

ISSN 2414-3146

Received 29 November 2024 Accepted 5 February 2025

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; piano stool geometry; arene ruthenium compounds; organometallic compound.

CCDC reference: 2421509

Structural data: full structural data are available from jucrdata.jucr.org

Chlorido{2-[(4-chlorophenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ (η^6 -toluene)ruthenium(II) hexafluoridophosphate

Ioel Gichumbi, Holger B. Friedrich and Sizwe I. Zamisa*

School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa. *Correspondence e-mail: 7amisas@ukzn ac za

The asymmetric unit of the title compound, $[RuCl(C_7H_8)(C_{12}H_9ClN_2)]PF_6$, contains two cationic ruthenium(II) complexes and two $[PF_6]^-$ anions. One of the anions exhibits disorder over two positions. The ruthenium complex adopts a piano-stool geometry, with chelating Schiff base and chlorido ligands occupying three coordination sites, and the arene ring serving as the 'seat'.

Structure description

Arene ruthenium compounds belong to a family of robust metal-organic molecules that played an important role in the development of organometallic chemistry (Gichumbi & Friedrich, 2018). There has been an intense research interest in the chemistry of these arene complexes with mono-, di-, or poly-dentate ligands. The arene precursor complex undergoes cleavage of the chloride bridges with various two-electron donor ligands to give mononuclear complexes, while reactions with bidentate ligands afford cationic complexes (Gichumbi et al., 2016a, 2020, 2021).

The asymmetric unit of the title compound contains two cationic ruthenium complexes and two [PF₆]⁻ anions. Each cationic ruthenium(II) complex shows a piano-stool geometry, where the chelating ligand and the chloride atom occupy the positions of three legs of a piano stool, and the arene ring occupies the remaining coordination sites as the seat of the stool (Fig. 1). The Ru-N and Ru-Cl bond lengths were found to be 2.081 (3)-2.090 (2) Å and 2.3764 (8)-2.3821 (8) Å, respectively. Furthermore, the N-Ru-N and N-Ru-Cl bond angles range from 76.82 (10) to 76.84 (10) and from 85.76(7) to $86.85(7)^{\circ}$, respectively. These bond parameters are comparable to those reported for other arene ruthenium complexes with N, N'-donor ligands (Gichumbi *et al.*, 2016b, 2017, 2018; Gichumbi & Friedrich, 2018; Zamisa et al., 2024). A molecular overlay diagram of the two cationic species in the asymmetric unit of the title compound reveals significant geometric differences of the η^6 -toluene ligand (Fig. 2) with a root-mean-square

The structures of the molecular entities in the crystal of the title compound with displacement ellipsoids drawn at the 50% probability level. One of the two molecular components of the title compound and all hydrogen atoms have been omitted for clarity.

deviation (RMSD) value of 1.358 Å. Furthermore, the arene rings of the two cationic species appear to be rotated by 96.97 (16)–99.13 (15)° with respect to each other when considering either an $C19a \cdots Cg$ (molecule *A* arene)···C19*b* or $C19b \cdots Cg$ (molecule *B* arene)···C19*a* angle. The crystal packing of the title compound is stabilized by various intermolecular C–H···F hydrogen bonds between aromatic or methyl hydrogen atoms of the cationic ruthenium(II) complex and the fluorine atoms of the [PF₆]⁻ anions (Table 1, Fig. 3).

Synthesis and crystallization

To a suspension of $[(\eta^6\text{-toluene})\text{Ru}(\mu\text{-Cl})\text{Cl}]_2$ (0.2 mmol) in acetonitrile (20 ml) was added the pyridine-imine ligand

Figure 2

Molecular overlay diagram of the two cationic Ru^{II} complexes in the asymmetric unit of the title compound. The blue- and red-coloured cationic species correspond to those of molecules *A* and *B*, respectively.

Table 1	
Hydrogen-bond geome	etry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1A - H1A \cdots F7A^{i}$	0.95	2.33	3.242 (11)	160
$C3A - H3A \cdots F2A^{ii}$	0.95	2.43	3.261 (8)	147
$C19A - H19A \cdots F11A^{iii}$	0.98	2.38	3.243 (9)	146
$C15B - H15B \cdots F4B^{iv}$	0.95	2.35	3.292 (4)	172

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$;

(0.42 mmol). The mixture was stirred at room temperature for 3 h followed by reduction in the volume of the solvent *in vacuo* to about 10 ml before adding NH_4PF_6 (0.42 mmol). The mixture was then cooled in an ice bath while stirring for 2 h leading to a precipitate, which was collected by filtration. The filtrate was washed with diethyl ether and dried *in vacuo*. Crystals suitable for single-crystal X-ray diffraction studies were grown by layering solutions of the compound in acetone with hexane and leaving undisturbed for 2 d.

Red solid, yield 82%, m.p. 200°C (decomp.). ¹H NMR (400 MHz, DMSO- d_6): $\delta_{p.p.m.}$ 9.61 (*d*, $J_{HH} = 5.4$ Hz, 1H, py); 8.92 (*s*,1*H*, CH=N); 8.31 (*m*, 2H, py); 7.90 (*m*, 1H, py); 7.83 (*m*, 2H, Ph); 7.72 (*d*, $J_{HH} = 8.72$ Hz, 2H, Ph); 6.16 (*m*,1*H*, Arene); 5.83 (*m*, 1H, Arene); 5.78 (*m*, 2H, Arene); 5.59 (*d*, $J_{HH} = 3.68$ Hz, 1H, Arene); 2.12 (*s*, 3H, Arene). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{p.p.m.}$ 168.47 (py), 156.13 (py), 154.55 (py), 150.37 (py), 139.92 (py), 133.92 (py), 130.03 (Ar), 129.46 (Ar), 128.88 (Ar), 124.30 (Ar), 105.30 (Ar), 90.62 (Ar), 90.09 (Ar), 84.13 (Ar), 84.02 (Ar), 80.91 (Ar), 18.58 (Me). MS (ESI +, *m/z*): 444.98 [C₁₉H₁₇Cl₂N₂Ru]⁺.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2. The fluorine atoms of one PF_6^- anion were found to be disordered over two positions. PART 1 and 2 instructions were used to model the disorder and the major component was refined with a site occupancy of 0.583 (6).

Figure 3

Representation of intermolecular $C-H\cdots F$ hydrogen-bonding patterns (green dotted bonds) in the crystal packing of the title compound.

Furthermore, the refinement of the disordered PF_6^- species was kept stable using standard parameters of SADI (same distances) and DELU (rigid bond) restraints. The fluorine atoms were further restrained using SIMU with a standard deviation of 0.02 Å² to have the same displacement components (Sheldrick, 2015).

Acknowledgements

We wish to extend our sincere thanks to the NRF and UKZN (URF) for financial support. JG thanks Chuka University for research visit leave.

References

- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gichumbi, J. M. & Friedrich, H. B. (2018). J. Organomet. Chem. 866, 123–143.
- Gichumbi, J. M., Friedrich, H. B. & Omondi, B. (2016*a*). J. Mol. Catal. A Chem. **416**, 29–38.
- Gichumbi, J. M., Friedrich, H. B. & Omondi, B. (2016b). J. Mol. Struct. 1113, 55–59.
- Gichumbi, J. M., Friedrich, H. B. & Omondi, B. (2021). *Transit. Met. Chem.* 46, 17–28.
- Gichumbi, J. M., Friedrich, H. B., Omondi, B. & Chenia, H. Y. (2020). J. Coord. Chem. 73, 1833–1847.
- Gichumbi, J. M., Omondi, B. & Friedrich, H. B. (2017). Z. Kristallogr. New Cryst. Struct. 232, 309–311.
- Gichumbi, J. M., Omondi, B. & Friedrich, H. B. (2018). Z. Kristallogr. New Cryst. Struct. 233, 423–425.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[RuCl(C_7H_8)(C_{12}H_9ClN_2)]PF_6$
M _r	590.28
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	15.4238 (13), 16.1528 (14), 18.2354 (16)
β (°)	111.508 (2)
$V(Å^3)$	4226.8 (6)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.13
Crystal size (mm)	$0.14\times0.11\times0.09$
Data collection	
Diffractometer	Bruker Kappa Duo APEXII
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.920, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	74571, 10189, 7517
R _{int}	0.080
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.089, 1.03
No. of reflections	10189
No. of parameters	616
No. of restraints	157
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.75, -0.64

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS2013 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Zamisa, S. J., Gichumbi, J. M. & Friedrich, H. B. (2024). Z. Kristallogr. New Cryst. Struct. 239, 19–21.

