

IUCrData

ISSN 2414-3146

Received 12 May 2025 Accepted 24 June 2025

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; tetrahalogenated bicyclononane.

CCDC reference: 2466895

Structural data: full structural data are available from iucrdata.iucr.org

*rac-4,5-trans-*Dibromo-9,9-dichloro-*cis*-bicyclo-[6.1.0]nonane

Heiner Detert* and Dieter Schollmeyer

University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The crystal structure of the title tetrahalogenated bicyclononane, $C_9H_{12}Br_2Cl_2$, is reported. The molecule adopts a distorted twist-chair conformation. The cyclopropane ring is almost parallel to the plane formed by the four methylene carbon atoms.

Structure description

The title compound, $C_9H_{12}Br_2Cl_2$ (Fig. 1), was prepared as part of a project focusing on medium-sized bicyclic cycloalkynes (Meier *et al.*, 1987; Detert & Meier, 1997). Both enantiomers [(*S*,*S*) and (*R*,*R*-)] occupy the same positions in the crystal, resulting in disorder on C1 and C2, but the ratio is 0.638 (9)/0.362 (9). The eight-membered ring adopts a distorted twist-chair conformation and the annulated cyclopropane group is in an *exo*-position. The four methylene carbons (C3, C4, C7, C8) lie in a common plane. This plane is nearly parallel to the cyclopropane ring, their normals enclose a small angle of only 0.5 (3)°. The bond lengths of the bromine-bound carbon atoms are significantly different: C1–C8: 1.487 (7) Å; C2–C3: 1.567 (7) Å. Furthermore, the C–C–C bond angles are opened to 120.5 (5)° (C2–C8–C1) and even 121.8 (5)° (C1–C2–C3). The same holds for the minor occupied sites. The packing is shown in Fig. 2.

Synthesis and crystallization

The title compound, first mentioned by Fray (1963), was prepared by careful addition of bromine to 9.9-dichlorobicyclo[6.1.0]non-4-ene. Crystals were grown by slow evaporation of a solution in chloroform and propanol-2 to yield colorless crystals with a m.p. of 336–340 K. The annotation of the NMR signals follows IUPAC nomenclature. ¹H-NMR (200 MHz, CDCl₃): 9.1 (*bs*, 1 H, OH), 2.75 (*t*, 2 H, *J* = 6.1 Hz), 2.37 (*t*, 2 H, *J* = 6 Hz), 2.20-1.95 (*m*, 6 H, 3,4,7-H), 1.80 (*m*, 4 H, 8,9-H); ¹³C-NMR (100 MHz, CDCl₃): 160.3 (C=N), 84.9, 83.4 (C-5, C-6), 26.1, 24.3, 23.9 (C-3,8,9), 19.6, 18.3 (C-4, 7).

data reports

Figure 1

View (Spek, 2009) of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The minor occupied component is drawn with dashed lines.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Figure 2

Partial packing diagram (Spek, 2009), viewed along the *a*-axis direction. The minor occupied component is omitted.

Table 1	
Experimental	details.

Crystal data	
Chemical formula	$C_9H_{12}Br_2Cl_2$
$M_{ m r}$	350.91
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
a, b, c (Å)	7.2027 (3), 22.1157 (10), 7.5534 (3)
β (°)	105.517 (3)
$V(Å^3)$	1159.35 (9)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	7.41
Crystal size (mm)	$0.50 \times 0.46 \times 0.13$
Data collection	
Diffractometer	Stoe IPDS 2T
Absorption correction	Integration [X-RED32 (Stoe & Cie, 2020) absorption correction by Gaussian integration]
T_{\min}, T_{\max}	0.069, 0.358
No. of measured, independent and	6364, 2766, 2469
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.659
D.C.	
Remement $p(r^2) = p(r^2)$	0.040 0.100 1.10
$R[F > 2\sigma(F)], wR(F), S$	0.040, 0.100, 1.19
No. of reflections	2/00
No. of parameters	
H-atom treatment $(-3)^{2}$	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-5})$	0.60, -0.40

Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020), SHELXT2014 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b) and PLATON (Spek, 2009).

References

Detert, H. & Meier, H. (1997). Liebigs Ann. Recl pp. 1557-1563.

Fray, G. I. (1963). J. Chem. Soc. pp. 4284-4285.

