

ISSN 2414-3146

Received 5 May 2025 Accepted 23 June 2025

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; manganese(II) complex; lipoic acid; hydrogen bond; coordination compound.

CCDC reference: 2466330

Structural data: full structural data are available from iucrdata.iucr.org

Diaquabis(DL- α -lipoato- $\kappa^2 O, O'$)manganese(II)

Farkhod Raxmatovich Jumabaev,^a Avez Tuymuradovich Sharipov,^a Vazirakhon Khasanxoja kizi Mannopova,^b Odil Irgashevich Choriyev^c and Jamshid Mengnorovich Ashurov^c*

^aDepartment of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, 45 Oybek St., Tashkent 100015, Uzbekistan, ^bKyungpook National University, Natural Sciences, Department of Pharmacy, Daegu, Democratic People's Republic of Korea, and ^cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83 M. Ulugbek St., Tashkent 100125, Uzbekistan. *Correspondence e-mail: ashurovjamshid1@gmail.com

The manganese(II) coordination compound, $[Mn(C_8H_{13}S_2O_2)_2(H_2O)_2]$, with two bidentate α -lipoate ligands and two coordinating water molecules, has been structurally characterized. The cantral Mn^{II} atom lies on a crystallographic twofold rotation axis and adopts a distorted octahedral coordination environment, with carboxylate groups chelating the metal in a $\kappa^2 O$, O'-binding mode. One of the sulfur atoms within the 1,2-dithiolane ring exhibits positional disorder over two sites, with refined occupancies of 0.92 and 0.08. The complex is isostructural with previously reported Zn^{II} and Cd^{II} analogues, both of which also display positional disorder in the 1,2-dithiolane ring. The molecules are linked *via* intermolecular $O-H\cdots O$ and $C-H\cdots S$ hydrogen bonds into a diperiodic supramolecular framework parallel to (100).

Structure description

 α -Lipoic acid [IUPAC name: 5-(1,2-dithiolan-3-yl)pentanoic acid], also known as thioctic acid, is a naturally occurring organosulfur compound that acts as a redox-active cofactor in mitochondrial multienzyme complexes such as pyruvate dehydrogenase and α -keto-glutarate dehydrogenase (Packer *et al.*, 1995). As a result of its amphipathic nature, lipoic acid can function across various cellular compartments and participate in redox regulation (Shay *et al.*, 2009). Its antioxidant activity is attributed to its ability to scavenge reactive oxygen species (ROS), regenerate endogenous antioxidants, and chelate transition metals (Biewenga *et al.*, 1997; Solmonson & DeBerardinis, 2018). These properties make lipoic acid a promising agent for the treatment of oxidative stress-related conditions such as diabetic neuropathy and cardiovascular disorders (Ziegler *et al.*, 2006; Gorąca *et al.*, 2011). Importantly, lipoic acid forms stable complexes with metal ions through its dithiolane ring and carboxylic acid group. These metal complexes, particularly

with transition metals, have demonstrated enhanced pharmacological properties including antioxidant, anticancer, and detoxification activities (Yan *et al.*, 2024). Chelation with Cu²⁺ and Zn²⁺ has been shown to improve its biomedical applicability, including in nanomedicine and redox modulation. Manganese (Mn), a bioactive transition metal, also exhibits notable therapeutic relevance due to its role in enzymatic activity, immune regulation, and bone formation. Mn-decorated titanium implants and manganese-based nanoparticles have shown osteogenic and immunomodulatory effects, highlighting their potential in tissue engineering and immunotherapy (Wang *et al.*, 2024; Huang *et al.*, 2023).