full crystallographic data

IUCrData (2025). **10**, x250103 [https://doi.org/10.1107/S2414314625001038]

Chlorido{2-[(4-chlorophenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }(η^6 -toluene)-ruthenium(II) hexafluoridophosphate

Joel Gichumbi, Holger B. Friedrich and Sizwe J. Zamisa

Chlorido{2-[(4-chlorophenyl)iminomethyl]pyridine- $\kappa^2 N$, N'}(η^6 -toluene)ruthenium(II) hexafluoridophosphate

F(000) = 2336

 $\theta = 2.4 - 27.8^{\circ}$

 $\mu = 1.13 \text{ mm}^{-1}$

T = 173 K

Block, red

 $D_{\rm x} = 1.855 {\rm Mg} {\rm m}^{-3}$

 $0.14 \times 0.11 \times 0.09 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5713 reflections

Crystal data

[RuCl(C_7H_8)($C_{12}H_9ClN_2$)]PF₆ $M_r = 590.28$ Monoclinic, $P2_1/c$ a = 15.4238 (13) Å b = 16.1528 (14) Å c = 18.2354 (16) Å $\beta = 111.508$ (2)° V = 4226.8 (6) Å³ Z = 8

Data collection

Bruker Kappa Duo APEXII Diffractometer	74571 measured reflections
Radiation source: fine-focus sealed tube,	10189 independent reflections
Incoatec I μ s	7517 reflections with $I > 2\sigma(I)$
Mirror optics monochromator	$R_{\rm int} = 0.080$
Detector resolution: 7.9 pixels mm ⁻¹	$\theta_{\rm max} = 28.0^{\circ}, \theta_{\rm min} = 1.4^{\circ}$
ω and φ scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan	$k = -21 \rightarrow 21$
(SADABS; Krause et al., 2015)	$l = -24 \rightarrow 24$
$T_{\min} = 0.920, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.038$ Hydrogen site location: inferred from $wR(F^2) = 0.089$ neighbouring sites S = 1.03H-atom parameters constrained 10189 reflections $w = 1/[\sigma^2(F_0^2) + (0.0305P)^2 + 2.789P]$ 616 parameters where $P = (F_0^2 + 2F_c^2)/3$ 157 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.75 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F7A	0.0628 (9)	0.6670 (7)	0.2924 (7)	0.111 (4)	0.417 (6)

EOA	-0.0682(0)	0.5080 (0)	0 2756 (8)	0.104(4)	0.417(6)
F9A	-0.0082(9)	0.3980(9)	0.2730(8) 0.1995(10)	0.104(4) 0.121(4)	0.417(0) 0.417(6)
FIUA D 1A	0.0091(11)	0.0020(9)	0.1885(10)	0.121(4)	0.417(0)
RUIA	0.10303(2)	0.84822 (2)	0.06950 (2)	0.01/4/(7)	
CIIA	0.30832 (5)	0.85330 (5)	0.05113 (5)	0.02/94 (18)	
CI2A	0.42931 (7)	0.88497 (6)	0.49474 (5)	0.0417 (2)	
PIA	0.00425 (6)	0.60271 (6)	0.23620 (5)	0.0278 (2)	/ ->
F1A	0.0904 (4)	0.6283 (5)	0.3134 (3)	0.069 (2)	0.583 (6)
F2A	-0.0806(3)	0.5824 (5)	0.1594 (3)	0.080 (2)	0.583 (6)
F3A	-0.0482(5)	0.5694 (4)	0.2904 (4)	0.0562 (19)	0.583 (6)
F4A	0.0639 (6)	0.6429 (4)	0.1896 (6)	0.0697 (19)	0.583 (6)
F5A	0.0485 (4)	0.5176 (3)	0.2322 (5)	0.0749 (19)	0.583 (6)
F6A	-0.0379 (4)	0.6917 (3)	0.2413 (5)	0.0744 (19)	0.583 (6)
F8A	-0.0559 (9)	0.5347 (6)	0.1813 (6)	0.147 (5)	0.417 (6)
F11A	0.0598 (5)	0.5324 (5)	0.2940 (6)	0.085 (3)	0.417 (6)
F12A	-0.0563(5)	0.6677 (5)	0.1767 (5)	0.066 (2)	0.417 (6)
N1A	0.14963 (17)	0.73032 (16)	0.02050 (15)	0.0226 (6)	
N2A	0.23222 (17)	0.77288 (16)	0.16674 (14)	0.0201 (5)	
C1A	0.1114 (2)	0.7115 (2)	-0.05628 (19)	0.0270 (7)	
H1A	0.089573	0.754995	-0.093628	0.032*	
C2A	0.1028 (2)	0.6307 (2)	-0.0826(2)	0.0347 (9)	
H2A	0.075011	0.619271	-0.137443	0.042*	
C3A	0.1343 (3)	0.5667 (2)	-0.0299(2)	0.0391 (9)	
НЗА	0.127392	0.510838	-0.047319	0.047*	
C4A	0.1766(2)	0.5858(2)	0.0495(2)	0.0359(9)	
Н4А	0 199729	0.543025	0.087521	0.043*	
C5A	0.199729 0.1845 (2)	0.545025 0.6677(2)	0.007521 0.07264 (19)	0.049 (7)	
	0.1043(2) 0.2307(2)	0.6077(2)	0.07204(19) 0.15200(18)	0.0247(7)	
Нбл	0.2507 (2)	0.656724	0.19239 (18)	0.0237 (7)	
	0.239010 0.2788 (2)	0.030724	0.194501 0.24635(17)	0.023	
C ² A	0.2788(2) 0.2252(2)	0.80110(19)	0.24033(17) 0.26042(10)	0.0214(7)	
	0.3333 (2)	0.8700 (2)	0.20042 (19)	0.0239 (7)	
ПоА	0.342270 0.2812(2)	0.899942	0.217708	0.031°	
C9A	0.3813(2)	0.8969 (2)	0.33707 (19)	0.0278 (8)	
H9A G10A	0.420825	0.944006	0.34/691	0.033*	
CIUA	0.3691 (2)	0.8539 (2)	0.39808 (19)	0.0290 (8)	
CIIA	0.3109 (2)	0.7859 (2)	0.38443 (18)	0.02/4 (/)	
HIIA	0.302389	0.757847	0.427085	0.033*	
C12A	0.2653 (2)	0.7594 (2)	0.30787 (18)	0.0255 (7)	
H12A	0.224835	0.712896	0.297361	0.031*	
C13A	0.0670 (2)	0.8963 (2)	0.12295 (19)	0.0247 (7)	
C14A	0.1374 (2)	0.9567 (2)	0.1308 (2)	0.0284 (8)	
H14A	0.172032	0.978788	0.181375	0.034*	
C15A	0.1563 (2)	0.9837 (2)	0.0660 (2)	0.0339 (8)	
H15A	0.204438	1.022983	0.072647	0.041*	
C16A	0.1036 (2)	0.9527 (2)	-0.0104 (2)	0.0335 (9)	
H16A	0.115605	0.971601	-0.055072	0.040*	
C17A	0.0344 (2)	0.8944 (2)	-0.01880 (19)	0.0307 (8)	
H17A	-0.001061	0.873571	-0.069751	0.037*	
C18A	0.0157 (2)	0.8654 (2)	0.0470 (2)	0.0267 (7)	

