

IUCrData

ISSN 2414-3146

Received 15 April 2025 Accepted 22 April 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; pyrroloacridine; fused heterocyclic compound.

CCDC reference: 2442640

Structural data: full structural data are available from iucrdata.iucr.org

4,4-Dimethyl-2-phenyl-4,5-dihydropyrrolo[2,3,4*kl*]acridin-1(2*H*)-one

Izarul Islam,^a Pijush Kanti Roy,^b Ennio Zangrando,^c Pran Gopal Karmaker^d and Harendra Nath Roy^a*

^aDepartment of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh, ^bDepartment of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh, ^cDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy, and ^dChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China. *Correspondence e-mail: hnroy19@ru.ac.bd

In the title compound, $C_{22}H_{18}N_2O$, the pendant phenyl ring is twisted by 43.85 (1)° with respect to the acridine moiety, which has almost coplanar atoms apart from the sp^3 carbon atoms. The extended structure features aromatic π - π stacking with a centroid-to-centroid distance of 3.489 (2) Å and weak C-H···O hydrogen bonds.

Structure description

Pyrroloacridines are a type of fused heterocyclic compounds that combine the structures of pyrrole and acridine. As a result of their appealing biological and therapeutic properties attributed to their ability to intercalate DNA (Belmont *et al.*, 2007), organic chemists are currently paying close attention to the synthesis of these compounds through multi-step procedures (Dandia *et al.* 2015; Hao *et al.* 2013; Jiang *et al.* 2012; Ray *et al.* 2014; Wang *et al.* 2012). As part of our work in this area, we now describe the synthesis and structure of the title compound, $C_{22}H_{18}N_2O$.

The molecular structure of the title molecule is shown in Fig. 1. The chemical structure consists of a central acridine core fused to a pyrrolidone ring, a combination of rings that contributes to its planarity with the exception of the sp^3 carbon atoms (C19, C20 displaced by 0.445 (2), and -0.157 (2) Å, respectively), and of the C1–C6 phenyl ring bound to the pyrrol N atom. The carbonyl C=O bond length is 1.2187 (15) Å, and all other bond distances are as expected. The phenyl ring forms a dihedral angle of 43.85 (1)° with the mean plane through the acridin moiety. This conformation is similar to that found in the structures having a 3-nitrophenyl or 4-methylphenyl ring replacing the phenyl ring, where the corresponding dihedral angles are 48.84 (5) and 44.72 (4)°, respectively (Hao *et al.* 2013). The 9-fluoro derivative (Dandia *et al.* 2015) has the phenyl

Figure 1

The molecular structure of the title molecule (displacement ellipsoids at the 50% probability level).

ring tilted by $49.32 (1)^{\circ}$ with respect to the acridin fragment. Thus all the cited analogous derivatives exhibit similar conformations.

The crystal packing evidences π - π -stacked dimers with a centroid-to-centroid distance of 3.489 (2) Å (Fig. 2). In addition, a weak C3-H3···O1(2 - x, 2 - y, 1 - z) hydrogen bond is observed with H···O = 2.53 Å, C···O = 3.438 (2) Å and C-H···O = 165°.

Synthesis and crystallization

Dimedone (1.00 mmol), aniline (1.00 mmol) and nicotinic acid (5–10 mol %) were mixed in 5.0 ml of toluene and the reaction mixture was heated over an oil-bath at reflux conditions with an efficient CaCl₂ guard-tube for 6–8 h. Isatin (1.00 mmol) was added sequentially to the reaction mixture and it was heated to reflux till the completion of the reaction that was monitored by TLC with UV detector at 365 nm. Then, the solvent was evaporated and the residue purified by column chromatography (acetone/petroleum ether, 1:6). Single crystals suitable for X-ray analysis were obtained from slow evaporation of an ethanolic solution of the product containing few drops of acetone: colour: light brown, yield: 80%, melting point: 191–193°C

Figure 2

Detail of the crystal packing showing the π -stacking interactions as dashed lines (H atoms not indicated for the sake of clarity).

