

ISSN 2414-3146

Received 8 November 2024 Accepted 18 February 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; high-pressure sintering; β phase; intermetallic.

CCDC reference: 2424857

Structural data: full structural data are available from iucrdata.iucr.org

Titanium vanadium nickel, $TiV_{0.08}Ni_{0.92}$

Huizi Liu,^a Changzeng Fan,^{a,b*} Bin Wen^a and Lifeng Zhang^{a,c}

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, ^bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China, and ^cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China. *Correspondence e-mail: chzfan@ysu.edu.cn

A single-crystal of the intermetallic phase $TiV_{0.08}Ni_{0.92}$ was obtained by the high-temperature sintering of a mixture of nominal composition $Ti_{0.9}V_{0.1}Ni$. The title compound adopts the CsCl structure type with one site solely occupied by Ti and the other by V and Ni with a ratio of 0.08 (7):0.92 (7).

Structure description

The Ti-V-Ni alloy system has been widely studied for its excellent hydrogen-storage properties. For example, the structure of the $Ti_{14}V_{06}Ni$ alloy was studied by powder X-ray diffraction, which identified an icosahedral quasicrystal phase (I-phase), fcc-Ti₂Nitype phase and bcc-V-based solid-solution phase. The TEM patterns of the I-phase along the fivefold and twofold symmetry axes have been reported (Sun et al., 2015). Anahara et al. (2003) synthesized the $Ti_{0.73}V_{1.4}Ni_{0.27}$ alloy, in which Ti was partially replaced by Ni to compare with the parent TiV $_{1.4}$ phase. The PXRD peaks of the Ti $_{0.73}$ V $_{1.4}$ Ni $_{0.27}$ alloy after heat treatment can be indexed as a b.c.c. solid solution of vanadium and the Ti₂Ni phase. Iwakura et al. (2000) synthesized $TiV_{0.9}Ni_{0.5}$, which is composed of 'black' and 'white' phases as characterized by X-ray diffraction and electron probe analysis. The black phase is the V-based solid solution, the white phase is a TiNi-based solid solution along with traces of TiNi or Ti₂Ni-based alloys. The existence of the Ni₃(Ti_xV_{1-x}) long-period structure was confirmed by electron diffraction and high-resolution lattice imaging (Zhang et al., 1984). $V_{85}Ni_{15}$ was obtained by dissolving Ni atoms into a vanadium-atom matrix to form a single supersaturated solid solution and V85Ni10Ti5 was obtained by replacing Ni with 5 at% Ti (Jiang et al., 2020). Souvatzis et al. (2010) prepared the TiNi cubic phase known as the B2 or β phase with space group $Pm\overline{3}m$. It can be seen from the literature and databases that previous research on the Ti-V-Ni system only indicated the existence of the bcc structure without any refined structure models.

Figure 1 The crystal structure of $TiV_{0.08}Ni_{0.92}$, with displacement ellipsoids at the 95% probability level.

The structure of the title alloy, $\text{TiV}_{0.08}\text{Ni}_{0.92}$, revealed that one site is co-occupied by V and Ni compared with TiNi phase in space-group type $Pm\overline{3}m$. Fig. 1 shows the overall atomic distribution in the unit cell of $\text{TiV}_{0.08}\text{Ni}_{0.92}$. Each Ni1/V1 atom is located at a dodecahedron (Wyckoff 1*a* site), being surrounded by six Ni1/V1 atoms and eight Ti1 atoms (Fig. 2). The Ti1 atom (1*b* site) is surrounded by six Ti1 atoms and eight Ni1/V1 atoms, defining the centre of its dodecahedron (Fig. 3). The shortest Ni1/V1 to Ti1 separation is 2.5890 (5) Å and the shortest Ni1/V1 to Ni1/V1 separation is 2.9895 (6) Å.