H18A	-0.031447	0.825121	0.040154	0.032*
C19A	0.0494 (3)	0.8646 (3)	0.1933 (2)	0.0419 (10)
H19A	-0.000030	0.897490	0.201044	0.063*
H19B	0.106536	0.869097	0.240177	0.063*
H19C	0.029962	0.806506	0.184859	0.063*
Ru1B	0.34307 (2)	0.33543 (2)	0.42690 (2)	0.01810 (7)
Cl1B	0.19856 (5)	0.36287 (5)	0.44160 (5)	0.02399 (17)
Cl2B	0.08970 (7)	0.34750 (6)	0.00329 (5)	0.0395 (2)
P1B	0.49695 (7)	0.10602 (7)	0.25810 (5)	0.0351 (2)
F1B	0.58410 (18)	0.1183 (2)	0.33663 (13)	0.0728 (9)
F2B	0.40965 (16)	0.09432 (18)	0.17865 (14)	0.0640 (7)
F3B	0.43110 (17)	0.09712 (17)	0.30747 (15)	0.0632 (7)
F4B	0.56327 (16)	0.11489 (18)	0.20892 (13)	0.0589 (7)
F5B	0.5138 (2)	0.00892 (16)	0.26382 (17)	0.0713 (8)
F6B	0.4779 (2)	0.20238 (16)	0.25130 (17)	0.0750 (8)
N1B	0.34625 (17)	0.22625 (16)	0.48847 (15)	0.0223 (6)
N2B	0.27009 (17)	0.25245 (16)	0.33833 (14)	0.0210 (6)
C1B	0.3824 (2)	0.2166 (2)	0.56678 (18)	0.0272 (7)
H1B	0.406219	0.263764	0.599037	0.033*
C2B	0.3863 (2)	0.1406 (2)	0.6023 (2)	0.0322 (8)
H2B	0.412190	0.135867	0.658062	0.039*
C3B	0.3524 (2)	0.0713 (2)	0.5561 (2)	0.0350 (9)
H3B	0.357138	0.018036	0.579430	0.042*
C4B	0.3113 (2)	0.0812 (2)	0.4752 (2)	0.0334 (8)
H4B	0.285096	0.035139	0.442132	0.040*
C5B	0.3090 (2)	0.1591 (2)	0.44323 (19)	0.0244 (7)
C6B	0.2658 (2)	0.1777 (2)	0.35988 (19)	0.0242 (7)
H6B	0.235425	0.135931	0.322651	0.029*
C7B	0.2267 (2)	0.2743 (2)	0.25661 (17)	0.0219 (7)
C8B	0.2354 (2)	0.2238 (2)	0.19851 (18)	0.0271 (7)
H8B	0.270402	0.174009	0.212203	0.033*
C9B	0.1927 (2)	0.2464 (2)	0.12023 (19)	0.0302 (8)
H9B	0.197795	0.212221	0.079599	0.036*
C10B	0.1430 (2)	0.3191 (2)	0.10210 (18)	0.0279 (7)
C11B	0.1348 (2)	0.3710 (2)	0.15957 (19)	0.0289 (8)
H11B	0.100670	0.421212	0.145506	0.035*
C12B	0.1772 (2)	0.3484 (2)	0.23805 (19)	0.0258 (7)
H12B	0.172600	0.382963	0.278597	0.031*
C13B	0.3619 (2)	0.4668 (2)	0.3996 (2)	0.0283 (8)
C14B	0.3997 (2)	0.4533 (2)	0.4831 (2)	0.0320 (8)
H14B	0.379411	0.486742	0.516654	0.038*
C15B	0.4657 (2)	0.3918 (2)	0.5154 (2)	0.0336 (9)
H15B	0.492026	0.384447	0.570915	0.040*
C16B	0.4935 (2)	0.3403 (2)	0.4658 (2)	0.0378 (9)
H16B	0.537474	0.297362	0.487839	0.045*
C17B	0.4568 (2)	0.3520 (2)	0.3840 (2)	0.0350 (9)
H17B	0.475427	0.317339	0.350349	0.042*
C18B	0.3915 (2)	0.4163 (2)	0.3524 (2)	0.0314 (8)

data reports

1110D	0 2(7240	0 425007	0 207029	0.020*
HI8B	0.367249	0.425007	0.297038	0.038*
C19B	0.2906 (3)	0.5326 (2)	0.3657 (3)	0.0455 (10)
H19D	0.321157	0.586785	0.373632	0.068*
H19E	0.245434	0.531547	0.392066	0.068*
H19F	0.258181	0.522634	0.309193	0.068*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F7A	0.128 (8)	0.076 (7)	0.089 (7)	-0.052 (6)	-0.006 (6)	-0.014 (5)
F9A	0.086 (6)	0.160 (10)	0.091 (6)	0.053 (6)	0.064 (5)	0.082 (6)
F10A	0.128 (7)	0.162 (11)	0.125 (7)	0.027 (9)	0.109 (5)	0.015 (9)
Ru1A	0.01686 (12)	0.01832 (13)	0.01865 (13)	0.00269 (10)	0.00819 (10)	0.00200 (9)
Cl1A	0.0213 (4)	0.0327 (5)	0.0353 (4)	0.0004 (3)	0.0168 (3)	0.0016 (3)
Cl2A	0.0528 (6)	0.0424 (6)	0.0227 (4)	0.0067 (4)	0.0054 (4)	-0.0047 (4)
P1A	0.0312 (5)	0.0294 (5)	0.0227 (4)	-0.0008 (4)	0.0097 (4)	-0.0003(4)
F1A	0.036 (3)	0.110 (6)	0.049 (3)	-0.008 (3)	0.002 (2)	-0.016 (3)
F2A	0.049 (3)	0.142 (7)	0.034 (3)	-0.006 (4)	-0.003(2)	-0.016 (3)
F3A	0.073 (4)	0.060 (4)	0.053 (4)	-0.021 (3)	0.043 (3)	0.006 (3)
F4A	0.087 (4)	0.057 (4)	0.097 (4)	-0.024 (4)	0.071 (3)	-0.003 (4)
F5A	0.087 (4)	0.030 (3)	0.136 (5)	0.011 (2)	0.074 (4)	-0.006 (3)
F6A	0.073 (3)	0.037 (3)	0.132 (5)	0.013 (2)	0.059 (4)	0.000 (3)
F8A	0.200 (10)	0.059 (6)	0.084 (6)	-0.030 (6)	-0.063 (6)	-0.015 (5)
F11A	0.064 (4)	0.074 (5)	0.091 (6)	0.019 (4)	-0.002 (4)	0.047 (5)
F12A	0.062 (4)	0.065 (5)	0.071 (5)	0.016 (4)	0.025 (4)	0.044 (4)
N1A	0.0193 (13)	0.0256 (15)	0.0245 (14)	0.0011 (11)	0.0101 (11)	-0.0012 (11)
N2A	0.0189 (13)	0.0205 (14)	0.0221 (13)	0.0011 (10)	0.0091 (10)	0.0025 (10)
C1A	0.0233 (17)	0.033 (2)	0.0277 (17)	-0.0008 (14)	0.0127 (14)	-0.0047 (14)
C2A	0.0335 (19)	0.041 (2)	0.033 (2)	-0.0049 (16)	0.0171 (16)	-0.0130 (16)
C3A	0.042 (2)	0.029 (2)	0.051 (2)	-0.0045 (17)	0.0219 (19)	-0.0137 (18)
C4A	0.039 (2)	0.026 (2)	0.043 (2)	0.0043 (16)	0.0159 (17)	-0.0030 (16)
C5A	0.0262 (16)	0.0197 (17)	0.0306 (18)	0.0037 (13)	0.0126 (14)	-0.0011 (13)
C6A	0.0220 (16)	0.0231 (18)	0.0256 (16)	0.0033 (13)	0.0082 (13)	0.0050 (13)
C7A	0.0189 (15)	0.0229 (17)	0.0195 (15)	0.0040 (12)	0.0038 (12)	0.0025 (12)
C8A	0.0268 (17)	0.0269 (18)	0.0244 (17)	0.0013 (14)	0.0099 (13)	0.0053 (13)
C9A	0.0252 (17)	0.0258 (19)	0.0279 (17)	-0.0018 (14)	0.0043 (14)	0.0008 (14)
C10A	0.0298 (18)	0.033 (2)	0.0202 (16)	0.0092 (15)	0.0049 (14)	0.0003 (14)
C11A	0.0292 (18)	0.031 (2)	0.0227 (17)	0.0065 (15)	0.0106 (14)	0.0072 (14)
C12A	0.0207 (16)	0.0265 (18)	0.0290 (18)	0.0033 (13)	0.0087 (14)	0.0091 (14)
C13A	0.0249 (16)	0.0234 (18)	0.0314 (18)	0.0127 (13)	0.0168 (14)	0.0064 (14)
C14A	0.0331 (18)	0.0210 (18)	0.0320 (18)	0.0106 (14)	0.0129 (15)	-0.0032 (14)
C15A	0.0315 (19)	0.0193 (18)	0.057 (2)	0.0060 (14)	0.0238 (18)	0.0085 (16)
C16A	0.0354 (19)	0.037 (2)	0.036 (2)	0.0184 (16)	0.0221 (16)	0.0180 (16)
C17A	0.0255 (17)	0.040 (2)	0.0224 (17)	0.0134 (15)	0.0042 (14)	0.0037 (15)
C18A	0.0188 (15)	0.0252 (18)	0.0382 (19)	0.0061 (13)	0.0131 (14)	-0.0006 (14)
C19A	0.050 (2)	0.048 (3)	0.042 (2)	0.0196 (19)	0.0338 (19)	0.0145 (18)
Ru1B	0.01450 (12)	0.02020 (14)	0.01910 (13)	-0.00135 (10)	0.00555 (9)	0.00131 (10)
Cl1B	0.0208 (4)	0.0265 (4)	0.0280 (4)	0.0007 (3)	0.0129 (3)	-0.0008 (3)