Table 1	
Experimental	details.

$C_{22}H_{18}N_2O$
326.38
Triclinic, $P\overline{1}$
297
9.430 (3), 9.997 (4), 10.203 (4)
99.833 (14), 107.559 (14),
106.866 (14)
841.8 (6)
2
Μο Κα
0.08
$0.30 \times 0.30 \times 0.28$
Bruker APEXII CCD
22780, 3806, 3047
0.041
0.650
0.053, 0.138, 1.12
3806
228
H-atom parameters constrained
0.37 - 0.49

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2019/2* (Sheldrick, 2015*b*) and *DIAMOND* (Brandenburg & Putz, 1999).

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ (p.m.)= 8.73 (*dd*, *J* = 8, 8 Hz, 1H, Ar-H), 8.16 (*d*, *J* = 8 Hz, 1H, Ar-H), 7.83 (*m*, 1H, Ar-H), 7.68–7.54 (*m*, 4H, Ar-H), 7.53–7.41 (1*H*, Ar-H), 5.63 (*s*, 1H, ali-H), 3.22 (*s*, 2H, ali-H), 1.33 (*s*, 6H, ali-H).

¹³C NMR (100 MHz, CDCl₃): $δ_{\rm C}$ (p.p.m.), 166.75, 154.60, 149.73, 134.78, 133.37, 129.55, 129.46, 129.39, 127.80, 127.48, 126.46, 126.40, 124.99, 124.25, 122.63, 118.36, 44.21, 37.11, 30.89.

HRMS(ESI): $m/z [M + H]^+$ calculated for $C_{22}H_{19}N_2O$: 327.399, found 327.1491.

Refinement

Crystal data, data collection and structure refinement are summarized in Table 1.

Acknowledgements

The authors acknowledge the Department of Chemistry, University of Rajshahi, Bangladesh, for the facilities provided during this work, and Dr Pran Gopal Karmaker, Associate Professor, China West Normal University, China, for providing facilities for single-crystal X-ray analysis.

Funding information

Funding for this research was provided by: Rajshahi University, project title: One-Pot Green Synthesis of some Bio-active Heterocycles Mediated by Organocatalyst in Aqueous Medium.

References

- Belmont, P., Bosson, J., Godet, T. & Tiano, M. (2007). Anticancer Agents Med. Chem. 7, 139–169.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dandia, A., Sharma, A., Parewa, V., Kumawat, B., Rathore, K. S. & Sharma, A. (2015). *RSC Adv.* 5, 91888–91902.
- Hao, W.-J., Wang, J.-Q., Xu, X.-P., Zhang, S.-L., Wang, S.-Y. & Ji, S.-J. (2013). J. Org. Chem. 78, 12362–12373.
- Jiang, B., Wang, X., Li, M.-Y., Wu, Q., Ye, Q., Xu, H.-W. & Tu, S.-J. (2012). Org. Biomol. Chem. 10, 8533–8538.
- Ray, S., Bhaumik, A., Pramanik, M. & Mukhopadhyay, C. (2014). *RSC Adv.* **4**, 15441–15450.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, H., Li, L., Lin, W., Xu, P., Huang, Z. & Shi, D. (2012). Org. Lett. 14, 4598–4601.

full crystallographic data

IUCrData (2025). **10**, x250361 [https://doi.org/10.1107/S241431462500361X]

4,4-Dimethyl-2-phenyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one

Izarul Islam, Pijush Kanti Roy, Ennio Zangrando, Pran Gopal Karmaker and Harendra Nath Roy

11,11-Dimethyl-14-phenyl-8,14-diazatetracyclo[7.6.1.0^{2,7}.0^{13,16}]hexadeca-1(16),2(7),3,5,8,12-hexaen-15-one