Meier, H., Antony-Mayer, C., Schulz-Popitz, C. & Zerban, G. (1987). Liebigs Ann. Chem. pp. 1087–1094.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2020). X-RED32 and X-AREA. Stoe & Cie, Darmstadt,

full crystallographic data

IUCrData (2025). **10**, x250573 [https://doi.org/10.1107/S2414314625005735]

rac-4,5-trans-Dibromo-9,9-dichloro-cis-bicyclo[6.1.0]nonane

F(000) = 680

 $\theta = 2.8 - 28.4^{\circ}$ $\mu = 7.41 \text{ mm}^{-1}$

Plate, colorless

 $0.50 \times 0.46 \times 0.13 \text{ mm}$

 $T_{\rm min} = 0.069, T_{\rm max} = 0.358$

6364 measured reflections

 $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$

2766 independent reflections 2469 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int} = 0.034$

 $h = -9 \rightarrow 9$

 $k = -29 \longrightarrow 29$ $l = -9 \longrightarrow 9$

 $D_{\rm x} = 2.010 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9471 reflections

Heiner Detert and Dieter Schollmeyer

rac-4,5-trans-Dibromo-9,9-dichloro-cis-bicyclo[6.1.0]nonane

Crystal data

C₉H₁₂Br₂Cl₂ $M_r = 350.91$ Monoclinic, $P2_1/c$ a = 7.2027 (3) Å b = 22.1157 (10) Å c = 7.5534 (3) Å $\beta = 105.517$ (3)° V = 1159.35 (9) Å³ Z = 4

Data collection

Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method, ω scans Absorption correction: integration [X-Red32 (Stoe & Cie, 2020) absorption correction by Gaussian integration]

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 2.8083P]$
S = 1.19	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2766 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
155 parameters	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the ridingmodel approximation with $C_{\text{methylene}}$ -H = 0.99 Å or C_{tertiary} -H = 1.00 Å, and with U_{iso} (H) = 1.2 U_{eq} (C).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.67566 (14)	0.67134 (4)	0.60825 (12)	0.0288 (2)	
Cl2	0.83981 (13)	0.55561 (4)	0.55570 (12)	0.02610 (19)	
Br1	0.0626 (5)	0.72992 (15)	0.0378 (5)	0.0261 (4)	0.638 (9)
Br2	0.2483 (2)	0.53409 (6)	-0.0565 (4)	0.0289 (4)	0.638 (9)
C1	0.1135 (9)	0.6031 (4)	0.0199 (9)	0.0243 (14)	0.638 (9)
H1	-0.023418	0.599338	-0.054723	0.029*	0.638 (9)
C2	0.1880 (9)	0.6610 (3)	-0.0491 (8)	0.0232 (13)	0.638 (9)
H2	0.130604	0.660373	-0.185198	0.028*	0.638 (9)
Br1A	0.2998 (9)	0.5459 (2)	-0.1082 (6)	0.0393 (12)	0.362 (9)
Br2A	0.0345 (11)	0.7209 (3)	0.0592 (9)	0.0336 (10)	0.362 (9)
C1A	0.0875 (14)	0.6337 (7)	0.0252 (13)	0.021 (2)	0.362 (9)
H1A	-0.033261	0.617909	-0.061182	0.026*	0.362 (9)
C2A	0.2366 (16)	0.6317 (6)	-0.0823 (13)	0.024 (2)	0.362 (9)
H2A	0.167411	0.645242	-0.209057	0.028*	0.362 (9)
C3	0.4082 (6)	0.67226 (18)	-0.0243 (5)	0.0287 (8)	
H3A	0.457248	0.639468	-0.088844	0.034*	0.638 (9)
H3B	0.422031	0.710584	-0.087348	0.034*	0.638 (9)
H3C	0.360886	0.713840	-0.057962	0.034*	0.362 (9)
H3D	0.492984	0.662025	-0.103791	0.034*	0.362 (9)
C4	0.5379 (5)	0.67580 (16)	0.1709 (5)	0.0242 (7)	
H4A	0.657883	0.697353	0.169044	0.029*	
H4B	0.472136	0.699838	0.246652	0.029*	
C5	0.5899 (5)	0.61482 (15)	0.2597 (5)	0.0192 (6)	
Н5	0.653803	0.586721	0.190526	0.023*	
C6	0.4614 (5)	0.58393 (15)	0.3632 (5)	0.0206 (7)	
H6	0.454627	0.538915	0.350552	0.025*	
C7	0.2773 (5)	0.61350 (17)	0.3764 (5)	0.0237 (7)	
H7A	0.295303	0.657907	0.382082	0.028*	
H7B	0.248641	0.600487	0.491711	0.028*	
C8	0.1061 (5)	0.59791 (18)	0.2141 (5)	0.0266 (7)	
H8A	0.070570	0.555553	0.232062	0.032*	0.638 (9)
H8B	-0.002787	0.623390	0.226302	0.032*	0.638 (9)
H8C	-0.013285	0.604977	0.252293	0.032*	0.362 (9)
H8D	0.112053	0.554131	0.188845	0.032*	0.362 (9)
C9	0.6542 (5)	0.60790 (15)	0.4640 (5)	0.0201 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0330 (5)	0.0250 (4)	0.0246 (4)	-0.0022 (3)	0.0013 (3)	-0.0062 (3)
Cl2	0.0220 (4)	0.0268 (4)	0.0258 (4)	0.0037 (3)	0.0001 (3)	0.0047 (3)
Br1	0.0348 (8)	0.0208 (6)	0.0219 (8)	0.0074 (5)	0.0063 (5)	0.0023 (5)
Br2	0.0291 (5)	0.0228 (4)	0.0295 (7)	0.0041 (3)	-0.0016 (4)	-0.0071 (4)
C1	0.022 (3)	0.019 (3)	0.027 (3)	0.004 (2)	-0.002 (2)	-0.004 (3)
C2	0.025 (3)	0.025 (3)	0.017 (3)	0.007 (2)	0.001 (2)	0.002 (2)