Cl2B	0.0491 (5)	0.0455 (6)	0.0210 (4)	-0.0067 (4)	0.0095 (4)	0.0034 (4)
P1B	0.0382 (5)	0.0401 (6)	0.0285 (5)	0.0053 (4)	0.0139 (4)	0.0087 (4)
F1B	0.0568 (16)	0.123 (3)	0.0316 (13)	-0.0045 (16)	0.0079 (12)	0.0079 (14)
F2B	0.0480 (15)	0.084 (2)	0.0505 (15)	-0.0027 (14)	0.0065 (12)	-0.0033 (14)
F3B	0.0657 (17)	0.075 (2)	0.0670 (17)	0.0116 (14)	0.0456 (14)	0.0145 (14)
F4B	0.0522 (15)	0.094 (2)	0.0388 (13)	-0.0044 (14)	0.0264 (11)	0.0054 (13)
F5B	0.089 (2)	0.0458 (16)	0.094 (2)	0.0224 (14)	0.0500 (17)	0.0178 (14)
F6B	0.107 (2)	0.0399 (16)	0.0815 (19)	0.0105 (15)	0.0385 (17)	0.0116 (14)
N1B	0.0177 (13)	0.0241 (15)	0.0248 (14)	0.0023 (11)	0.0073 (11)	0.0021 (11)
N2B	0.0170 (13)	0.0255 (15)	0.0214 (13)	0.0008 (11)	0.0080 (10)	-0.0028 (11)
C1B	0.0247 (17)	0.032 (2)	0.0254 (17)	0.0039 (14)	0.0096 (14)	0.0047 (14)
C2B	0.0344 (19)	0.035 (2)	0.0295 (18)	0.0101 (16)	0.0139 (15)	0.0133 (15)
C3B	0.036 (2)	0.027 (2)	0.046 (2)	0.0075 (16)	0.0194 (17)	0.0152 (16)
C4B	0.035 (2)	0.0229 (19)	0.041 (2)	-0.0004 (15)	0.0124 (16)	0.0028 (15)
C5B	0.0207 (15)	0.0223 (18)	0.0307 (18)	0.0007 (13)	0.0099 (13)	0.0020 (13)
C6B	0.0229 (16)	0.0231 (18)	0.0274 (17)	-0.0007 (13)	0.0102 (13)	-0.0055 (13)
C7B	0.0175 (15)	0.0257 (18)	0.0219 (16)	-0.0027 (13)	0.0063 (12)	-0.0017 (13)
C8B	0.0274 (17)	0.0268 (19)	0.0277 (17)	0.0012 (14)	0.0107 (14)	-0.0047 (14)
C9B	0.0313 (18)	0.036 (2)	0.0269 (18)	-0.0041 (15)	0.0150 (15)	-0.0082 (15)
C10B	0.0272 (17)	0.036 (2)	0.0194 (16)	-0.0065 (15)	0.0076 (13)	0.0001 (14)
C11B	0.0252 (17)	0.0296 (19)	0.0281 (18)	0.0003 (14)	0.0053 (14)	0.0020 (14)
C12B	0.0241 (16)	0.0282 (19)	0.0245 (17)	-0.0012 (14)	0.0080 (13)	-0.0024 (13)
C13B	0.0196 (16)	0.0222 (18)	0.042 (2)	-0.0076 (13)	0.0103 (15)	0.0059 (15)
C14B	0.037 (2)	0.0258 (19)	0.0347 (19)	-0.0142 (15)	0.0149 (16)	-0.0081 (15)
C15B	0.0251 (18)	0.045 (2)	0.0240 (17)	-0.0177 (16)	0.0008 (14)	0.0019 (16)
C16B	0.0135 (15)	0.040 (2)	0.056 (2)	-0.0026 (15)	0.0083 (16)	0.0157 (18)
C17B	0.0267 (18)	0.038 (2)	0.049 (2)	-0.0041 (16)	0.0247 (17)	-0.0029 (17)
C18B	0.0298 (18)	0.039 (2)	0.0290 (18)	-0.0108 (16)	0.0152 (15)	0.0030 (15)
C19B	0.037 (2)	0.026 (2)	0.073 (3)	0.0047 (17)	0.019 (2)	0.010 (2)

Geometric parameters (Å, °)

