{}C14^{}C15$	119.990(4)
$C_2 = C_3 = H_3$	120.5	$C15^{***}$ $-C14$ $-C15^{**}$	00.004(3)
$C_4 = C_5 = H_5$	120.3	$C15^{}C14^{}C15^{}$	119.997(3)
$C_3 = C_4 = C_3$	119.30 (17)	$C15 - C14 - C15^{\circ}$	119.997 (3)
C_{3} C_{4} H_{4}	120.3	$C15^{iiii} - C14 - C15^{iii}$	120.000(4)
C3-C4-H4	120.5	$C15^{}C14^{}C15^{}$	60.001 (3)
NI-C5-C4	121.62 (15)	$C15 - C14 - C15^{\text{Al}}$	180.0
NI-C5-C6	113.92 (13)	$C15^{x}$ — $C14$ — $C15^{x1}$	60.006 (4)
C4—C5—C6	124.45 (15)		119.998 (4)
N2—C6—C7	121.57 (15)	$C15^{ix}$ — $C14$ — $C15^{xin}$	60.001 (4)
N2—C6—C5	113.87 (13)	C15—C14—C15 ^{xn}	60.005 (4)
C7—C6—C5	124.56 (15)	$C15^{x}$ — $C14$ — $C15^{xn}$	180.0
C8—C7—C6	119.39 (18)	$C15^{x_1}$ — $C14$ — $C15^{x_{11}}$	119.991 (3)
С8—С7—Н7	120.3	C14—C15—C15 ^{viii}	59.996 (2)
С6—С7—Н7	120.3	C14—C15—C15 ^{xii}	59.999 (2)
C9—C8—C7	119.04 (17)	$C15^{viii}$ — $C15$ — $C15^{xii}$	119.984 (14)
С9—С8—Н8	120.5	C14—C15—C16	116.8 (3)
С7—С8—Н8	120.5	C15 ^{viii} —C15—C16	61.4 (3)
C8—C9—C10	119.21 (17)	C15 ^{xii} —C15—C16	159.4 (4)
С8—С9—Н9	120.4	C14—C15—C16 ^{xii}	116.7 (3)
С10—С9—Н9	120.4	C15 ^{viii} —C15—C16 ^{xii}	157.4 (4)
N2—C10—C9	122.77 (16)	C15 ^{xii} —C15—C16 ^{xii}	61.3 (3)
N2-C10-H10	118.6	C16—C15—C16 ^{xii}	126.5 (3)
С9—С10—Н10	118.6	N4-C16-C15	151.5 (3)
$C12^{iii}$ — $C11$ — $C12^{iv}$	180.00 (17)	N4-C16-C15 ^{viii}	150.8 (3)
C12 ⁱⁱⁱ —C11—C12	60.039 (9)	C15-C16-C15 ^{viii}	57.3 (2)
C12 ^{iv} —C11—C12	119.960 (9)		
C5—N1—C1—C2	-1.0 (2)	C12 ^v —C11—C12—C13	19.6 (4)
Fe1—N1—C1—C2	169.70 (14)	C12 ^{vii} —C11—C12—C13	-160.4 (4)
N1—C1—C2—C3	0.5 (3)	C12 ⁱⁱⁱ —C11—C12—C13 ^{vii}	-153.1 (4)