$C_{22}H_{18}N_{2}O$ $M_{r} = 326.38$ Triclinic, <i>P</i> 1 a = 9.430 (3) Å b = 9.997 (4) Å c = 10.203 (4) Å a = 99.833 (14)° $\beta = 107.559$ (14)° $\gamma = 106.866$ (14)° V = 841.8 (6) Å ³	Z = 2 F(000) = 344 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9587 reflections $\theta = 2.2-26.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 297 K Block, brown $0.30 \times 0.30 \times 0.28 \text{ mm}$
Data collectionBruker APEXII CCD diffractometerRadiation source: sealed tube φ and ω scans22780 measured reflections3806 independent reflections	3047 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 2.2^\circ$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.138$ $S = 1.12$ 3806 reflections228 parameters0 restraintsPrimary atom site location: dual	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0778P)^2 + 0.0906P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37$ e Å ⁻³ $\Delta\rho_{min} = -0.48$ e Å ⁻³

Special details

Crystal data

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were located at geometrical positions and refined as riding atoms.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.77493 (12)	0.67107 (10)	0.34393 (10)	0.0482 (3)	
N1	0.85067 (12)	0.60933 (10)	0.55938 (10)	0.0351 (3)	
N2	0.39760 (12)	0.19595 (11)	0.39073 (12)	0.0404 (3)	
C1	0.99874 (14)	0.72885 (12)	0.63425 (12)	0.0346 (3)	
C2	1.00582 (16)	0.86935 (13)	0.62965 (14)	0.0409 (3)	
Н2	0.914571	0.884859	0.579572	0.049*	
C3	1.14935 (18)	0.98514 (14)	0.70003 (15)	0.0502 (4)	
Н3	1.155281	1.078553	0.695182	0.060*	
C4	1.28445 (18)	0.96283 (16)	0.77777 (17)	0.0560 (4)	
H4	1.380240	1.041467	0.826627	0.067*	
C5	1.27703 (17)	0.82358 (17)	0.78282 (17)	0.0538 (4)	
Н5	1.367944	0.809007	0.835261	0.065*	
C6	1.13471 (16)	0.70562 (14)	0.71007 (15)	0.0442 (3)	
H6	1.130304	0.611866	0.712011	0.053*	
C7	0.74945 (15)	0.59113 (12)	0.41867 (13)	0.0347 (3)	
C8	0.61124 (14)	0.45417 (12)	0.38158 (12)	0.0328 (3)	
С9	0.46972 (14)	0.37668 (13)	0.25861 (12)	0.0344 (3)	
C10	0.42702 (17)	0.41674 (15)	0.12990 (14)	0.0429 (3)	
H10	0.493807	0.501397	0.121915	0.052*	
C11	0.28797 (18)	0.33172 (17)	0.01693 (14)	0.0515 (4)	
H11	0.261021	0.358521	-0.067512	0.062*	
C12	0.18646 (18)	0.20460 (17)	0.02846 (15)	0.0526 (4)	
H12	0.092101	0.147652	-0.048569	0.063*	
C13	0.22420 (16)	0.16301 (15)	0.15150 (15)	0.0475 (3)	
H13	0.154790	0.078417	0.157119	0.057*	
C14	0.36693 (15)	0.24652 (13)	0.27015 (13)	0.0368 (3)	
C15	0.53139 (14)	0.27159 (13)	0.50142 (13)	0.0357 (3)	
C16	0.63918 (14)	0.39923 (12)	0.49598 (12)	0.0325 (3)	
C17	0.78949 (14)	0.48942 (12)	0.60979 (12)	0.0326 (3)	
C18	0.84327 (16)	0.44642 (13)	0.72607 (13)	0.0387 (3)	
H18	0.933264	0.509730	0.804289	0.046*	
C19	0.75654 (16)	0.29286 (13)	0.73030 (13)	0.0389 (3)	
C20	0.57421 (16)	0.23479 (15)	0.64175 (14)	0.0420 (3)	
H20A	0.532291	0.129698	0.622742	0.050*	