F7A—P1A	1.505 (8)	C19A—H19A	0.9800
F9A—P1A	1.536 (10)	C19A—H19B	0.9800
F10A—P1A	1.548 (10)	C19A—H19C	0.9800
Ru1A—Cl1A	2.3764 (8)	Ru1B—Cl1B	2.3821 (8)
Ru1A—N1A	2.081 (3)	Ru1B—N1B	2.081 (3)
Ru1A—N2A	2.090 (2)	Ru1B—N2B	2.083 (2)
Ru1A—C13A	2.199 (3)	Ru1B—C13B	2.222 (3)
Ru1A—C14A	2.194 (3)	Ru1B—C14B	2.187 (3)
Ru1A—C15A	2.191 (3)	Ru1B—C15B	2.184 (3)
Ru1A—C16A	2.199 (3)	Ru1B—C16B	2.165 (3)
Ru1A—C17A	2.184 (3)	Ru1B—C17B	2.183 (3)
Ru1A—C18A	2.182 (3)	Ru1B—C18B	2.203 (3)
Cl2A—C10A	1.738 (3)	Cl2B—C10B	1.746 (3)
P1A—F1A	1.596 (5)	P1B—F1B	1.576 (2)
P1A—F2A	1.561 (4)	P1B—F2B	1.587 (2)
P1A—F3A	1.583 (6)	P1B—F3B	1.592 (3)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	P1A—F4A	1.601 (7)	P1B—F4B	1.595 (2)
P1A—F6A 1.595 (4) P1B—F6B 1.580 (3) P1A—F1A 1.545 (7) N1B—C1B 1.338 (4) P1A—F11A 1.572 (6) N1B—C5B 1.356 (4) P1A—F11A 1.551 (5) N2B—C6B 1.279 (4) N1A—C5A 1.357 (4) C1B—H1B 0.9500 N2A—C6A 1.279 (4) C1B—C2B 1.379 (5) N2A—C7A 1.438 (4) C2B—H2B 0.9500 C1A—H1A 0.9500 C3B—C3B 1.383 (5) C1A—C2A 1.381 (5) C3B—C4B 1.386 (5) C2A—C3A 1.374 (5) C4B—H4B 0.9500 C2A—C3A 1.387 (5) C5B—C6B 1.450 (4) C3A—H3A 0.9500 C4B—C5B 1.381 (4) C3A—H3A 0.9500 C6B—H6B 0.9500 C4A—C5A 1.380 (5) C7B—C8B 1.382 (4) C5A—C6A 1.444 (4) C7B—C12B 1.382 (4) C5A—C6A 1.484 (4) C7B—C12B 1.387 (5) C6A—H6A 0.9500 C3B—H8B 0.9500 C7A—C8A 1.387 (4) C8B—C9B 1.384 (4) </td <td>P1A—F5A</td> <td>1.548 (4)</td> <td>P1B—F5B</td> <td>1.587 (3)</td>	P1A—F5A	1.548 (4)	P1B—F5B	1.587 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P1A—F6A	1.595 (4)	P1B—F6B	1.580 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P1A—F8A	1.545 (7)	N1B—C1B	1.338 (4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P1A—F11A	1.572 (6)	N1B—C5B	1.356 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1A—F12A	1.551 (5)	N2B—C6B	1.279 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1A—C1A	1.340 (4)	N2B—C7B	1.436 (4)
N2A—C6A 1.279 (4) CIB—C2B 1.379 (5) N2A—C7A 1.438 (4) C2B—H2B 0.9500 C1A—H1A 0.9500 C2B—C3B 1.383 (5) C1A—C2A 1.381 (5) C3B—C4B 1.386 (5) C2A—H2A 0.9500 C3B—C4B 1.386 (5) C3A—H3A 0.9500 C4B—C5B 1.381 (4) C3A—C4A 1.387 (5) C5B—C6B 1.450 (4) C4A—C5A 1.380 (5) C7B—C8B 1.382 (4) C5A—C6A 1.444 (4) C7B—C12B 1.393 (4) C6A—H6A 0.9500 C6B—H6B 0.9500 C7A—C6A 1.387 (4) C7B—C8B 1.382 (4) C7A—C12A 1.388 (4) C9B—H9B 0.9500 C7A—C12A 1.382 (4) C1B—C12B 1.387 (5) C8A—H8A 0.9500 C1B—C12B 1.387 (5) C8A—H8A 0.9500 C1B—C12B 1.387 (5) C9A—C10A 1.381 (5) C11B—C12B 1.387 (5) C1A—H1A 0.9500 C13B—C14B	N1A—C5A	1.357 (4)	C1B—H1B	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2A—C6A	1.279 (4)	C1B—C2B	1.379 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2A—C7A	1.438 (4)	C2B—H2B	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A—H1A	0.9500	C2B—C3B	1.383 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A—C2A	1.381 (5)	СЗВ—НЗВ	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A—H2A	0.9500	C3B—C4B	1.386 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A—C3A	1.374 (5)	C4B—H4B	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СЗА—НЗА	0.9500	C4B—C5B	1.381 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3A—C4A	1.387 (5)	C5B—C6B	1.450 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A—H4A	0.9500	C6B—H6B	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A—C5A	1.380 (5)	C7B—C8B	1.382 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5A—C6A	1.444 (4)	C7B—C12B	1.393 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6А—Н6А	0.9500	C8B—H8B	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7A—C8A	1.387 (4)	C8B—C9B	1.384 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7A—C12A	1.388 (4)	С9В—Н9В	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8A—H8A	0.9500	C9B—C10B	1.375 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8A—C9A	1.382 (4)	C10B—C11B	1.383 (5)
C9A-C10A1.381 (5)C11B-C12B1.387 (4)C10A-C11A1.382 (5)C12B-H12B0.9500C11A-H11A0.9500C13B-C14B1.433 (5)C11A-C12A1.381 (4)C13B-C18B1.379 (5)C12A-H12A0.9500C13B-C19B1.491 (5)C13A-C14A1.427 (5)C14B-H14B0.9500C13A-C18A1.410 (4)C14B-C15B1.391 (5)C13A-C19A1.497 (5)C15B-H15B0.9500C13A-C19A1.497 (5)C15B-H16B0.9500C14A-H14A0.9500C15B-C16B1.407 (5)C14A-C15A1.387 (5)C16B-H16B0.9500C15A-H15A0.9500C16B-C17B1.400 (5)C15A-C16A1.421 (5)C17B-H17B0.9500C16A-H16A0.9500C17B-C18B1.415 (5)C17A-C18A1.413 (5)C19B-H19D0.9800C17A-C18A1.413 (5)C19B-H19D0.9800C17A-C18A1.413 (5)C19B-H19F0.9800C17A-C18A1.413 (5)C19B-H19F0.9800C17A-C18A1.413 (5)C19B-H19F0.9500N1A-Ru1A-C1A85.76 (7)C17A-C18A-H18A119.9N1A-Ru1A-C13A122.20 (11)C13A-C19A-H19A109.5N1A-Ru1A-C14A160.06 (12)C13A-C19A-H19B109.5N1A-Ru1A-C15A154.87 (12)H19A-C19A-H19B109.5	С9А—Н9А	0.9500	C11B—H11B	0.9500
C10A—C11A 1.382 (5) C12B—H12B 0.9500 C11A—H11A 0.9500 C13B—C14B 1.433 (5) C11A—C12A 1.381 (4) C13B—C18B 1.379 (5) C12A—H12A 0.9500 C13B—C19B 1.491 (5) C13A—C14A 1.427 (5) C14B—H14B 0.9500 C13A—C14A 1.427 (5) C14B—H14B 0.9500 C13A—C18A 1.410 (4) C14B—C15B 1.391 (5) C13A—C19A 1.497 (5) C15B—H15B 0.9500 C14A—H14A 0.9500 C15B—C16B 1.407 (5) C14A—H14A 0.9500 C16B—H16B 0.9500 C14A—C15A 1.387 (5) C16B—H16B 0.9500 C15A—H15A 0.9500 C16B—C17B 1.400 (5) C15A—H15A 0.9500 C16B—C17B 1.400 (5) C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—H16A 0.9500 C17B—H17B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19D 0.9800 C17A—C18A 1.413 (5)	C9A—C10A	1.381 (5)	C11B—C12B	1.387 (4)
C11A—H11A 0.9500 C13B—C14B 1.433 (5) C11A—C12A 1.381 (4) C13B—C18B 1.379 (5) C12A—H12A 0.9500 C13B—C19B 1.491 (5) C13A—C14A 1.427 (5) C14B—H14B 0.9500 C13A—C18A 1.410 (4) C14B—C15B 1.391 (5) C13A—C19A 1.497 (5) C15B—H15B 0.9500 C14A—H14A 0.9500 C15B—C16B 1.407 (5) C14A—H14A 0.9500 C15B—C16B 1.407 (5) C14A—H14A 0.9500 C16B—H16B 0.9500 C15A—C16A 1.387 (5) C16B—H16B 0.9500 C15A—H15A 0.9500 C16B—C17B 1.400 (5) C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—H16A 0.9500 C17B—H17B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—H17A 0.9500 C19B—H19E 0.9800 C17A—C18A 1.413 (5) C19B—H19F 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—C11A 85.76 (7) <t< td=""><td>C10A—C11A</td><td>1.382 (5)</td><td>C12B—H12B</td><td>0.9500</td></t<>	C10A—C11A	1.382 (5)	C12B—H12B	0.9500
C11A—C12A 1.381 (4) C13B—C18B 1.379 (5) C12A—H12A 0.9500 C13B—C19B 1.491 (5) C13A—C14A 1.427 (5) C14B—H14B 0.9500 C13A—C18A 1.410 (4) C14B—C15B 1.391 (5) C13A—C19A 1.497 (5) C15B—H15B 0.9500 C14A—H14A 0.9500 C15B—C16B 1.407 (5) C14A—H14A 0.9500 C16B—H16B 0.9500 C15A—C15A 1.387 (5) C16B—H16B 0.9500 C15A—H15A 0.9500 C16B—C17B 1.400 (5) C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19E 0.9800 C17A—C18A 1.413 (5) C19A—H19A 109.5 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—C13A 122.20 (11	C11A—H11A	0.9500	C13B—C14B	1.433 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11A—C12A	1.381 (4)	C13B—C18B	1.379 (5)
C13A—C14A1.427 (5)C14B—H14B0.9500C13A—C18A1.410 (4)C14B—C15B1.391 (5)C13A—C19A1.497 (5)C15B—H15B0.9500C14A—H14A0.9500C15B—C16B1.407 (5)C14A—C15A1.387 (5)C16B—H16B0.9500C15A—H15A0.9500C16B—C17B1.400 (5)C15A—C16A1.421 (5)C17B—H17B0.9500C16A—H16A0.9500C17B—C18B1.415 (5)C16A—C17A1.390 (5)C18B—H18B0.9500C17A—H17A0.9500C19B—H19D0.9800C17A—C18A1.413 (5)C19B—H19E0.9800C18A—H18A0.9500C13A—C19A—H19A109.5N1A—Ru1A—C11A85.76 (7)C17A—C18A—H18A119.9N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19B109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	C12A—H12A	0.9500	C13B—C19B	1.491 (5)
C13A—C18A1.410 (4)C14B—C15B1.391 (5)C13A—C19A1.497 (5)C15B—H15B0.9500C14A—H14A0.9500C15B—C16B1.407 (5)C14A—C15A1.387 (5)C16B—H16B0.9500C15A—H15A0.9500C16B—C17B1.400 (5)C15A—C16A1.421 (5)C17B—H17B0.9500C16A—H16A0.9500C17B—C18B1.415 (5)C16A—C17A1.390 (5)C18B—H18B0.9500C17A—H17A0.9500C19B—H19D0.9800C17A—C18A1.413 (5)C19B—H19E0.9800C18A—H18A0.9500C19B—H19F0.9800N1A—Ru1A—C11A85.76 (7)C17A—C18A—H18A119.9N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19C109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	C13A—C14A	1.427 (5)	C14B—H14B	0.9500
C13A—C19A 1.497 (5) C15B—H15B 0.9500 C14A—H14A 0.9500 C15B—C16B 1.407 (5) C14A—C15A 1.387 (5) C16B—H16B 0.9500 C15A—H15A 0.9500 C16B—C17B 1.400 (5) C15A—C16A 1.421 (5) C17B—H17B 0.9500 C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19B 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C13A—C18A	1.410 (4)	C14B—C15B	1.391 (5)
C14A—H14A0.9500C15B—C16B1.407 (5)C14A—C15A1.387 (5)C16B—H16B0.9500C15A—H15A0.9500C16B—C17B1.400 (5)C15A—C16A1.421 (5)C17B—H17B0.9500C16A—H16A0.9500C17B—C18B1.415 (5)C16A—C17A1.390 (5)C18B—H18B0.9500C17A—H17A0.9500C19B—H19D0.9800C17A—C18A1.413 (5)C19B—H19E0.9800C18A—H18A0.9500C19B—H19F0.9800C18A—H18A0.9500C13A—C19A—H18A119.9N1A—Ru1A—C11A85.76 (7)C17A—C18A—H18A119.9N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19B109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	C13A—C19A	1.497 (5)	C15B—H15B	0.9500
C14A—C15A 1.387 (5) C16B—H16B 0.9500 C15A—H15A 0.9500 C16B—C17B 1.400 (5) C15A—C16A 1.421 (5) C17B—H17B 0.9500 C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19B 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C14A—H14A	0.9500	C15B—C16B	1.407 (5)
C15A—H15A0.9500C16B—C17B1.400 (5)C15A—C16A1.421 (5)C17B—H17B0.9500C16A—H16A0.9500C17B—C18B1.415 (5)C16A—C17A1.390 (5)C18B—H18B0.9500C17A—H17A0.9500C19B—H19D0.9800C17A—C18A1.413 (5)C19B—H19E0.9800C18A—H18A0.9500C19B—H19F0.9800C18A—H18A0.9500C19B—H19F0.9800N1A—Ru1A—C11A85.76 (7)C17A—C18A—H18A119.9N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19A109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19B109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	C14A—C15A	1.387 (5)	C16B—H16B	0.9500
C15A—C16A 1.421 (5) C17B—H17B 0.9500 C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—Cl1A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—Cl1A 85.76 (7) C13A—C19A—H19A 109.5 N1A—Ru1A—Cl3A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19B 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C15A—H15A	0.9500	C16B—C17B	1.400 (5)
C16A—H16A 0.9500 C17B—C18B 1.415 (5) C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19B 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C15A—C16A	1.421 (5)	C17B—H17B	0.9500
C16A—C17A 1.390 (5) C18B—H18B 0.9500 C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—C11A 85.76 (7) C17A—C18A—H18A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19C 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C16A—H16A	0.9500	C17B—C18B	1.415 (5)
C17A—H17A 0.9500 C19B—H19D 0.9800 C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—Cl1A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—Cl1A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—Cl1A 85.76 (7) C13A—C19A—H19A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19C 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C16A—C17A	1.390 (5)	C18B—H18B	0.9500
C17A—C18A 1.413 (5) C19B—H19E 0.9800 C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—Cl1A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—Cl1A 85.76 (7) C13A—C19A—H19A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19B 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C17A—H17A	0.9500	C19B—H19D	0.9800
C18A—H18A 0.9500 C19B—H19F 0.9800 N1A—Ru1A—Cl1A 85.76 (7) C17A—C18A—H18A 119.9 N1A—Ru1A—N2A 76.82 (10) C13A—C19A—H19A 109.5 N1A—Ru1A—C13A 122.20 (11) C13A—C19A—H19B 109.5 N1A—Ru1A—C14A 160.06 (12) C13A—C19A—H19C 109.5 N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	C17A—C18A	1.413 (5)	C19B—H19E	0.9800
N1A—Ru1A—Cl1A85.76 (7)C17A—C18A—H18A119.9N1A—Ru1A—N2A76.82 (10)C13A—C19A—H19A109.5N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19C109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	C18A—H18A	0.9500	C19B—H19F	0.9800
N1A—Ru1A—N2A76.82 (10)C13A—C19A—H19A109.5N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19C109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	N1A—Ru1A—Cl1A	85.76 (7)	C17A—C18A—H18A	119.9
N1A—Ru1A—C13A122.20 (11)C13A—C19A—H19B109.5N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19C109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	N1A—Ru1A—N2A	76.82 (10)	C13A—C19A—H19A	109.5
N1A—Ru1A—C14A160.06 (12)C13A—C19A—H19C109.5N1A—Ru1A—C15A154.87 (12)H19A—C19A—H19B109.5	N1A—Ru1A—C13A	122.20 (11)	C13A—C19A—H19B	109.5
N1A—Ru1A—C15A 154.87 (12) H19A—C19A—H19B 109.5	N1A—Ru1A—C14A	160.06 (12)	C13A—C19A—H19C	109.5
	N1A—Ru1A—C15A	154.87 (12)	H19A—C19A—H19B	109.5