In this work, we report the synthesis and crystal structure of a novel Mn^{II} complex with DL- α -lipoate (abbreviated LIP). The asymmetric unit of the title compound, [Mn(LIP)₂- $(H_2O)_2$], comprises one half of the molecular unit, with the complete molecule generated by twofold rotation symmetry along the *b*-axis direction, *via* the symmetry operation 1 - x, *y*, $\frac{1}{2} - z$. The Mn^{II} cation lies on this special position, while all other atoms, including those of the LIP ligands and water molecules, occupy general positions. The central Mn^{II} atom is six-coordinated in a distorted [MnO₆] octahedral shape, defined by four oxygen atoms from two bidentate LIP ligands and two coordinating water molecules (Fig. 1). The Mn-Obond lengths span from 2.125 (2) (Mn-O1W) to 2.258 (2) Å (Mn-O1), with chelate-induced bite angles such as $O1-Mn1-O2 = 57.76 (8)^\circ$, reflecting notable geometric strain. Notably, the title complex is isostructural with the Cd^{II} complex reported by Strasdeit et al. (1997). In the latter, the Cd–O bond lengths are slightly longer, ranging from 2.226 Å (Cd-O3) for the coordinating water molecule to 2.343 Å (Cd-O2) for the carboxylate oxygen atoms, consistent with the larger ionic radius of Cd^{II} compared to Mn^{II}. The S-S bond length in the disulfide ring is also similar [2.0443 (18) Å for Mn, 2.047 (3) Å for Cd], indicating structural conservation of the dithiolane moiety across the series. This distortion is further evidenced by the *cis* O-Mn-O bond angles ranging from 87.45 (8) to $108.39 (9)^{\circ}$, and the *trans* angles being reduced to 144.53 (8) and 162.59 (13)°. The coordination

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1W-H1WA\cdots O2^{i}$	0.85	1.91	2.725 (3)	159
$O1W-H1WB\cdots O1^{ii}$	0.85	2.07	2.718 (3)	132
$C2-H2B\cdots S2A^{iii}$	0.97	2.12	3.043 (18)	158

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $-x + 1, y - 1, -z + \frac{1}{2}$; (iii) x, y + 1, z.

environment and geometry are closely comparable to those of the previously reported Zn^{II} analogue, $[Zn(LIP)_2(H_2O)_2]$, in which a similarly distorted octahedron is observed (Baumgartner et al., 1996). The bond lengths in the Mn^{II} complex are slightly elongated, consistent with the larger ionic radius of Mn^{II} relative to Zn^{II}. The LIP ligand maintains its fivemembered 1,2-dithiolane ring, but displays positional disorder of one sulfur atom. The major component (occupancy 0.92) involves an S1-S2 disulfide bridge with a bond length of 2.0443 (18) Å, whereas the minor component (occupancy 0.08) involves an alternative S2A position with an S1-S2Adistance of 2.042 (12) Å. This subtle disorder suggests limited conformational flexibility in the ring, which remains geometrically intact. Similar S–S distances are observed in the Zn^{II} complex [2.025 (4) Å] and in free α -lipoic acid [2.053 (4) Å; Stroud & Carlise, 1972].

The crystal packing is consolidated by a network of classical O-H···O hydrogen bonds involving water molecules acting as donors and carboxylate oxygen atoms from adjacent symmetry-related units as acceptors. The $O1W - H1WA \cdots O2^{i}$ and $O1W - H1WB \cdots O1^{ii}$ interactions exhibit donor-acceptor distances of 2.725 (3) and 2.718 (3) Å and angles of 159 and 132°, respectively, consistent with the moderately strong hydrogen-bonding geometry typically observed in metal carboxvlate systems (Table 1). In addition, a directional C-H···S hydrogen bond between a methylene hydrogen and the minor occupancy sulfur site $[C2-H2B\cdots S2A^{iii}]$ is present (Table 1, last entry), reinforcing the layer cohesion through weak but structurally significant interactions. These intermolecular contacts link the molecules into extended layers parallel to (100), forming a lamellar supramolecular architecture, as illustrated in Fig. 2.

Figure 1

The molecular structure of the $[Mn(LIP)_2(H_2O)_2]$ complex showing the atom-labelling scheme and 50% probability displacement ellipsoids for non-H atoms. Hydrogen atoms are shown as spheres of arbitrary radius. [Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.]

Figure 2

Crystal packing of the $[Mn(LIP)_2(H_2O)_2]$ complex viewed along the *c* axis. Intermolecular hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

To an aqueous solution (2.5 ml) of MnCl₂·4H₂O (0.099 g, 0.5 mmol), a sodium salt solution (2.5 ml) of DL- α -lipoic acid (0.206 g, 1 mmol) was added dropwise under constant stirring. The metal-to-ligand molar ratio was 1:2. The resulting mixture was left to stand at room temperature, and pinkish plate-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation over 21 days, yield: 70%. Elemental analysis for C₁₆H₃₀MnO₆S₄ (M_w = 501.58): calculated (%) C, 38.31; H, 6.03; Mn, 10.95; O, 19.14; S, 25.57; found: C, 38.27; H, 5.98; Mn, 10.89; O, 19.12; S, 25.50.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. One of the sulfur atoms in the 1,2dithiolane ring, S2, is disordered over two positions, modelled as S2 and S2A, with site occupancies of 0.92 and 0.08, respectively. Geometric and displacement restraints or constraints were applied in the disordered 1,2-dithiolane ring: bonds S1–S2/S2A and C3–S2/S2A were restrained to have the same distance with a standard deviation of 0.02 Å, and displacement parameters for S2 and S2A were constrained to be identical.