Synthesis and crystallization

High-purity titanium powder (indicated purity 99.5%, 0.4043 g), vanadium powder (indicated purity 99.9%, 0.565 g) and nickel powder (indicated purity 99.9%, 0.5501 g) were mixed in the atomic ratio 0.9:0.1:1 and fully ground in an agate mortar. The mixture was placed into a 5 mm cemented carbide grinding mould and pressed into a tablet at about 6 MPa for 2 min to obtain a cylindrical block without deformations or cracks. The detailed description of the high-pressure sintering experiment using a six-anvil high-temperature and high-pressure apparatus can be found elsewhere (Liu &

Figure 2

(a) The dodecahedron formed around the Ni1/V1 atom at the 1*a* Wyckoff site; (b) the environment of the Ni1/V1 atom with displacement ellipsoids given at the 95% probability level. [Symmetry codes: (i) x - 1, y - 1, z - 1; (ii) x - 1, y, z; (iii) x, y - 1, z; (iv) x - 1, y - 1, z; (v) x, y, z - 1; (vi) x - 1, y - 1; (vi) x - 1, y - 1; (vii) x, y - 1, z - 1; (viii) x, y - 1, z - 1; (viii) x, y + 1, z.]

Figure 3

(a) The dodecahedron formed around the Ti1 atom at the 1*b* site; (b) the environment of the Ti1 atom with displacement ellipsoids given at the 95% probability level. [Symmetry codes: (iii) x, y - 1, z; (v) x, y, z - 1; (viii) x, y, z + 1.]

Fan, 2018). The sample was pressurized up to 6 GPa and heated to 1623 K for 20 min, cooled to 1173 K and held at that temperature for 1 h. Finally, the furnace power was turned off to rapidly cool to room temperature. Two phases were isolated from two samples from the same batch. According to the complementary EDX results, the chemical composition was refined to be exactly $\text{TiV}_{0.08}\text{Ni}_{0.92}$ originated from sample 1 (see Table S1 of the electronic supporting information, ESI). Another phase of $\text{TiV}_{0.07}\text{Ni}_{0.93}$ with very similar refined composition, was isolated from sample 2, its composition is in accordance with the complementary EDX results also (see Table S2 of the ESI). Different options of refinements for the two phases $\text{TiV}_{\delta}\text{Ni}_{1-\delta}$ ($\delta = 0.07, 0.08$) are listed in Table S3 of the ESI. The crystal structures of $\text{TiV}_{0.08}\text{Ni}_{0.92}$ and $\text{TiV}_{0.07}\text{Ni}_{0.93}$ are very similar, differing only in atomic

 Table 1

 Experimental details.

1	
Crystal data	
Chemical formula	TiV _{0.08} Ni _{0.92}
M _r	105.96
Crystal system, space group	Cubic, $Pm\overline{3}m$
Temperature (K)	296
a (Å)	2.9895 (6)
$V(Å^3)$	26.72 (2)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	23.34
Crystal size (mm)	$0.10\times0.08\times0.06$
Data collection	
Diffractometer	Bruker D8 Venture Photon 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.394, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	774, 14, 12
R _{int}	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.039, 1.39
No. of reflections	14
No. of parameters	4
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.25, -0.20

Computer programs: *APEX3* and *SAINT* (Bruker, 2015), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2016/6* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2017) and *publCIF* (Westrip, 2010).

proportions at the (Ni/V) site, so the $TiV_{0.08}Ni_{0.92}$ phase was selected for the current report. The structure data of $TiV_{0.07}Ni_{0.93}$ are summarized in Table S4 of the ESI.

Refinement

Crystal data, data collection and structure refinement details of TiV_{0.08}Ni_{0.92} are summarized in Table 1. Only one site is cooccupied by Ni and V atoms (Ni1/V1). Site occupation factor (s. o. f.) were refined to 0.08 (7) for V1 and 0.92 (7) for Ni1, assuming full occupancy for each site. Atoms sharing the same site were constrained to have the same coordinates and displacement parameters. The maximum and minimum residual electron densities in the final difference map are located 0.00 Å and 0.78 Å from the atom V1.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing

Metal Product Technology and Performance (grant No. 22567609H).