H20B	0.522641	0.274877	0.698854	0.050*	
C21	0.83069 (18)	0.19303 (15)	0.66618 (16)	0.0499 (4)	
H21A	0.786913	0.097045	0.675034	0.075*	
H21B	0.944299	0.231561	0.716766	0.075*	
H21C	0.807088	0.188238	0.566775	0.075*	
C22	0.7832 (2)	0.29030 (18)	0.88549 (15)	0.0551 (4)	
H22A	0.737958	0.353005	0.926232	0.083*	
H22B	0.895682	0.323682	0.940287	0.083*	
H22C	0.732800	0.192598	0.887174	0.083*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
01	0.0543 (6)	0.0394 (5)	0.0430 (5)	0.0031 (4)	0.0157 (4)	0.0210 (4)
N1	0.0367 (6)	0.0278 (5)	0.0364 (5)	0.0061 (4)	0.0118 (4)	0.0115 (4)
N2	0.0362 (6)	0.0375 (6)	0.0434 (6)	0.0065 (5)	0.0132 (5)	0.0163 (5)
C1	0.0364 (7)	0.0288 (6)	0.0358 (6)	0.0063 (5)	0.0163 (5)	0.0064 (5)
C2	0.0475 (7)	0.0315 (6)	0.0423 (7)	0.0109 (5)	0.0183 (6)	0.0105 (5)
C3	0.0618 (9)	0.0289 (6)	0.0526 (8)	0.0053 (6)	0.0244 (7)	0.0073 (6)
C4	0.0456 (8)	0.0440 (8)	0.0585 (9)	-0.0038 (6)	0.0194 (7)	0.0011 (7)
C5	0.0364 (7)	0.0560 (9)	0.0589 (9)	0.0108 (6)	0.0147 (6)	0.0080 (7)
C6	0.0412 (7)	0.0369 (7)	0.0532 (8)	0.0133 (6)	0.0184 (6)	0.0099 (6)
C7	0.0382 (6)	0.0302 (6)	0.0351 (6)	0.0100 (5)	0.0138 (5)	0.0111 (5)
C8	0.0351 (6)	0.0305 (6)	0.0350 (6)	0.0108 (5)	0.0155 (5)	0.0120 (5)
C9	0.0352 (6)	0.0335 (6)	0.0347 (6)	0.0116 (5)	0.0141 (5)	0.0100 (5)
C10	0.0452 (7)	0.0439 (7)	0.0367 (6)	0.0101 (6)	0.0148 (6)	0.0153 (5)
C11	0.0532 (9)	0.0582 (9)	0.0341 (7)	0.0136 (7)	0.0096 (6)	0.0150 (6)
C12	0.0437 (8)	0.0550 (8)	0.0388 (7)	0.0057 (6)	0.0038 (6)	0.0062 (6)
C13	0.0395 (7)	0.0429 (7)	0.0461 (7)	0.0023 (6)	0.0104 (6)	0.0106 (6)
C14	0.0338 (6)	0.0351 (6)	0.0380 (6)	0.0085 (5)	0.0129 (5)	0.0104 (5)
C15	0.0331 (6)	0.0339 (6)	0.0405 (6)	0.0093 (5)	0.0145 (5)	0.0152 (5)
C16	0.0336 (6)	0.0295 (6)	0.0348 (6)	0.0098 (5)	0.0136 (5)	0.0113 (5)
C17	0.0359 (6)	0.0267 (5)	0.0350 (6)	0.0094 (5)	0.0143 (5)	0.0098 (5)
C18	0.0401 (7)	0.0334 (6)	0.0348 (6)	0.0078 (5)	0.0088 (5)	0.0096 (5)
C19	0.0434 (7)	0.0366 (6)	0.0366 (6)	0.0115 (5)	0.0132 (5)	0.0184 (5)
C20	0.0414 (7)	0.0405 (7)	0.0438 (7)	0.0084 (6)	0.0165 (6)	0.0216 (6)
C21	0.0546 (8)	0.0415 (7)	0.0583 (8)	0.0198 (6)	0.0212 (7)	0.0214 (6)
C22	0.0647 (10)	0.0584 (9)	0.0421 (7)	0.0191 (8)	0.0166 (7)	0.0259 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01	1.2187 (15)	C11—C12	1.399 (2)
N1—C7	1.4102 (17)	C11—H11	0.9300
N1—C17	1.4222 (15)	C12—C13	1.368 (2)
N1—C1	1.4275 (16)	C12—H12	0.9300
N2—C15	1.3169 (17)	C13—C14	1.4120 (18)
N2—C14	1.3912 (17)	C13—H13	0.9300
C1—C6	1.3900 (19)	C15—C16	1.4037 (17)
C1—C2	1.3962 (18)	C15—C20	1.5052 (18)
C2—C3	1.381 (2)	C16—C17	1.4416 (17)
С2—Н2	0.9300	C17—C18	1.3369 (17)
C3—C4	1.385 (2)	C18—C19	1.5307 (18)
С3—Н3	0.9300	C18—H18	0.9300
C4—C5	1.384 (2)	C19—C22	1.5325 (19)
C4—H4	0.9300	C19—C21	1.540 (2)
C5—C6	1.387 (2)	C19—C20	1.5538 (19)
С5—Н5	0.9300	C20—H20A	0.9700
С6—Н6	0.9300	C20—H20B	0.9700