N1A—Ru1A—C16A	117.75 (12)	H19A—C19A—H19C	109.5
N1A—Ru1A—C17A	94.17 (12)	H19B—C19A—H19C	109.5
N1A—Ru1A—C18A	95.69 (11)	N1B—Ru1B—C11B	86.27 (7)
N2A—Ru1A—Cl1A	86.00 (7)	N1B—Ru1B—N2B	76.84 (10)
N2A—Ru1A—C13A	92.52 (11)	N1B—Ru1B—C13B	161.87 (12)
N2A—Ru1A—C14A	99.40 (11)	N1B—Ru1B—C14B	123.96 (12)
N2A—Ru1A—C15A	127.66 (12)	N1B—Ru1B—C15B	96.41 (12)
N2A—Ru1A—C16A	165.41 (12)	N1B—Ru1B—C16B	92.51 (12)
N2A—Ru1A—C17A	149.94 (12)	N1B—Ru1B—C17B	115.72 (12)
N2A—Ru1A—C18A	113.74 (11)	N1B—Ru1B—C18B	152.72 (12)
C13A—Ru1A—Cl1A	150.92 (9)	N2B—Ru1B—Cl1B	86.85 (7)
C14A—Ru1A—Cl1A	113.72 (9)	N2B— $Ru1B$ — $C13B$	121.24(11)
C14A— $Ru1A$ — $C13A$	37.91 (12)	N2B— $Ru1B$ — $C14B$	158 91 (12)
C14A— $Ru1A$ — $C16A$	67 24 (13)	N2B— $Ru1B$ — $C15B$	156 38 (13)
C15A— $Ru1A$ — $C11A$	90 15 (9)	N2B— $Ru1B$ — $C16B$	11913(13)
C15A— $Ru1A$ — $C13A$	67.92 (13)	N2B— $Ru1B$ — $C17B$	94 47 (12)
C15A— $Ru1A$ — $C14A$	36 88 (13)	N2B $Ru1B$ $C18B$	96 46 (12)
C15A = Ru1A = C16A	37 77 (13)	C13B $Ru1B$ $C11B$	92.98(9)
C16A— $Ru1A$ — $C11A$	93.96 (9)	C14B $Ru1B$ $C11B$	90.82(10)
$C_{16} = R_{11} \Delta = C_{13} \Delta$	80.42 (12)	C14B RulB $C13B$	37.92(12)
C17A Ru1A $C13A$	122 34 (10)	C14B $Ru1B$ $C18B$	66 75 (13)
C17A Rul A $C13A$	67.83 (12)	C15B $Ru1B$ $C11B$	11559(11)
C17A RulA $C14A$	79 29 (12)	C15B RulB $C13B$	67 59 (13)
C17A RulA $C15A$	67 30 (13)	C15B RulB $C14B$	37 10 (13)
C17A = Ru1A = C16A	36.08 (13)	C15B = Ru1B = C14B	70 11 (13)
C18A = Ru1A = C10A	160.06 (9)	C_{15D} R_{u1B} C_{15D}	153 03 (12)
$C_{18A} = Ru_{1A} = C_{13A}$	100.00(9)	C_{16}^{16} P_{11}^{16} C_{13}^{16} C_{13}^{16}	70.00(12)
C18A = Ru1A = C13A	57.54 (12) 67.50 (12)	C_{10} C	(73.33(13))
$C_{10}A = Ru_{11}A = C_{15}A$	07.39(12)	C_{10} D_{11} D_{12} C_{14} D_{14} D	07.03(14)
C18A $Bu1A$ $C16A$	60.10(13)	$C_{10} = -C_{13} = C_{13} = $	37.74(14)
C18A $Bu1A$ $C17A$	07.72(13)	C10D— $Ru1D$ — $C17D$	57.55(14)
CIOA— $RUIA$ — CI/A	57.75(12)	C10D— $Ru1D$ — $C10D$	07.38(13)
F/A - PIA - F9A	94.2 (9)	C17B—RuIB—CIIB	157.72(10)
F/A - PIA - FI0A	91.9 (9)	CI7B—RuIB—CI3B	07.34 (13)
F/A - PIA - F8A	1//./(6)	C17B RulB $C14B$	/9.99 (14)
F/A - PIA - FIIA	89.9 (5)	CI7B Ruib—CI5B	6/.//(14)
F/A - PIA - FI2A	93.8 (5)	CIP P ID CIID	37.63 (13)
F9A - P1A - F10A	1/3.6 (9)	CI8B—RuIB—CIIB	120.10(10)
F9A—PIA—F8A	84.3 (9)	CI8B—RuIB—CI3B	36.31 (13)
F9A—PIA—FIIA	87.8 (5)	FIB—PIB—F2B	1/9.44 (1/)
F9A—P1A—F12A	90.4 (5)	F1B—P1B—F3B	90.34 (14)
FIOA—PIA—FIIA	94.0 (7)	FIB—PIB—F4B	89.45 (14)
F10A—P1A—F12A	87.4 (6)	FIB—PIB—F5B	89.99 (16)
F1A—P1A—F4A	84.7 (4)	F1B—P1B—F6B	91.13 (17)
F2A—P1A—F1A	177.1 (4)	F2B—P1B—F3B	90.11 (15)
F2A—P1A—F3A	92.1 (4)	F2B—P1B—F4B	90.10 (14)
F2A—P1A—F4A	93.7 (4)	F2B—P1B—F5B	90.35 (16)
F2A—P1A—F6A	90.9 (3)	F3B—P1B—F4B	179.79 (15)
F3A—P1A—F1A	89.3 (4)	F5B—P1B—F3B	89.81 (15)