Br1A	0.0497 (17)	0.0319 (11)	0.0262 (10)	0.0215 (11)	-0.0075 (11)	-0.0111 (9)
Br2A	0.044 (2)	0.032 (2)	0.0244 (13)	0.0204 (15)	0.0094 (10)	0.0019 (12)
C1A	0.013 (4)	0.030(7)	0.016 (4)	-0.001 (5)	-0.005 (3)	-0.005 (5)
C2A	0.029 (5)	0.027 (6)	0.009 (4)	0.010 (4)	-0.004(4)	0.002 (4)
C3	0.032 (2)	0.0309 (19)	0.0226 (17)	-0.0001 (15)	0.0064 (15)	0.0088 (15)
C4	0.0259 (18)	0.0212 (16)	0.0256 (17)	-0.0017 (13)	0.0071 (14)	0.0047 (13)
C5	0.0205 (16)	0.0189 (15)	0.0178 (15)	0.0017 (12)	0.0046 (12)	0.0003 (12)
C6	0.0218 (17)	0.0196 (15)	0.0187 (15)	-0.0025 (13)	0.0025 (13)	0.0018 (12)
C7	0.0220 (17)	0.0286 (17)	0.0208 (16)	0.0011 (14)	0.0062 (13)	0.0060 (14)
C8	0.0181 (16)	0.0328 (19)	0.0270 (17)	-0.0009 (14)	0.0027 (14)	0.0034 (15)
С9	0.0210 (16)	0.0191 (15)	0.0183 (15)	0.0019 (12)	0.0017 (13)	0.0029 (12)

Geometric parameters (Å, °)

Cl1—C9	1.758 (3)	С3—Н3С	0.9900	
Cl2—C9	1.763 (3)	C3—H3D	0.9900	
Br1—C2	1.972 (9)	C4—C5	1.508 (5)	
Br2—C1	1.975 (9)	C4—H4A	0.9900	
C1—C8	1.487 (7)	C4—H4B	0.9900	
C1—C2	1.533 (10)	С5—С9	1.495 (5)	
C1—H1	1.0000	C5—C6	1.524 (5)	
C2—C3	1.567 (7)	С5—Н5	1.0000	
C2—H2	1.0000	C6—C9	1.491 (5)	
Br1A—C2A	1.973 (14)	C6—C7	1.505 (5)	
Br2A—C1A	1.997 (18)	С6—Н6	1.0000	
C1A—C2A	1.510 (17)	C7—C8	1.528 (5)	
C1A—C8	1.606 (12)	C7—H7A	0.9900	
C1A—H1A	1.0000	C7—H7B	0.9900	
C2A—C3	1.495 (12)	C8—H8A	0.9900	
C2A—H2A	1.0000	C8—H8B	0.9900	
C3—C4	1.522 (5)	C8—H8C	0.9900	
С3—НЗА	0.9900	C8—H8D	0.9900	
С3—Н3В	0.9900			
C8—C1—C2	120.5 (6)	C5—C4—H4B	108.8	
C8—C1—Br2	112.3 (4)	C3—C4—H4B	108.8	
C2—C1—Br2	107.6 (5)	H4A—C4—H4B	107.7	
C8—C1—H1	105.0	C9—C5—C4	121.5 (3)	
C2—C1—H1	105.0	C9—C5—C6	59.2 (2)	
Br2—C1—H1	105.0	C4—C5—C6	121.1 (3)	
C1—C2—C3	121.8 (5)	С9—С5—Н5	114.7	
C1—C2—Br1	107.4 (5)	C4—C5—H5	114.7	
C3—C2—Br1	112.1 (4)	С6—С5—Н5	114.7	
C1—C2—H2	104.6	C9—C6—C7	121.9 (3)	
С3—С2—Н2	104.6	C9—C6—C5	59.4 (2)	
Br1—C2—H2	104.6	C7—C6—C5	120.4 (3)	
C2A-C1A-C8	124.1 (10)	С9—С6—Н6	114.7	
C2A—C1A—Br2A	106.6 (10)	С7—С6—Н6	114.7	