References

- Anahara, M., Ikeda, K., Misaki, Y. & Kamasaki, S. (2003). J. Surf. Finish. Soc. Jpn, 54, 1054–1055.
- Brandenburg, K. & Putz, H. (2017). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.
- Iwakura, C., Choi, W. K., Miyauchi, R. & Inoue, H. (2000). J. Electrochem. Soc. 147, 2503–2506.
- Jiang, P., Sun, B., Wang, H., Peng, G., Ma, Y., Song, G. & Dolan, M. (2020). Mater. Res. Expr. 7, 066505.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Souvatzis, P., Legut, D., Eriksson, O. & Katsnelson, M. I. (2010). *Phys. Rev. B*, **81**, 092201.
- Sun, L., Lin, J., Cao, Z., Liang, F. & Wang, L. (2015). J. Alloys Compd. 650, 15–21.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Z., Wu, Y. & Guo, K. (1984). J. Acta Phys. Sin. 33, 676-700.

full crystallographic data

IUCrData (2025). **10**, x250147 [https://doi.org/10.1107/S2414314625001476]

Titanium vanadium nickel, TiV_{0.08}Ni_{0.92}

Huizi Liu, Changzeng Fan, Bin Wen and Lifeng Zhang

Titanium vanadium nickel

Crystal data	
TiV _{0.08} Ni _{0.92} $M_r = 105.96$ Cubic, $Pm\overline{3}m$ a = 2.9895 (6) Å V = 26.72 (2) Å ³ Z = 1 F(000) = 50 $D_x = 6.585$ Mg m ⁻³	Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 433 reflections $\theta = 6.8-26.4^{\circ}$ $\mu = 23.34 \text{ mm}^{-1}$ T = 296 K Lump, gray $0.10 \times 0.08 \times 0.06 \text{ mm}$
Data collection	
Bruker D8 Venture Photon 100 CMOS diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{min} = 0.394, T_{max} = 0.746$ 774 measured reflections	14 independent reflections 12 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 26.4^\circ$, $\theta_{min} = 6.8^\circ$ $h = -3 \rightarrow 3$ $k = -3 \rightarrow 3$ $l = -3 \rightarrow 3$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.039$ S = 1.39 14 reflections 4 parameters	0 restraints $w = 1/[\sigma^2(F_o^2) + 0.1191P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.000000	0.000000	0.000000	0.0332 (12)	0.92 (7)
V1	0.000000	0.000000	0.000000	0.0332 (12)	0.08 (7)
Ti1	0.500000	0.500000	0.500000	0.0257 (14)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0332 (12)	0.0332 (12)	0.0332 (12)	0.000	0.000	0.000