С7—С8	1.4855 (17)	C21—H21A	0.9600
C8—C16	1.3605 (17)	C21—H21B	0.9600
C8—C9	1.4189 (17)	C21—H21C	0.9600
C9—C10	1.4147 (18)	C22—H22A	0.9600
C9—C14	1.4269 (18)	C22—H22B	0.9600
C10—C11	1.370 (2)	C22—H22C	0.9600
C10—H10	0.9300		
C7—N1—C17	110.79 (10)	С12—С13—Н13	119.5
C7—N1—C1	123.16 (10)	C14—C13—H13	119.5
C17—N1—C1	125.95 (10)	N2-C14-C13	117.52 (11)
C15—N2—C14	118.19 (11)	N2—C14—C9	124.43 (11)
C6—C1—C2	120.32 (12)	C13—C14—C9	118.04 (12)
C6—C1—N1	120.42 (11)	N2-C15-C16	120.22 (11)
C2-C1-N1	119.26 (11)	N2-C15-C20	123.64 (11)
C3—C2—C1	119.52 (13)	C16—C15—C20	116.03 (11)
С3—С2—Н2	120.2	C8—C16—C15	123.23 (12)
C1—C2—H2	120.2	C8—C16—C17	111.80 (11)
C2—C3—C4	120.34 (13)	C15—C16—C17	124.96 (11)
С2—С3—Н3	119.8	C18—C17—N1	135.06 (11)
С4—С3—Н3	119.8	C18—C17—C16	120.24 (11)
C5—C4—C3	120.05 (13)	N1—C17—C16	104.60 (10)
C5—C4—H4	120.0	C17—C18—C19	119.91 (11)
С3—С4—Н4	120.0	C17—C18—H18	120.0
C4—C5—C6	120.36 (14)	C19—C18—H18	120.0
С4—С5—Н5	119.8	C18—C19—C22	110.21 (11)
С6—С5—Н5	119.8	C18—C19—C21	106.57 (11)
C5—C6—C1	119.39 (13)	C22—C19—C21	109.13 (11)
С5—С6—Н6	120.3	C18—C19—C20	112.81 (10)
С1—С6—Н6	120.3	C22—C19—C20	109.02 (11)
O1—C7—N1	126.03 (11)	C21—C19—C20	109.02 (11)
O1—C7—C8	128.23 (12)	C15—C20—C19	114.02 (10)
N1—C7—C8	105.72 (10)	C15—C20—H20A	108.7
C16—C8—C9	119.06 (11)	C19—C20—H20A	108.7
C16—C8—C7	106.99 (11)	C15—C20—H20B	108.7
C9—C8—C7	133.94 (11)	C19—C20—H20B	108.7
C10—C9—C8	125.67 (12)	H20A—C20—H20B	107.6
C10—C9—C14	119.51 (12)	C19—C21—H21A	109.5
C8—C9—C14	114.81 (11)	C19—C21—H21B	109.5
С11—С10—С9	120.48 (13)	H21A—C21—H21B	109.5
C11—C10—H10	119.8	C19—C21—H21C	109.5
C9—C10—H10	119.8	H21A—C21—H21C	109.5
C10—C11—C12	120.07 (13)	H21B—C21—H21C	109.5
C10-C11-H11	120.0	C19—C22—H22A	109.5
C12—C11—H11	120.0	C19—C22—H22B	109.5
C13—C12—C11	120.87 (13)	H22A—C22—H22B	109.5
C13—C12—H12	119.6	C19—C22—H22C	109.5
C11—C12—H12	119.6	H22A—C22—H22C	109.5