C^2 C^2 C^4 C^5			
U2-U3-U4-U3	-0.8 (3)	C12 ^v —C11—C12—C13 ^{vii}	-157.06 (12)
C1—N1—C5—C4	0.7 (2)	C12 ^{vii} —C11—C12—C13 ^{vii}	22.94 (12)
Fe1—N1—C5—C4	-171.07 (13)	C11—C12—C13—N3	153.0 (4)
C1—N1—C5—C6	179.30 (14)	C12 ⁱⁱⁱ —C12—C13—N3	176.1 (5)
Fe1—N1—C5—C6	7.55 (17)	C12 ^{vii} —C12—C13—N3	75.2 (8)
C3—C4—C5—N1	0.2 (3)	C13 ^{vii} —C12—C13—N3	-30.7 (6)
C3—C4—C5—C6	-178.27 (17)	C11—C12—C13—C12 ⁱⁱⁱ	-23.06 (8)
C10—N2—C6—C7	-0.9 (2)	C12 ^{vii} —C12—C13—C12 ⁱⁱⁱ	-100.9 (7)
Fe1—N2—C6—C7	-175.08 (14)	C13 ^{vii} —C12—C13—C12 ⁱⁱⁱ	153.2 (4)
C10—N2—C6—C5	178.43 (14)	C15 ^{ix} —C14—C15—C15 ^{viii}	180.0
Fe1—N2—C6—C5	4.22 (17)	C15 ^x —C14—C15—C15 ^{viii}	1.2 (5)
N1-C5-C6-N2	-7.7 (2)	C15 ^{xii} —C14—C15—C15 ^{viii}	-178.8 (5)
C4—C5—C6—N2	170.89 (15)	C15 ^{viii} —C14—C15—C15 ^{xii}	178.8 (5)
N1-C5-C6-C7	171.59 (16)	C15 ^{ix} —C14—C15—C15 ^{xii}	-1.2 (5)
C4—C5—C6—C7	-9.8 (3)	C15 ^x —C14—C15—C15 ^{xii}	180.0
N2—C6—C7—C8	1.2 (3)	C15 ^{viii} —C14—C15—C16	-24.35 (14)
C5—C6—C7—C8	-178.05 (18)	C15 ^{ix} —C14—C15—C16	155.65 (14)
C6—C7—C8—C9	-0.5 (3)	C15 ^x —C14—C15—C16	-23.2 (5)
C7—C8—C9—C10	-0.4 (3)	C15 ^{xii} —C14—C15—C16	156.8 (5)
C6—N2—C10—C9	-0.1 (3)	C15 ^{viii} —C14—C15—C16 ^{xii}	154.5 (5)
Fe1—N2—C10—C9	173.37 (14)	C15 ^{ix} —C14—C15—C16 ^{xii}	-25.5 (5)
C8—C9—C10—N2	0.8 (3)	C15 ^x —C14—C15—C16 ^{xii}	155.66 (14)
C12 ^{iv} —C11—C12—C12 ⁱⁱⁱ	180.002 (1)	C15 ^{xii} —C14—C15—C16 ^{xii}	-24.34 (14)
C12 ^v —C11—C12—C12 ⁱⁱⁱ	-4.0 (4)	C14—C15—C16—N4	-149.5 (4)
C12 ^{vii} —C11—C12—C12 ⁱⁱⁱ	176.0 (4)	C15 ^{viii} —C15—C16—N4	-173.6 (5)
C12 ⁱⁱⁱ —C11—C12—C12 ^{vii}	-176.0 (4)	C15 ^{xii} —C15—C16—N4	-74.0 (9)
C12 ^{iv} —C11—C12—C12 ^{vii}	4.0 (4)	C16 ^{xii} —C15—C16—N4	31.7 (7)
C12 ^v —C11—C12—C12 ^{vii}	180.0	C14—C15—C16—C15 ^{viii}	24.01 (10)
C12 ⁱⁱⁱ —C11—C12—C13	23.55 (11)	C15 ^{xii} —C15—C16—C15 ^{viii}	99.5 (7)
C12 ^{iv} —C11—C12—C13	-156.45 (11)	C16 ^{xii} —C15—C16—C15 ^{viii}	-154.7 (5)

Symmetry codes: (i) -*y*+2, *x*-*y*+1, *z*; (ii) -*x*+*y*+1, -*x*+2, *z*; (iii) *x*-*y*+2/3, *x*+1/3, -*z*+1/3; (iv) -*x*+*y*, -*x*+1, *z*; (v) -*y*+1, *x*-*y*+1, *z*; (vi) -*x*+2/3, -*y*+4/3, -*z*+1/3; (vii) *y*-1/3, -*x*+*y*+1/3, -*z*+1/3; (viii) *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; (ix) -*y*+1, *x*-*y*, *z*; (x) -*x*+*y*+1, -*x*+1, *z*; (xi) -*x*+4/3, -*y*+2/3, -*z*+2/3; (xii) *x*-*y*+1/3, *x*-1/3, -*z*+2/3.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···N1 ⁱⁱ	0.93	2.61	3.121 (2)	115
C10—H10…N2 ⁱ	0.93	2.60	3.116 (2)	115
C4—H4···N3 ^v	0.93	2.45	3.333 (3)	159
C8—H8····N3 ⁱⁱⁱ	0.93	2.68	3.476 (3)	144
C3—H3···N4 ^v	0.93	2.65	3.244 (3)	122
C10—H10····N4 ^{xiii}	0.93	2.68	3.437 (3)	139

Symmetry codes: (i) -y+2, x-y+1, z; (ii) -x+y+1, -x+2, z; (iii) x-y+2/3, x+1/3, -z+1/3; (v) -y+1, x-y+1, z; (xiii) -y+4/3, x-y+2/3, z-1/3.