

_

ISSN 2414-3146

Received 21 March 2024 Accepted 25 March 2024

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; ruthenium(II) complex; Bimpy ligand.

CCDC reference: 2343078

Structural data: full structural data are available from iucrdata.iucr.org

Bis[2,6-bis(1*H*-benzimidazol-2-yl)pyridine]ruthenium(II) bis(hexafluoridophosphate) diethyl ether trisolvate

Layla M. Althubyani,^a Brian J. MacLean,^a Katherine N. Robertson^b and Manuel A.S. Aquino^a*

^aDepartment of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, B2G 2W5, and ^bDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada, B3H 3C3. *Correspondence e-mail: maquino@stfx.ca

The title compound, $[Ru(C_{19}H_{13}N_5)_2](PF_6)_2\cdot 3C_4H_{10}O$, was obtained from the reaction of $Ru(bimpy)Cl_3$ [bimpy is 2,6-bis(1*H*-benzimidazol-2-yl)pyridine] and bimpy in refluxing ethanol followed by recrystallization from diethyl ether/acetonitrile. At 125 K the complex has orthorhombic (*Pca2*₁) symmetry. It is remarkable that the structure is almost centrosymmetric. However, refinement in space group *Pbcn* leads to disorder and definitely worse results. It is of interest with respect to potential catalytic reduction of CO_2 . The structure displays $N-H\cdots O$, $N-H\cdots F$ hydrogen bonding and significant $\pi-\pi$ stacking and $C-H\cdots\pi$ stacking interactions.

Structure description

Ruthenium(II) complexes that contain polypyridine ligands enjoy enormous popularity in the research community because of their interesting photochemical, electrochemical, and catalytic properties (Juris *et al.*, 1988). Similar to what is found in 2,2':6',2" terpyridine, the triimine structure, 2,6-bis(1*H*-benzimidazol-2-yl)pyridine (bimpy), offers a tridentate pocket for its coordination complexes; however, the imidazole units present a more convenient opportunity for tuning the electronics of donor–acceptor interactions (Groff *et al.*, 2023). Our interest in bimpy complexes of ruthenium stems from reports of their activity in mediation of CO_2 by electrochemical reduction (Chen *et al.*, 2011). This is the first crystal structure of a bis-bimpy complex of Ru^{II} that we are aware of.

The solvated title salt consists of the complex cation, ruthenium(II) bis(bimpy), two hexafluoridophosphate anions and three diethyl ether molecules of solvation (Fig. 1). The two tris-chelating bimpy ligands both coordinate through three of their nitrogen atoms to the central Ru^{II} atom, perpendicular to each other in a meridional fashion, forming a

Figure 1

The structures of the molecular entities of the title compound with displacement ellipsoids at the 50% probability level.

slightly distorted octahedral environment. As a result of the $Pca2_1$ space group, all of the Ru–N bonds are unique. The two Ru^{II}-N(pyridinyl) bond lengths are: Ru1–N8 = 1.983 (9) Å and Ru1–N3 = 2.011 (8) Å and the four Ru(II)–N(benzimidazolyl) bonds, Ru1–N1, Ru1–N4, Ru1–N6 and Ru1–N9 are slightly longer and range from 2.046 (13) to 2.104 (12) Å. These same bond lengths in [Ru(bimpy)(trpy)](ClO₄)₂ (where trpy = 2,2':6',2"-terpyridine) are 2.017 (7) Å and 2.067 (7)–2.072 (7) Å, respectively

Figure 2

Packing diagram viewed along [100] showing both the C-H··· π and π - π interactions (dashed lines).

,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/-		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N2-H2N\cdots O2$	0.90 (3)	1.85 (5)	2.730 (18)	166 (17)
N5−H5 <i>N</i> ···O3	0.91 (3)	1.81 (5)	2.704 (19)	170 (18)
$N7 - H7N \cdot \cdot \cdot F8$	0.90 (3)	2.58 (7)	3.30 (2)	137 (8)
$N7 - H7N \cdot \cdot \cdot F11$	0.90 (3)	2.05 (4)	2.93 (2)	167 (10)
$N10-H10N\cdots F6^{i}$	0.89 (3)	2.16 (3)	3.028 (19)	166 (6)

Symmetry code: (i) x, y - 1, z.

(Singh *et al.*, 2008). While the complex does show hydrogen bonding between the imidazolyl N-H groups and the two hexafluoridophosphate anions and two of the three diethyl ether solvate molecules (Table 1), more interesting are the π - π stacking and C-H··· π interactions (Fig. 2). The shortest π - π interactions are between the six-membered (benzene) rings of adjacent benzimidazolyl ligands and range from 3.639 (9) to 3.675 (8) Å. The C-H··· π interactions involve a C-H group on these same benzene ring portions of the benzimidazolyl and adjacent benzimidazolyl benzene rings and have carbon to π -ring distances ranging from 3.487 (16) to 3.792 (18) Å.