Acknowledgements

The authors gratefully acknowledge the Laboratory of Complex Compounds, Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, for research support.

References

- Baumgartner, M. R., Schmalle, H. & Dubler, E. (1996). *Inorg. Chim.* Acta 252, 319–331.
- Biewenga, G. P., Haenen, G. R. M. M. & Bast, A. (1997). Gen. Pharmacol.: Vasc. Syst. 29, 315–331.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gorąca, A., Huk-Kolega, H., Piechota, A., Kleniewska, P., Ciejka, E. & Skibska, B. (2011). *Pharmacol. Rep.* 63, 849–858.
- Huang, Y., Ruan, Y., Ma, Y., Chen, D., Zhang, T., Fan, S., Lin, W., Huang, Y., Lu, H., Xu, J.-F., Pi, J. & Zheng, B. (2023). *Front. Immunol.* **14**, 1128840.
- Packer, L., Witt, E. H. & Tritschler, H. J. (1995). Free Radical Biol. Med. 19, 227–250.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Table 2

Crystal data	
Chemical formula	$[Mn(C_8H_{13}O_2S_2)_2(H_2O)_2]$
Mr	501.58
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	290
a, b, c (Å)	38.4331 (13), 5.4083 (2), 11.0637 (3)
β (°)	93.566 (3)
$V(Å^3)$	2295.22 (13)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	8.32
Crystal size (mm)	$0.30 \times 0.24 \times 0.08$
Data collection	
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.419, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9876, 2214, 1795
R _{int}	0.052
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.154, 1.05
No. of reflections	2214
No. of parameters	127
No. of restraints	8
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.31, -0.27

Computer programs: *CrysAlis PRO* (Rigaku OD, 2022), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

- Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R. & Hagen, T. M. (2009). *Biochim. Biophys. Acta* **1790**, 1149–1160.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Solmonson, A. & DeBerardinis, R. J. (2018). J. Biol. Chem. 293, 7522–7530.
- Strasdeit, H., von Dolen, A. & Duhme, A.-K. (1997). Z. Naturforsch. B Chem. Sci 52, 17–24.
- Stroud, R. M. & Carlisle, C. H. (1972). Acta Cryst. B28, 304-307.
- Wang, L., Yan, C., Wang, F., Wang, Q., Huang, D., Yang, X., Ma, T., Chen, P., Li, C., Zhang, Z., Wan, G. & Yang, X. (2024). *Materials Today Advances* 24, 100542.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yan, S., Lu, J., Chen, B., Yuan, L., Chen, L., Ju, L., Cai, W. & Wu, J. (2024). Antioxidants 13, 897.
- Ziegler, D., Ametov, A., Barinov, A., Dyck, P. J., Gurieva, I., Low, P. A., Munzel, U., Yakhno, N., Raz, I., Novosadova, M., Maus, J. & Samigullin, R. (2006). *Diabetes Care* **29**, 2365–2370.

full crystallographic data

IUCrData (2025). **10**, x250565 [https://doi.org/10.1107/S2414314625005656]

Diaquabis(DL- α -lipoato- $\kappa^2 O, O'$)manganese(II)

Farkhod Raxmatovich Jumabaev, Avez Tuymuradovich Sharipov, Vazirakhon Khasanxoja kizi Mannopova, Odil Irgashevich Choriyev and Jamshid Mengnorovich Ashurov

Diaquabis [5-(1,2-dithiolan-3-yl) pentanoato- $\kappa^2 O, O']$ manganese (II)