F3A—P1A—F4A	173.5 (4)	F5B—P1B—F4B	90.13 (16)
F3A—P1A—F6A	87.5 (3)	F6B—P1B—F2B	88.53 (15)
F5A—P1A—F1A	91.8 (3)	F6B—P1B—F3B	89.68 (16)
F5A—P1A—F2A	90.6 (4)	F6B—P1B—F4B	90.38 (16)
F5A—P1A—F3A	93.6 (3)	F6B—P1B—F5B	178.77 (17)
F5A—P1A—F4A	89.2 (3)	C1B—N1B—Ru1B	126.3 (2)
F5A—P1A—F6A	178.1 (3)	C1B—N1B—C5B	118.3 (3)
F6A—P1A—F1A	86.6 (3)	C5B—N1B—Ru1B	115.4 (2)
F6A—P1A—F4A	89.5 (3)	C6B = N2B = Ru1B	116.3 (2)
F8A—P1A—F10A	89.7 (9)	C6B - N2B - C7B	119.6 (3)
F8A - P1A - F11A	88.4 (5)	C7B = N2B = Bu1B	1241(2)
F8A - P1A - F12A	87.9 (5)	NIB-CIB-HIB	118.9
F12A P1A F11A	1760(4)	NIB-CIB-C2B	122.3(3)
C1A = N1A = Ru1A	176.0(4) 126.4(2)	C^{2B} C^{1B} C^{1B} H^{1B}	118.9
C1A - N1A - C5A	120.4(2) 118.2(3)	C1B $C2B$ $H2B$	120.2
C_{1}^{-} N1A B_{1}^{-} A	115.2(3)	C1B C2B C3B	120.2 110.6 (3)
$C_{A} = N_{A} = R_{u1A}$	115.4(2) 116.0(2)	$C_{1D} = C_{2D} = C_{3D}$	119.0 (3)
C6A N2A C7A	110.0(2) 118.4(2)	C2D C2D H2D	120.2
COA - NZA - C/A	116.4(3) 125.6(2)	C2D = C3D = H3D	120.7
C/A—NZA—KUIA	123.0 (2)	$C_{2}D = C_{3}D = C_{4}D$	118.5 (5)
NIA—CIA—HIA	119.1	C4B - C3B - H3B	120.7
NIA - CIA - CZA	121.8 (3)	C_{3B} C_{4B} H_{4B}	120.5
C2A—CIA—HIA	119.1	C5B = C4B = C3B	119.1 (3)
CIA—C2A—H2A	119.9	C5B—C4B—H4B	120.5
C3A—C2A—C1A	120.2 (3)	N1B—C5B—C4B	122.1 (3)
C3A—C2A—H2A	119.9	N1B—C5B—C6B	113.7 (3)
С2А—С3А—Н3А	120.8	C4B—C5B—C6B	124.2 (3)
C2A—C3A—C4A	118.3 (3)	N2B—C6B—C5B	117.5 (3)
С4А—С3А—Н3А	120.8	N2B—C6B—H6B	121.2
C3A—C4A—H4A	120.4	C5B—C6B—H6B	121.2
C5A—C4A—C3A	119.1 (3)	C8B—C7B—N2B	120.7 (3)
C5A—C4A—H4A	120.4	C8B—C7B—C12B	121.3 (3)
N1A—C5A—C4A	122.2 (3)	C12B—C7B—N2B	118.0 (3)
N1A—C5A—C6A	113.8 (3)	C7B—C8B—H8B	120.3
C4A—C5A—C6A	124.0 (3)	C7B—C8B—C9B	119.5 (3)
N2A—C6A—C5A	117.9 (3)	C9B—C8B—H8B	120.3
N2A—C6A—H6A	121.1	C8B—C9B—H9B	120.5
С5А—С6А—Н6А	121.1	C10B—C9B—C8B	119.0 (3)
C8A—C7A—N2A	119.4 (3)	C10B—C9B—H9B	120.5
C8A—C7A—C12A	120.9 (3)	C9B—C10B—C12B	118.9 (3)
C12A—C7A—N2A	119.7 (3)	C9B—C10B—C11B	122.2 (3)
С7А—С8А—Н8А	120.3	C11B—C10B—C12B	118.9 (3)
C9A—C8A—C7A	119.4 (3)	C10B—C11B—H11B	120.6
C9A—C8A—H8A	120.3	C10B—C11B—C12B	118.9 (3)
С8А—С9А—Н9А	120.3	C12B—C11B—H11B	120.6
C10A—C9A—C8A	119.3 (3)	C7B—C12B—H12B	120.5
С10А—С9А—Н9А	120.3	C11B—C12B—C7B	119.1 (3)
C9A—C10A—Cl2A	119.5 (3)	C11B—C12B—H12B	120.5
C9A—C10A—C11A	121.7 (3)	C14B—C13B—Ru1B	69.71 (19)
			···· \ (=< /

C11 A	C10A C12A	110.9(2)	C14P C12P C10P	110.0(2)
CIIA-	-CIUA-CIZA	110.0 (5)	C14B - C13B - C19B	119.9(3)
CIUA-		120.3		/1.1 (2)
CI2A-	-CIIA-CI0A	119.0 (3)	C18B—C13B—C14B	118.4 (3)
CI2A-	CIIAHIIA	120.5	C18B—C13B—C19B	121.7 (3)
C7A—	-C12A—H12A	120.2	C19B—C13B—Ru1B	129.5 (2)
C11A-	C12AC7A	119.7 (3)	Ru1B—C14B—H14B	128.9
C11A-	C12AH12A	120.2	C13B—C14B—Ru1B	72.37 (18)
C14A-	C13ARu1A	70.83 (18)	C13B—C14B—H14B	119.8
C14A-	C13AC19A	121.3 (3)	C15B—C14B—Ru1B	71.3 (2)
C18A-		70.58 (18)	C15B—C14B—C13B	120.5 (3)
C18A-		118.2 (3)	C15B—C14B—H14B	119.8
C18A-		120.5(3)	Ru1B—C15B—H15B	130.7
	$-C13\Delta$ $-Ru1\Delta$	128.7(2)	C14B $C15B$ $Bu1B$	71 56 (18)
		120.7 (2)	$C_{14}D = C_{15}D = R_{01}D$	120.0
C12A	-C14A $-D114A$	130.7	C14D = C15D = C16D	120.0
CI3A-	-CI4A-RUIA	/1.20(18)	C14B $C15B$ $C10B$	120.0(3)
CI3A-		119.4	CI6B—CI5B—KuIB	/0.39 (19)
CI5A-	-C14A-RulA	71.5 (2)	C16B—C15B—H15B	120.0
C15A-	C14AC13A	121.3 (3)	Ru1B—C16B—H16B	128.7
C15A-		119.4	C15B—C16B—Ru1B	71.88 (19)
Ru1A-	C15AH15A	129.3	C15B—C16B—H16B	119.8
C14A-	C15ARu1A	71.66 (19)	C17B—C16B—Ru1B	71.92 (19)
C14A-	C15AH15A	120.0	C17B—C16B—C15B	120.4 (3)
C14A-	C15AC16A	120.0 (3)	C17B—C16B—H16B	119.8
C16A-	C15ARu1A	71.4 (2)	Ru1B—C17B—H17B	129.2
C16A-		120.0	C16B—C17B—Ru1B	70.5 (2)
Ru1A-	—С16А—Н16А	130.4	C16B—C17B—H17B	120.6
C15A-	-C16A-Ru1A	70.80(18)	C16B-C17B-C18B	118 9 (3)
C15A-		120.4	$C_{18B} - C_{17B} - B_{11B}$	71.95 (19)
$C17\Delta_{-}$	-C16A $-Ru1A$	70.90 (19)	C_{18B} C_{17B} H_{17B}	120.6
C17A	C16A $C15A$	110.2(3)	$P_{\rm H}1P_{\rm C}18P_{\rm H}18P_{\rm H}$	120.0
	-C16A = U16A	119.2 (5)	$C_{12D} = C_{18D} = D_{1118D}$	72 62 (10)
D 1A	-C10A	120.4	C13D - C18D - Ku1D	121.02(19)
KUIA-	-C1/A $-H1/A$	130.0		121.9 (3)
CI6A-	-CI/A-RulA	/2.12 (18)	CI3B—CI8B—HI8B	119.0
C16A-		119.4	C17B—C18B—Ru1B	70.4 (2)
C16A-		121.2 (3)	C17B—C18B—H18B	119.0
C18A-	—C17A—Ru1A	71.08 (17)	C13B—C19B—H19D	109.5
C18A-	C17AH17A	119.4	C13B—C19B—H19E	109.5
Ru1A-	C18AH18A	129.4	C13B—C19B—H19F	109.5
C13A-	C18ARu1A	71.88 (18)	H19D—C19B—H19E	109.5
C13A-		120.1 (3)	H19D—C19B—H19F	109.5
C13A-		119.9	H19E—C19B—H19F	109.5
C17A-		71.17 (18)		
• •				
R111A-	-N1A-C1A-C2A	-177.9(2)	Ru1B—N1B—C1B—C2B	-1761(2)
$R_{11}1\Delta_{-}$	-N1A-C5A-C4A	176.9 (3)	Ru1B = N1B = C5B = C4B	175 8 (3)
Ru1A	-N1A-C5A-C6A	-37(4)	Ru1B = N1B = C5B = C6B	-54(3)
	N2A C6A C5A	5.7(-7)	$R_{\rm H} IB = N^2 B = C^2 B = C^2 B$	20(4)
NulA-	-N2A - C7A - C9A	1.3(4)	$\mathbf{R}_{112222222222$	2.0(4)
KulA-	-INZA-U/A-UðA	-43./(4)	KUID—NZD—U/D—UðD	133.7(3)