C8—C1A—Br2A	109.6 (6)	С5—С6—Н6	114.7
C2A—C1A—H1A	105.0	C6—C7—C8	112.6 (3)
C8—C1A—H1A	105.0	С6—С7—Н7А	109.1
Br2A—C1A—H1A	105.0	С8—С7—Н7А	109.1
C3—C2A—C1A	118.5 (10)	С6—С7—Н7В	109.1
C3—C2A—Br1A	114.3 (7)	С8—С7—Н7В	109.1
C1A—C2A—Br1A	107.3 (10)	H7A—C7—H7B	107.8
C3—C2A—H2A	105.2	C1—C8—C7	122.7 (4)
C1A—C2A—H2A	105.2	C7—C8—C1A	117.4 (5)
Br1A—C2A—H2A	105.2	C1—C8—H8A	106.7
C2A—C3—C4	124.0 (4)	С7—С8—Н8А	106.7
C4—C3—C2	117.6 (3)	C1—C8—H8B	106.7
С4—С3—НЗА	107.9	С7—С8—Н8В	106.7
С2—С3—НЗА	107.9	H8A—C8—H8B	106.6
C4—C3—H3B	107.9	С7—С8—Н8С	108.0
С2—С3—Н3В	107.9	C1A—C8—H8C	108.0
H3A—C3—H3B	107.2	C7—C8—H8D	108.0
C2A—C3—H3C	106.3	C1A—C8—H8D	108.0
C4—C3—H3C	106.3	H8C—C8—H8D	107.2
C2A—C3—H3D	106.3	C6—C9—C5	61.4 (2)
C4—C3—H3D	106.3	C6—C9—Cl1	121.0 (3)
H3C—C3—H3D	106.4	C5—C9—Cl1	120.6 (2)
C5—C4—C3	113.6 (3)	C6—C9—Cl2	118.2 (2)
C5—C4—H4A	108.8	C5—C9—Cl2	117.7 (2)
C3—C4—H4A	108.8	Cl1—C9—Cl2	110.36 (19)
C8—C1—C2—C3	84.4 (8)	C9—C6—C7—C8	158.3 (3)
Br2—C1—C2—C3	-46.0 (7)	C5—C6—C7—C8	87.5 (4)
C8-C1-C2-Br1	-46.9 (7)	C2—C1—C8—C7	-49.5 (8)
Br2—C1—C2—Br1	-177.3 (3)	Br2—C1—C8—C7	78.9 (5)
C8—C1A—C2A—C3	-82.3 (15)	C6—C7—C8—C1	-49.5 (6)
Br2A—C1A—C2A—C3	46.3 (10)	C6—C7—C8—C1A	-79.0 (7)
C8—C1A—C2A—Br1A	48.9 (11)	C2A—C1A—C8—C7	60.9 (13)
Br2A—C1A—C2A—Br1A	177.6 (5)	Br2A—C1A—C8—C7	-66.4 (7)
C1A—C2A—C3—C4	52.0 (13)	C7—C6—C9—C5	-108.9 (3)
Br1A—C2A—C3—C4	-76.0 (7)	C7—C6—C9—Cl1	1.5 (4)
C1—C2—C3—C4	-62.2 (7)	C5—C6—C9—Cl1	110.4 (3)
Br1-C2-C3-C4	67.1 (5)	C7—C6—C9—Cl2	143.1 (3)
C2A—C3—C4—C5	44.4 (8)	C5—C6—C9—Cl2	-108.0 (3)
C2—C3—C4—C5	79.2 (5)	C4—C5—C9—C6	109.9 (4)
C3—C4—C5—C9	-158.2 (3)	C4—C5—C9—Cl1	-1.2 (5)
C3—C4—C5—C6	-87.6 (4)	C6—C5—C9—Cl1	-111.1 (3)
C4—C5—C6—C9	-110.5 (4)	C4—C5—C9—Cl2	-141.4 (3)
C9—C5—C6—C7	111.4 (4)	C6—C5—C9—Cl2	108.7 (3)
C4—C5—C6—C7	0.9 (5)		