Crystal data	
$[Mn(C_8H_{13}O_2S_2)_2(H_2O)_2]$	F(000) = 1052
$M_r = 501.58$	$D_{\rm x} = 1.452 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 38.4331 (13) Å	Cell parameters from 4882 reflections
b = 5.4083 (2) Å	$\theta = 4.6 - 71.2^{\circ}$
c = 11.0637 (3) Å	$\mu = 8.32 \text{ mm}^{-1}$
$\beta = 93.566 \ (3)^{\circ}$	T = 290 K
$V = 2295.22 (13) Å^3$	Plate, pinkish
Z = 4	$0.3 \times 0.24 \times 0.08 \text{ mm}$
Data collection	
XtaLAB Synergy, Single source at home/near,	$T_{\min} = 0.419, \ T_{\max} = 1.000$
HyPix3000	9876 measured reflections
diffractometer	2214 independent reflections
Radiation source: micro-focus sealed X-ray	1795 reflections with $I > 2\sigma(I)$
tube, PhotonJet (Cu) X-ray Source	$R_{\rm int} = 0.052$
Mirror monochromator	$\theta_{\rm max} = 71.4^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Detector resolution: 10.0000 pixels mm ⁻¹	$h = -46 \rightarrow 45$
ω scans	$k = -6 \rightarrow 6$
Absorption correction: multi-scan	$l = -13 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2022)	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: mixed
$wR(F^2) = 0.154$	H-atom parameters constrained
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0936P)^2 + 1.0204P]$
2214 reflections	where $P = (F_0^2 + 2F_c^2)/3$
127 parameters	$(\Delta/\sigma)_{\rm max} = 0.005$
8 restraints	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: dual	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mn1	0.500000	0.17395 (11)	0.250000	0.0400 (2)	
S1	0.71081 (4)	0.6684 (2)	0.07122 (12)	0.0889 (4)	