data reports

C12—C13—C14	121.01 (13)	H22B—C22—H22C	109.5
C7—N1—C1—C6	-135.02 (13)	C10-C9-C14-N2	179.36 (11)
C17—N1—C1—C6	40.75 (17)	C8—C9—C14—N2	0.47 (18)
C7—N1—C1—C2	44.53 (16)	C10-C9-C14-C13	-0.68 (18)
C17—N1—C1—C2	-139.71 (12)	C8—C9—C14—C13	-179.57 (11)
C6—C1—C2—C3	0.56 (19)	C14—N2—C15—C16	-0.26 (18)
N1—C1—C2—C3	-178.99 (11)	C14—N2—C15—C20	175.80 (11)
C1—C2—C3—C4	-1.7 (2)	C9—C8—C16—C15	-2.69 (18)
C2—C3—C4—C5	1.4 (2)	C7—C8—C16—C15	178.19 (11)
C3—C4—C5—C6	0.1 (2)	C9—C8—C16—C17	178.58 (10)
C4—C5—C6—C1	-1.2 (2)	C7—C8—C16—C17	-0.54 (13)
C2-C1-C6-C5	0.9 (2)	N2-C15-C16-C8	2.16 (19)
N1—C1—C6—C5	-179.56 (11)	C20-C15-C16-C8	-174.19 (11)
C17—N1—C7—O1	-175.27 (12)	N2-C15-C16-C17	-179.28 (11)
C1—N1—C7—O1	1.07 (19)	C20-C15-C16-C17	4.37 (18)
C17—N1—C7—C8	3.10 (13)	C7—N1—C17—C18	172.77 (13)
C1—N1—C7—C8	179.43 (10)	C1—N1—C17—C18	-3.4 (2)
O1—C7—C8—C16	176.78 (12)	C7—N1—C17—C16	-3.37 (13)
N1—C7—C8—C16	-1.54 (13)	C1—N1—C17—C16	-179.58 (10)
O1—C7—C8—C9	-2.2 (2)	C8—C16—C17—C18	-174.48 (11)
N1—C7—C8—C9	179.53 (12)	C15—C16—C17—C18	6.82 (19)
C16—C8—C9—C10	-177.48 (11)	C8—C16—C17—N1	2.37 (13)
C7—C8—C9—C10	1.4 (2)	C15—C16—C17—N1	-176.33 (11)
C16—C8—C9—C14	1.34 (17)	N1—C17—C18—C19	-167.75 (12)
C7—C8—C9—C14	-179.83 (12)	C16—C17—C18—C19	7.93 (18)
C8—C9—C10—C11	178.88 (12)	C17—C18—C19—C22	-153.29 (12)
C14—C9—C10—C11	0.1 (2)	C17—C18—C19—C21	88.42 (15)
C9—C10—C11—C12	0.3 (2)	C17—C18—C19—C20	-31.17 (17)
C10-C11-C12-C13	-0.2 (2)	N2-C15-C20-C19	155.80 (12)
C11—C12—C13—C14	-0.4 (2)	C16—C15—C20—C19	-27.98 (16)
C15—N2—C14—C13	179.03 (12)	C18—C19—C20—C15	40.35 (16)
C15—N2—C14—C9	-1.02 (19)	C22—C19—C20—C15	163.13 (11)
C12—C13—C14—N2	-179.24 (12)	C21—C19—C20—C15	-77.82 (14)
C12—C13—C14—C9	0.8 (2)		