V1	0.0332 (12)	0.0332 (12)	0.0332 (12)	0.000	0.000	0.000
Ti1	0.0257 (14)	0.0257 (14)	0.0257 (14)	0.000	0.000	0.000
Geomet	ric parameters (Å, °)					
Ni1—Ti	i1 ⁱ	2.5890 (5)	V1—Ti1 ⁱ		2.58	90 (5)
Ni1—Ti	i1	2.5890 (5)	V1—Ti1		2.58	90 (5)
Ni1—Ti	i1 ⁱⁱ	2.5890 (5)	V1—Ti1 ⁱⁱ		2.58	90 (5)
Ni1—Ti	i1 ⁱⁱⁱ	2.5890 (5)	V1—Ti1 ^{vii}		2.58	90 (5)
Ni1—Ti	i1 ^{iv}	2.5890 (5)	V1—Ti1 ^{vi}		2.58	90 (5)
Ni1—Ti	i1 ^v	2.5890 (5)	V1—Ti1 ^v		2.58	90 (5)
Ni1—Ti	i1 ^{vi}	2.5890 (5)	V1—Ti1 ^{iv}		2.58	90 (5)
Ni1—Ti	i1 ^{vii}	2.5890 (5)	V1—Ti1 ⁱⁱⁱ		2.58	90 (5)
Ni1—N	i1 ⁱⁱⁱ	2.9895 (6)	Ti1—Ti1 ^{vii}	ii	2.98	95 (6)
Ni1—N	i1 ^v	2.9895 (6)	Ti1—Ti1 ^v		2.98	95 (6)
Ni1—N	i1 ^{viii}	2.9895 (6)	Ti1—Ti1 ⁱⁱⁱ		2.98	95 (6)
Ni1—N	i1 ^{ix}	2.9895 (6)				
Ti1 ⁱ —N	il—Til	180.0	Ti1 ^{vii} —V1-	—Ti1 ^{vi}	109.	5
Ti1 ⁱ —N	i1—Ti1 ⁱⁱ	109.5	Ti1 ⁱ —V1–	-Ti1 ^v	109.	5
Ti1—Ni	i1—Ti1 ⁱⁱ	70.5	Ti1—V1—	-Ti1 ^v	70.5	
Ti1 ⁱ —N	i1—Ti1 ⁱⁱⁱ	109.5	Ti1 ⁱⁱ —V1-	—Ti1 ^v	109.	5
Ti1—Ni	i1—Ti1 ⁱⁱⁱ	70.5	Ti1 ^{vii} —V1-	—Ti1 ^v	70.5	
Ti1 ⁱⁱ —N	li1—Ti1 ⁱⁱⁱ	109.5	Ti1 ^{vi} —V1-	—Ti1 ^v	70.5	
Ti1 ⁱ —N	i1—Ti1 ^{iv}	70.5	Ti1 ⁱ —V1–	-Ti1 ^{iv}	70.5	
Ti1—Ni	i1—Ti1 ^{iv}	109.5	Ti1—V1—	-Ti1 ^{iv}	109.	5
Ti1 ⁱⁱ —N	li1—Ti1 ^{iv}	70.5	Ti1 ⁱⁱ —V1-	—Ti1 ^{iv}	70.5	
Ti1 ⁱⁱⁱ —N	Ni1—Ti1 ^{iv}	70.5	Ti1 ^{vii} —V1-	—Ti1 ^{iv}	109.	5
Ti1 ⁱ —N	i1—Ti1 ^v	109.5	Ti1 ^{vi} —V1-	—Ti1 ^{iv}	109.	5
Ti1—Ni	i1—Ti1 ^v	70.5	Ti1 ^v —V1–	—Ti1 ^{iv}	180.	0
Ti1 ⁱⁱ —N	Ji1—Ti1 ^v	109.5	Ti1 ⁱ —V1–	–Ti1 ⁱⁱⁱ	109.	5
Ti1 ⁱⁱⁱ —N	Ni1—Ti1 ^v	109.5	Ti1—V1—	-Ti1 ⁱⁱⁱ	70.5	
Til ^{iv} —N	Ni1—Ti1 ^v	180.0	Ti1 ⁱⁱ —V1–	—Ti1 ⁱⁱⁱ	109.	5
Ti1 ⁱ —N	i1—Ti1 ^{vi}	70.5	Ti1 ^{vii} —V1-	—Ti1 ⁱⁱⁱ	70.5	
Ti1—Ni	i1—Ti1 ^{vi}	109.5	Ti1 ^{vi} —V1-	—Ti1 ⁱⁱⁱ	180.	0
Ti1 ⁱⁱ —N	li1—Ti1 ^{vi}	70.5	Til ^v —V1–	—Ti1 ⁱⁱⁱ	109.	5
Ti1 ⁱⁱⁱ —N	Ni1—Ti1 ^{vi}	180.0	Ti1 ^{iv} —V1-	—Ti1 ⁱⁱⁱ	70.5	
Ti1 ^{iv} —N	Ni1—Ti1 ^{vi}	109.5	Ni1 ^x —Ti1-	—Nil	180.	0
Ti1 ^v —N	li1—Ti1 ^{vi}	70.5	Ni1 ^x —Ti1-	—Ni1 ^{xi}	109.	5
Ti1 ⁱ —N	i1—Ti1 ^{vii}	70.5	Ni1—Ti1–	–Ni1 ^{xi}	70.5	
Ti1—Ni	i1—Ti1 ^{vii}	109.5	Ni1 ^x —Ti1-	—Ni1 ^{ix}	109.	5
Ti1 ⁱⁱ —N	Ji1—Ti1 ^{vii}	180.0	Ni1—Ti1–	–Ni1 ^{ix}	70.5	
Ti1 ⁱⁱⁱ —N	Ni1—Ti1 ^{vii}	70.5	Ni1 ^{xi} —Ti1	—Ni1 ^{ix}	109.	5
Til ^{iv} _N	Ji1—Ti1 ^{vii}	109 5	Ni1 ^x —Ti1-	—Ni1 ^{xii}	70 5	