S2	0.66087 (3)	0.6590 (3)	0.12475 (12)	0.0818 (4)	0.92
S2A	0.6778 (4)	0.542 (3)	0.1952 (12)	0.0818 (4)	0.08
01	0.53986 (6)	0.4747 (4)	0.28943 (18)	0.0481 (5)	
O1W	0.46681 (7)	-0.0863 (4)	0.32936 (19)	0.0521 (6)	
H1WA	0.464697	-0.113169	0.404242	0.078*	
H1WB	0.452668	-0.186774	0.293346	0.078*	
O2	0.52498 (6)	0.2365 (4)	0.43551 (19)	0.0517 (6)	
C1	0.72057 (15)	0.9590 (11)	0.1424 (5)	0.0997 (17)	
H1A	0.744854	0.960903	0.172016	0.120*	
H1B	0.717162	1.090218	0.083028	0.120*	
C3	0.67286 (13)	0.8089 (10)	0.2663 (5)	0.0857 (15)	
H3A	0.685568	0.684922	0.316278	0.103*	0.92
H3B	0.685947	0.751848	0.339876	0.103*	0.08
C4	0.64166 (12)	0.8763 (9)	0.3330 (4)	0.0795 (13)	
H4A	0.628523	0.999583	0.285669	0.095*	
H4B	0.649753	0.953975	0.408622	0.095*	
C5	0.61713 (10)	0.6719 (7)	0.3618 (4)	0.0603 (9)	
H5A	0.630382	0.538050	0.400644	0.072*	
H5B	0.606141	0.608592	0.286739	0.072*	
C6	0.58918 (10)	0.7526 (8)	0.4432 (3)	0.0599 (9)	
H6A	0.600257	0.838442	0.512319	0.072*	
H6B	0.574126	0.870293	0.399280	0.072*	
C7	0.56689 (10)	0.5489 (8)	0.4891 (3)	0.0601 (9)	
H7A	0.582235	0.427313	0.528863	0.072*	
H7B	0.552818	0.618412	0.550521	0.072*	
C8	0.54298 (8)	0.4159 (6)	0.3990 (3)	0.0420 (7)	
C2	0.69827 (16)	1.0064 (13)	0.2446 (6)	0.115 (2)	
H2A	0.713185	1.029186	0.317755	0.138*	
H2B	0.685666	1.159689	0.229112	0.138*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0538 (4)	0.0384 (4)	0.0279 (4)	0.000	0.0040 (3)	0.000
0.0862 (8)	0.0991 (9)	0.0848 (8)	-0.0011 (6)	0.0323 (7)	-0.0086 (6)
0.0697 (8)	0.1122 (11)	0.0638 (7)	-0.0159 (6)	0.0066 (6)	-0.0201 (6)
0.0697 (8)	0.1122 (11)	0.0638 (7)	-0.0159 (6)	0.0066 (6)	-0.0201 (6)
0.0599 (13)	0.0495 (12)	0.0347 (11)	-0.0065 (10)	0.0005 (9)	0.0038 (9)
0.0740 (16)	0.0491 (12)	0.0338 (11)	-0.0126 (11)	0.0100 (10)	-0.0009 (10)
0.0670 (15)	0.0548 (12)	0.0334 (11)	-0.0132 (11)	0.0037 (10)	0.0017 (10)
0.087 (3)	0.102 (4)	0.116 (4)	-0.021 (3)	0.044 (3)	-0.012 (3)
0.077 (3)	0.113 (4)	0.069 (3)	-0.030 (3)	0.020 (2)	-0.022 (3)
0.070 (3)	0.087 (3)	0.084 (3)	-0.018 (2)	0.027 (2)	-0.023 (2)
0.055 (2)	0.072 (2)	0.055 (2)	-0.0052 (17)	0.0076 (16)	-0.0035 (17)
0.058 (2)	0.071 (2)	0.052 (2)	-0.0103 (18)	0.0088 (16)	-0.0134 (18)
0.063 (2)	0.080(2)	0.0375 (17)	-0.0215 (19)	0.0073 (15)	-0.0100 (17)
0.0471 (16)	0.0460 (16)	0.0334 (15)	0.0020 (12)	0.0066 (12)	-0.0007 (12)
0.095 (4)	0.128 (5)	0.129 (5)	-0.052 (4)	0.054 (3)	-0.048 (4)
	U^{11} 0.0538 (4) 0.0862 (8) 0.0697 (8) 0.0697 (8) 0.0599 (13) 0.0740 (16) 0.0670 (15) 0.087 (3) 0.077 (3) 0.077 (3) 0.070 (3) 0.055 (2) 0.058 (2) 0.063 (2) 0.0471 (16) 0.095 (4)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0538 (4) & 0.0384 (4) \\ 0.0862 (8) & 0.0991 (9) \\ 0.0697 (8) & 0.1122 (11) \\ 0.0697 (8) & 0.1122 (11) \\ 0.0599 (13) & 0.0495 (12) \\ 0.0740 (16) & 0.0491 (12) \\ 0.0670 (15) & 0.0548 (12) \\ 0.087 (3) & 0.102 (4) \\ 0.077 (3) & 0.113 (4) \\ 0.070 (3) & 0.087 (3) \\ 0.055 (2) & 0.072 (2) \\ 0.058 (2) & 0.071 (2) \\ 0.063 (2) & 0.080 (2) \\ 0.0471 (16) & 0.0460 (16) \\ 0.095 (4) & 0.128 (5) \\ \end{array}$	U^{11} U^{22} U^{33} $0.0538(4)$ $0.0384(4)$ $0.0279(4)$ $0.0862(8)$ $0.0991(9)$ $0.0848(8)$ $0.0697(8)$ $0.1122(11)$ $0.0638(7)$ $0.0697(8)$ $0.1122(11)$ $0.0638(7)$ $0.0599(13)$ $0.0495(12)$ $0.0347(11)$ $0.0740(16)$ $0.0491(12)$ $0.0334(11)$ $0.0670(15)$ $0.0548(12)$ $0.0334(11)$ $0.077(3)$ $0.112(4)$ $0.116(4)$ $0.077(3)$ $0.087(3)$ $0.084(3)$ $0.055(2)$ $0.072(2)$ $0.055(2)$ $0.058(2)$ $0.071(2)$ $0.052(2)$ $0.063(2)$ $0.080(2)$ $0.0375(17)$ $0.0471(16)$ $0.0460(16)$ $0.0334(15)$ $0.095(4)$ $0.128(5)$ $0.129(5)$	U^{11} U^{22} U^{33} U^{12} 0.0538 (4)0.0384 (4)0.0279 (4)0.0000.0862 (8)0.0991 (9)0.0848 (8) -0.0011 (6)0.0697 (8)0.1122 (11)0.0638 (7) -0.0159 (6)0.0697 (8)0.1122 (11)0.0638 (7) -0.0159 (6)0.0599 (13)0.0495 (12)0.0347 (11) -0.0065 (10)0.0740 (16)0.0491 (12)0.0338 (11) -0.0126 (11)0.0670 (15)0.0548 (12)0.0334 (11) -0.0132 (11)0.087 (3)0.102 (4)0.116 (4) -0.021 (3)0.077 (3)0.113 (4)0.069 (3) -0.018 (2)0.055 (2)0.072 (2)0.055 (2) -0.0052 (17)0.058 (2)0.071 (2)0.052 (2) -0.0103 (18)0.063 (2)0.080 (2) 0.0334 (15) 0.0020 (12)0.095 (4)0.128 (5) 0.129 (5) -0.052 (4)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0538 (4)0.0384 (4)0.0279 (4)0.0000.0040 (3)0.0862 (8)0.0991 (9)0.0848 (8) -0.0011 (6)0.0323 (7)0.0697 (8)0.1122 (11)0.0638 (7) -0.0159 (6)0.0066 (6)0.0697 (8)0.1122 (11)0.0638 (7) -0.0159 (6)0.0066 (6)0.0599 (13)0.0495 (12)0.0347 (11) -0.0065 (10)0.0005 (9)0.0740 (16)0.0491 (12)0.0338 (11) -0.0126 (11)0.0100 (10)0.0670 (15)0.0548 (12)0.0334 (11) -0.0132 (11)0.0037 (10)0.087 (3)0.102 (4)0.116 (4) -0.021 (3)0.044 (3)0.077 (3)0.113 (4)0.069 (3) -0.018 (2)0.027 (2)0.055 (2)0.072 (2)0.055 (2) -0.0052 (17)0.0076 (16)0.058 (2)0.071 (2)0.052 (2) -0.0103 (18)0.0088 (16)0.063 (2)0.080 (2)0.0375 (17) -0.0215 (19)0.0073 (15)0.0471 (16)0.0460 (16)0.0334 (15)0.0020 (12)0.0066 (12)0.095 (4)0.128 (5)0.129 (5) -0.052 (4)0.054 (3)