Synthesis and crystallization

[Ru(bimpy)₂](PF₆)₂ was synthesized through reaction of Ru(bimpy)Cl₃ (Yu et al., 1999) with bimpy (Xu et al., 2007). Bimpy (0.0646 g, 0.21 mmol) and Ru(bimpy)Cl₃ (0.1064 g, 0.21 mmol) were added to a warm solution of aqueous ethanol (75%_{vol}). Triethylamine (0.25 ml) was added to the mixture. The solution was refluxed under argon for 24 h, then cooled to room temperature. The insoluble materials were removed by filtration and the complex was precipitated by the addition of a saturated aqueous solution of NH_4PF_6 while cooling at $4^\circ C$ overnight. The resulting, brown precipitate was filtered and washed with water, air-dried, and then washed with diethyl ether $(3 \times 10 \text{ ml})$. Crystals of $[\text{Ru}(\text{bimpy})_2](\text{PF}_6)_2$ were grown by slow diffusion of diethyl ether into an acetonitrile solution of the product, yielding dark-red crystals (0.1555 g, 75%). ¹H NMR (400 MHz, DMSO-*d*₆) (p.p.m.): 15.01 (s, 4*H*), 8.89 (*d*, *J* = 7.9 Hz, 4H), 8.77 (t, J = 7.9 Hz, 2H), 7.59 (d, J = 8.1 Hz, 4H), 7.25 (*dd*, *J* = 7.6 Hz, 4H), 7.02 (*dd*, *J* = 7.6 Hz, 4H), 6.03 (*d*, *J* = 8.125 Hz, 4H). ¹³C NMR (400 MHz, DMSO-*d*₆) (p.p.m.): 151.51, 149.78, 140.83, 136.70, 133.34, 125.54, 124.69, 122.16, 114.50, 114.28. IR (KBr) (cm⁻¹): 3364 (br), 1613 (w), 1597 (w), 1487 (w), 1458 (w), 1384 (w), 1322, 1297, 1233 (w), 1149 (w), 1021 (w), 851 (s), 760 (w), 743 (s). ESI-MS: m/z calculated for C₃₈ H₂₆ N₁₀ Ru (*M*²⁺): 362.0693, found: 362.0676.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The data were first integrated to a resolution of 0.75 Å but during the final refinement, the data were cut at a resolution of 0.80 Å ($\theta_{\rm max} = 26.37^{\circ}$) using a *SHEL* instruction to remove some of the noise. The unit cell was determined to be orthorhombic and it was found that the structure could be refined in either the centrosymmetric space group *Pbcn* or in the non-centrosymmetric space group *Pca2*₁. Ultimately, the non-centrosymmetric space group was chosen, giving an asymmetric unit that contained one complete cation and two complete PF₆ anions. The crystal was also found to be solvated, containing three complete molecules of diethyl ether in the asymmetric unit. The $Pca2_1$ refinement had many atoms that had a tendency to become non-positive definite during the refinement, presumably because it was so close to being centrosymmetric. As a result, the displacement parameters of most atoms were restrained to be more isotropic during the refinement using global ISOR restraints. In addition, a rigid bond restraint was placed over all of the heavy atoms in the structure. The structure was treated as an inversion twin with the BASF parameter refining to 0.45 (12). The error is too large to say if this is different from the 0.50 expected for a centrosymmetric structure but it is possible to say it is not 0 or 1 (expected for a non-twinned non-centrosymmetric structure).

Initial E statistics suggested that the correct space group was non-centrosymmetric and the best solution in SHELXT was also in a non-centrosymmetric space group. The structure was thus first refined in the non-centrosymmetric space group $Pca2_1$. In this space group the final *R*-factor was high [R(reflections) = 0.0920 (9404) and wR2(reflections) =0.1987 (11121)] and there was a level B checkCIF alert that the precision of the C-C bonds was low. A level G checkCIF alert suggested that there was an 89% fit to a centrosymmetric structure and that the alternative space group Pbcn should be used. Refinement in this space group was then carried out, but with much worse results overall. In the centrosymmetric space group, the central ring of the cation and the solvent molecules were all disordered (12% disorder in total). The statistics of the final refinement carried out under similar conditions to the non-centrosymmetric case were also much higher [R(reflections) = 0.1494 (5022) and wR2(reflections) = 0.3162 (5578)]. For these reasons, refinement in the non-centrosymmetric space group was chosen and the Pca21 results are presented here.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 2

Experimental details.