Ru1A—N2A—C7A—C12A	135.1 (3)	Ru1B—N2B—C7B—C12B	-43.0 (4)
Ru1A—C13A—C14A—C15A	53.2 (3)	Ru1B—C13B—C14B—C15B	54.8 (3)
Ru1A—C13A—C18A—C17A	-54.4 (3)	Ru1B—C13B—C18B—C17B	-52.5 (3)
Ru1A—C14A—C15A—C16A	54.6 (3)	Ru1B—C14B—C15B—C16B	53.1 (3)
Ru1A—C15A—C16A—C17A	53.8 (3)	Ru1B—C15B—C16B—C17B	55.2 (3)
Ru1A—C16A—C17A—C18A	53.6 (3)	Ru1B—C16B—C17B—C18B	55.2 (3)
Ru1A—C17A—C18A—C13A	54.7 (3)	Ru1B—C17B—C18B—C13B	53.5 (3)
Cl2A—C10A—C11A—C12A	-177.9(2)	Cl2B—C10B—C11B—C12B	-179.9 (3)
N1A—C1A—C2A—C3A	-0.4 (5)	N1B—C1B—C2B—C3B	0.3 (5)
N1A—C5A—C6A—N2A	1.5 (4)	N1B—C5B—C6B—N2B	2.2 (4)
N2A—C7A—C8A—C9A	-178.9 (3)	N2B—C7B—C8B—C9B	179.9 (3)
N2A—C7A—C12A—C11A	179.2 (3)	N2B—C7B—C12B—C11B	179.9 (3)
C1A—N1A—C5A—C4A	-4.1 (5)	C1B—N1B—C5B—C4B	-3.1(5)
C1A—N1A—C5A—C6A	175.3 (3)	C1B—N1B—C5B—C6B	175.7 (3)
C1A—C2A—C3A—C4A	-1.5 (5)	C1B—C2B—C3B—C4B	-2.9(5)
C2A—C3A—C4A—C5A	0.7 (5)	C2B—C3B—C4B—C5B	2.5 (5)
C3A—C4A—C5A—N1A	2.2 (5)	C3B—C4B—C5B—N1B	0.5 (5)
C3A—C4A—C5A—C6A	-177.1 (3)	C3B—C4B—C5B—C6B	-178.2 (3)
C4A—C5A—C6A—N2A	-179.2 (3)	C4B—C5B—C6B—N2B	-178.9 (3)
C5A—N1A—C1A—C2A	3.2 (5)	C5B—N1B—C1B—C2B	2.7 (5)
C6A—N2A—C7A—C8A	137.3 (3)	C6B—N2B—C7B—C8B	-43.3 (4)
C6A—N2A—C7A—C12A	-43.9 (4)	C6B—N2B—C7B—C12B	137.8 (3)
C7A—N2A—C6A—C5A	-179.4 (3)	C7B—N2B—C6B—C5B	-178.7 (3)
C7A—C8A—C9A—C10A	-0.8 (5)	C7B-C8B-C9B-C10B	0.4 (5)
C8A—C7A—C12A—C11A	-2.0 (5)	C8B-C7B-C12B-C11B	1.0 (5)
C8A—C9A—C10A—Cl2A	178.2 (3)	C8B-C9B-C10B-Cl2B	179.7 (3)
C8A—C9A—C10A—C11A	-1.0 (5)	C8B-C9B-C10B-C11B	0.7 (5)
C9A—C10A—C11A—C12A	1.3 (5)	C9B-C10B-C11B-C12B	-0.9 (5)
C10A—C11A—C12A—C7A	0.2 (5)	C10B—C11B—C12B—C7B	0.0 (5)
C12A—C7A—C8A—C9A	2.3 (5)	C12B—C7B—C8B—C9B	-1.2 (5)
C13A—C14A—C15A—Ru1A	-53.1 (3)	C13B—C14B—C15B—Ru1B	-55.3 (3)
C13A—C14A—C15A—C16A	1.5 (5)	C13B—C14B—C15B—C16B	-2.2 (5)
C14A—C13A—C18A—Ru1A	54.3 (2)	C14B—C13B—C18B—Ru1B	53.0 (3)
C14A—C13A—C18A—C17A	-0.1 (4)	C14B—C13B—C18B—C17B	0.5 (5)
C14A—C15A—C16A—Ru1A	-54.7 (3)	C14B—C15B—C16B—Ru1B	-53.6 (3)
C14A—C15A—C16A—C17A	-0.9 (5)	C14B—C15B—C16B—C17B	1.6 (5)
C15A—C16A—C17A—Ru1A	-53.7 (3)	C15B—C16B—C17B—Ru1B	-55.2 (3)
C15A—C16A—C17A—C18A	-0.1 (5)	C15B—C16B—C17B—C18B	0.0 (5)
C16A—C17A—C18A—Ru1A	-54.1 (3)	C16B—C17B—C18B—Ru1B	-54.5 (3)
C16A—C17A—C18A—C13A	0.7 (5)	C16B—C17B—C18B—C13B	-1.1 (5)
C18A—C13A—C14A—Ru1A	-54.2 (3)	C18B—C13B—C14B—Ru1B	-53.7 (3)
C18A—C13A—C14A—C15A	-1.0 (5)	C18B—C13B—C14B—C15B	1.1 (5)
C19A—C13A—C14A—Ru1A	124.3 (3)	C19B—C13B—C14B—Ru1B	124.7 (3)
C19A—C13A—C14A—C15A	177.5 (3)	C19B—C13B—C14B—C15B	179.5 (3)
C19A—C13A—C18A—Ru1A	-124.2 (3)	C19B—C13B—C18B—Ru1B	-125.3 (3)
C19A—C13A—C18A—C17A	-178.6 (3)	C19B—C13B—C18B—C17B	-177.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
$C1A$ — $H1A$ ···F7 A^{i}	0.95	2.33	3.242 (11)	160
C3A— $H3A$ ···F2 A ⁱⁱ	0.95	2.43	3.261 (8)	147
C19A—H19A…F11A ⁱⁱⁱ	0.98	2.38	3.243 (9)	146
C15B—H15B····F4 B^{iv}	0.95	2.35	3.292 (4)	172

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*, *y*+1/2, -*z*+1/2; (iv) *x*, -*y*+1/2, *z*+1/2.