Geometric parameters (Å, °)

Mn1—O1	2.258 (2)	С3—НЗА	0.9800	
Mn1—O1 ⁱ	2.258 (2)	С3—Н3В	0.9800	
Mn1—O1W ⁱ	2.125 (2)	C3—C4	1.492 (6)	
Mn1—O1W	2.125 (2)	C3—C2	1.477 (7)	
Mn1—O2 ⁱ	2.237 (2)	C4—H4A	0.9700	
Mn1—O2	2.237 (2)	C4—H4B	0.9700	
S1—S2	2.0443 (18)	C4—C5	1.500 (6)	
S1—S2A	2.042 (12)	С5—Н5А	0.9700	
S1—C1	1.787 (6)	C5—H5B	0.9700	
S2—C3	1.797 (5)	C5—C6	1.509 (5)	
S2A—C3	1.659 (14)	С6—Н6А	0.9700	
O1—C8	1.251 (4)	C6—H6B	0.9700	
O1W—H1WA	0.8501	C6—C7	1.504 (5)	
O1W—H1WB	0.8502	С7—Н7А	0.9700	
O2—C8	1.272 (4)	С7—Н7В	0.9700	
C1—H1A	0.9700	С7—С8	1.498 (5)	
C1—H1B	0.9700	C2—H2A	0.9700	
C1—C2	1.483 (7)	C2—H2B	0.9700	
Ol ⁱ —Mnl—Ol	87.84 (12)	C2—C3—S2A	117.1 (6)	
O1W—Mn1—O1	144.53 (8)	С2—С3—НЗА	106.0	
O1W ⁱ —Mn1—O1 ⁱ	144.53 (8)	C2—C3—H3B	93.0	
O1W—Mn1—O1 ⁱ	98.02 (9)	C2—C3—C4	117.6 (5)	
O1W ⁱ —Mn1—O1	98.01 (9)	C3—C4—H4A	108.0	
O1W—Mn1—O1W ⁱ	97.07 (13)	C3—C4—H4B	108.0	
O1W—Mn1—O2	87.45 (8)	C3—C4—C5	117.4 (4)	
O1W—Mn1—O2 ⁱ	104.17 (9)	H4A—C4—H4B	107.2	
O1W ⁱ —Mn1—O2	104.17 (9)	C5—C4—H4A	108.0	
O1W ⁱ —Mn1—O2 ⁱ	87.45 (8)	C5—C4—H4B	108.0	
O2—Mn1—O1	57.76 (8)	C4—C5—H5A	108.9	
$O2^{i}$ —Mn1—O1 ⁱ	57.76 (8)	C4—C5—H5B	108.9	
$O2$ — $Mn1$ — $O1^{i}$	108.39 (9)	C4—C5—C6	113.2 (3)	
O2 ⁱ —Mn1—O1	108.39 (9)	H5A—C5—H5B	107.8	
O2 ⁱ —Mn1—O2	162.59 (13)	C6—C5—H5A	108.9	
C1—S1—S2	93.99 (17)	C6—C5—H5B	108.9	
C1—S1—S2A	96.9 (4)	С5—С6—Н6А	108.4	
C3—S2—S1	92.66 (16)	С5—С6—Н6В	108.4	
C3—S2A—S1	97.0 (7)	H6A—C6—H6B	107.5	
C8—O1—Mn1	91.54 (19)	C7—C6—C5	115.6 (3)	
Mn1—O1W—H1WA	127.7	C7—C6—H6A	108.4	
Mn1—O1W—H1WB	127.8	С7—С6—Н6В	108.4	
H1WA—O1W—H1WB	104.5	С6—С7—Н7А	107.9	
C8—O2—Mn1	91.98 (18)	C6—C7—H7B	107.9	
S1—C1—H1A	109.2	H7A—C7—H7B	107.2	
S1—C1—H1B	109.2	C8—C7—C6	117.8 (3)	
H1A—C1—H1B	107.9	С8—С7—Н7А	107.9	