Atomic displacement parameters $(Å^2)$

Ti1 ^v —Ni1—Ti1 ^{vii}	70.5	Ni1—Ti1—Ni1 ^{xii}	109.5
Ti1 ^{vi} —Ni1—Ti1 ^{vii}	109.5	Ni1 ^{xi} —Ti1—Ni1 ^{xii}	70.5
Ti1 ⁱ —Ni1—Ni1 ⁱⁱⁱ	54.7	Ni1 ^{ix} —Ti1—Ni1 ^{xii}	70.5
Ti1—Ni1—Ni1 ⁱⁱⁱ	125.3	Ni1 ^x —Ti1—Ni1 ^{viii}	109.5
Ti1 ⁱⁱ —Ni1—Ni1 ⁱⁱⁱ	125.3	Ni1—Ti1—Ni1 ^{viii}	70.529(1)
Ti1 ⁱⁱⁱ —Ni1—Ni1 ⁱⁱⁱ	54.7	Ni1 ^{xi} —Ti1—Ni1 ^{viii}	109.5
Ti1 ^{iv} —Ni1—Ni1 ⁱⁱⁱ	54.7	Ni1 ^{ix} —Ti1—Ni1 ^{viii}	109.5
Ti1 ^v —Ni1—Ni1 ⁱⁱⁱ	125.3	Ni1 ^{xii} —Ti1—Ni1 ^{viii}	180.0
Ti1 ^{vi} —Ni1—Ni1 ⁱⁱⁱ	125.3	Ni1 ^x —Ti1—Ni1 ^{xiii}	70.5
Ti1 ^{vii} —Ni1—Ni1 ⁱⁱⁱ	54.7	Ni1—Ti1—Ni1 ^{xiii}	109.5
Ti1 ⁱ —Ni1—Ni1 ^v	54.7	Ni1 ^{xi} —Ti1—Ni1 ^{xiii}	70.5
Ti1—Ni1—Ni1 ^v	125.3	Ni1 ^{ix} —Ti1—Ni1 ^{xiii}	180.0
Ti1 ⁱⁱ —Ni1—Ni1 ^v	125.3	Ni1 ^{xii} —Ti1—Ni1 ^{xiii}	109.5
Ti1 ⁱⁱⁱ —Ni1—Ni1 ^v	125.3	Ni1 ^{viii} —Ti1—Ni1 ^{xiii}	70.5
Ti1 ^{iv} —Ni1—Ni1 ^v	125.3	Ni1 ^x —Ti1—Ni1 ^{xiv}	70.5
Ti1 ^v —Ni1—Ni1 ^v	54.7	Ni1—Ti1—Ni1 ^{xiv}	109.5
Ti1 ^{vi} —Ni1—Ni1 ^v	54.7	Ni1 ^{xi} —Ti1—Ni1 ^{xiv}	180.0
Ti1 ^{vii} —Ni1—Ni1 ^v	54.7	Ni1 ^{ix} —Ti1—Ni1 ^{xiv}	70.5
Ni1 ⁱⁱⁱ —Ni1—Ni1 ^v	90.0	Ni1 ^{xii} —Ti1—Ni1 ^{xiv}	109.5
Ti1 ⁱ —Ni1—Ni1 ^{viii}	125.3	Ni1 ^{viii} —Ti1—Ni1 ^{xiv}	70.5
Ti1—Ni1—Ni1 ^{viii}	54.7	Ni1 ^{xiii} —Ti1—Ni1 ^{xiv}	109.5
Ti1 ⁱⁱ —Ni1—Ni1 ^{viii}	54.7	Ni1 ^x —Ti1—Ti1 ^{viii}	54.7
Ti1 ⁱⁱⁱ —Ni1—Ni1 ^{viii}	54.7	Ni1—Ti1—Ti1 ^{viii}	125.3
Ti1 ^{iv} —Ni1—Ni1 ^{viii}	54.7	V1—Ti1—Ti1 ^{viiii}	125.3
Ti1 ^v —Ni1—Ni1 ^{viii}	125.3	Ni1 ^{xi} —Ti1—Ti1 ^{viii}	125.3
Ti1 ^{vi} —Ni1—Ni1 ^{viii}	125.3	Ni1 ^{ix} —Ti1—Ti1 ^{viii}	125.3
Ti1 ^{vii} —Ni1—Ni1 ^{viii}	125.3	Ni1 ^{xii} —Ti1—Ti1 ^{viii}	125.3