C2—C1—S1 C2—C1—H1A C2—C1—H1B S2—C3—H3A S2A—C3—H3B C4—C3—S2 C4—C3—S2A C4—C3—H3A C4—C3—H3B C2—C3—S2	111.9 (4) 109.2 109.2 106.0 93.0 111.8 (3) 124.5 (6) 106.0 93.0 108.7 (4)	C8—C7—H7B O1—C8—O2 O1—C8—C7 O2—C8—C7 C1—C2—H2A C1—C2—H2B C3—C2—C1 C3—C2—H2A C3—C2—H2B H2A—C2—H2B	107.9 118.7 (3) 122.7 (3) 118.5 (3) 108.6 108.6 114.7 (5) 108.6 108.6 108.6 107.6
Mn1—O1—C8—O2	0.3 (3)	$\begin{array}{c} S2 & -C3 & -C2 & -C1 \\ S2A & -S1 & -C1 & -C2 \\ S2A & -C3 & -C4 & -C5 \\ S2A & -C3 & -C2 & -C1 \\ C3 & -C4 & -C5 & -C6 \\ C4 & -C3 & -C2 & -C1 \\ C4 & -C5 & -C6 & -C7 \\ C5 & -C6 & -C7 & -C8 \\ C6 & -C7 & -C8 & -O1 \\ C6 & -C7 & -C8 & -O2 \\ C2 & -C3 & -C4 & -C5 \end{array}$	-29.7 (8)
Mn1—O1—C8—C7	-179.4 (3)		-8.4 (7)
Mn1—O2—C8—C7	-0.3 (3)		14.5 (10)
S1—S2—C3—C4	179.4 (3)		12.2 (11)
S1—S2—C3—C4	171.7 (4)		172.4 (4)
S1—S2A—C3—C4	40.2 (5)		-157.9 (6)
S1—S2A—C3—C4	153.7 (5)		-171.9 (4)
S1—S2A—C3—C2	-15.7 (10)		-67.3 (5)
S1—C1—C2—C3	-0.3 (8)		-3.2 (5)
S2—S1—C1—C2	24.9 (5)		177.2 (3)
S2—C3—C4—C5	57.0 (6)		-176.2 (5)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>	
01 <i>W</i> —H1 <i>WA</i> ···O2 ⁱⁱ	0.85	1.91	2.725 (3)	159	
O1 <i>W</i> —H1 <i>WB</i> ···O1 ⁱⁱⁱ	0.85	2.07	2.718 (3)	132	
C2—H2 B ····S2 A ^{iv}	0.97	2.12	3.043 (18)	158	

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, *y*-1, -*z*+1/2; (iv) *x*, *y*+1, *z*.