Ni1 ⁱⁱⁱ —Ni1—Ni1 ^{viii}	90.0	Ni1 ^{viii} —Ti1—Ti1 ^{viii}	54.7
Ni1 ^v —Ni1—Ni1 ^{viii}	180.0	Ni1 ^{xiii} —Ti1—Ti1 ^{viii}	54.7
Ti1 ⁱ —Ni1—Ni1 ^{ix}	125.3	Ni1 ^{xiv} —Ti1—Ti1 ^{viii}	54.7
Ti1—Ni1—Ni1 ^{ix}	54.7	Ni1 ^x —Ti1—Ti1 ^v	125.3
Ti1 ⁱⁱ —Ni1—Ni1 ^{ix}	54.7	Ni1—Ti1—Ti1 ^v	54.7
Ti1 ⁱⁱⁱ —Ni1—Ni1 ^{ix}	125.3	Ni1 ^{xi} —Ti1—Ti1 ^v	54.7
Ti1 ^{iv} —Ni1—Ni1 ^{ix}	125.3	Ni1 ^{ix} —Ti1—Ti1 ^v	54.7
Ti1 ^v —Ni1—Ni1 ^{ix}	54.7	Ni1 ^{xii} —Ti1—Ti1 ^v	54.7
Ti1 ^{vi} —Ni1—Ni1 ^{ix}	54.7	Ni1 ^{viii} —Ti1—Ti1 ^v	125.3
Ti1 ^{vii} —Ni1—Ni1 ^{ix}	125.3	Ni1 ^{xiii} —Ti1—Ti1 ^v	125.3
Ni1 ⁱⁱⁱ —Ni1—Ni1 ^{ix}	180.0	Ni1 ^{xiv} —Ti1—Ti1 ^v	125.3
Ni1 ^v —Ni1—Ni1 ^{ix}	90.0	Ti1 ^{viii} —Ti1—Ti1 ^v	180.0
Ni1 ^{viii} —Ni1—Ni1 ^{ix}	90.0	Ni1 ^x —Ti1—Ti1 ⁱⁱⁱ	125.3
Til ⁱ —V1—Til	180.0	Ni1—Ti1—Ti1 ⁱⁱⁱ	54.7
Ti1 ⁱ —V1—Ti1 ⁱⁱ	109.5	Ni1 ^{xi} —Ti1—Ti1 ⁱⁱⁱ	54.7
Ti1—V1—Ti1 ⁱⁱ	70.5	Ni1 ^{ix} —Ti1—Ti1 ⁱⁱⁱ	125.3
Ti1 ⁱ —V1—Ti1 ^{vii}	70.5	Ni1 ^{xii} —Ti1—Ti1 ⁱⁱⁱ	125.3
Ti1—V1—Ti1 ^{vii}	109.5	Ni1 ^{viii} —Ti1—Ti1 ⁱⁱⁱ	54.7
Ti1 ⁱⁱ —V1—Ti1 ^{vii}	180.0	Ni1 ^{xiii} —Ti1—Ti1 ⁱⁱⁱ	54.7
Ti1 ⁱ —V1—Ti1 ^{vi}	70.5	Ni1 ^{xiv} —Ti1—Ti1 ⁱⁱⁱ	125.3

Ti1—V1—Ti1 ^{vi}	109.5	Ti1 ^{viii} —Ti1—Ti1 ⁱⁱⁱ	90.0
Ti1 ⁱⁱ —V1—Ti1 ^{vi}	70.5	Ti1 ^v —Ti1—Ti1 ⁱⁱⁱ	90.0

Symmetry codes: (i) *x*-1, *y*-1, *z*-1; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*-1, *y*-1, *z*; (v) *x*, *y*, *z*-1; (vi) *x*-1, *y*, *z*-1; (vii) *x*, *y*-1, *z*-1; (viii) *x*, *y*, *z*+1; (ix) *x*, *y*+1, *z*; (x) *x*+1, *y*+1, *z*+1; (x) *x*+1, *y*, *z*; (xii) *x*+1, *y*+1, *z*; (xiii) *x*+1, *y*, *z*+1; (xiv) *x*, *y*+1, *z*+1.