l data	
cal formula	$[Ru(C_{19}H_{13}N_5)_2](PF_6)_2 \cdot 3C_4H_{10}O$
	1236.05
l system, space group	Orthorhombic, Pca2 ₁
rature (K)	125
(Å)	26.718 (4), 9.8834 (13), 20.648 (3)
()	5452.4 (12)
	4
ion type	Μο Κα
1 ⁻¹)	0.44
l size (mm)	$0.26 \times 0.18 \times 0.12$
ollection	
ctometer	Bruker APEXII CCD
ption correction	Multi-scan (SADABS; Krause et al., 2015)
max	0.027, 0.049
measured, independent and	54516, 11121, 9404
erved $[I > 2\sigma(I)]$ reflections	
	0.058
$(Å^{-1})$	0.625
ment	
$\sim 2\sigma(F^2)$], $wR(F^2)$, S	0.092, 0.199, 1.18
reflections	11121
parameters	716
restraints	1049
n treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	2.08, -1.44
ite structure	Refined as an inversion twin
ite structure parameter	0.45 (12)
restraints n treatment , $\Delta \rho_{\min}$ (e Å ⁻³) ite structure ite structure parameter	 1049 H atoms treated by a mixture of independent and constrained refinement 2.08, -1.44 Refined as an inversion twin 0.45 (12)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and Mercury (Macrae et al., 2020).

- Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., Brookhart, M. S. & Meyer, T. J. (2011). *Chem. Commun.* 47, 12607–12609.
- Groff, B. D., Cattaneo, M., Coste, S. C., Pressley, C. A., Mercado, B. Q. & Mayer, J. M. (2023). *Inorg. Chem.* 62, 10031–10038.
- Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Singh, A., Chetia, B., Mobin, S. M., Das, G., Iyer, P. K. & Mondal, B. (2008). *Polyhedron*, 27, 1983–1988.
- Xu, X., Xi, Z., Chen, W. & Wang, D. (2007). J. Coord. Chem. 60, 2297–2308.
- Yu, S. C., Hou, S. J. & Chan, W. K. (1999). *Macromolecules*, **32**, 5251–5256.

full crystallographic data

IUCrData (2024). **9**, x240269 [https://doi.org/10.1107/S2414314624002694]

Bis[2,6-bis(1*H*-benzimidazol-2-yl)pyridine]ruthenium(II) bis-(hexafluoridophosphate) diethyl ether trisolvate

Layla M. Althubyani, Brian J. MacLean, Katherine N. Robertson and Manuel A.S. Aquino

Bis[2,6-bis(1H-benzimidazol-2-yl)pyridine]ruthenium(II) bis(hexafluoridophosphate) diethyl ether trisolvate

Crystal data

 $[\operatorname{Ru}(\operatorname{C}_{19}\operatorname{H}_{13}\operatorname{N}_5)_2](\operatorname{PF}_6)_2 \cdot 3\operatorname{C}_4\operatorname{H}_{10}\operatorname{O}_{M_r} = 1236.05$ Orthorhombic, *Pca2*₁ *a* = 26.718 (4) Å *b* = 9.8834 (13) Å *c* = 20.648 (3) Å *V* = 5452.4 (12) Å³ *Z* = 4 *F*(000) = 2528

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.027, T_{\max} = 0.049$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.092$ $wR(F^2) = 0.199$ S = 1.1811121 reflections 716 parameters 1049 restraints Primary atom site location: dual Hydrogen site location: mixed $D_x = 1.506 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9996 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 125 KRectangular prism, dark brown $0.26 \times 0.18 \times 0.12 \text{ mm}$

54516 measured reflections 11121 independent reflections 9404 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -33 \rightarrow 33$ $k = -12 \rightarrow 12$ $l = -25 \rightarrow 25$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 59.8553P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.08 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.44 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.45 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	0.24603 (3)	0.24442 (12)	0.50446 (12)	0.0272 (2)
P1	0.4281 (2)	0.6827 (5)	0.3798 (2)	0.0392 (11)
P2	0.4255 (2)	0.8396 (6)	0.6165 (2)	0.0438 (12)
F1	0.3806 (5)	0.6486 (12)	0.4238 (6)	0.060 (3)
F2	0.4753 (6)	0.7193 (15)	0.3363 (7)	0.075 (4)
F3	0.4646 (5)	0.6473 (13)	0.4380 (6)	0.064 (3)
F4	0.3917 (6)	0.7185 (16)	0.3226 (6)	0.081 (4)
F5	0.4295 (5)	0.5311 (12)	0.3571 (6)	0.063 (3)
F6	0.4258 (5)	0.8365 (11)	0.4050 (5)	0.060 (3)
F7	0.4672 (6)	0.7920 (16)	0.6616 (9)	0.099 (5)
F8	0.3811 (6)	0.8839 (19)	0.5686 (7)	0.098 (5)
F9	0.3833 (6)	0.7858 (15)	0.6640 (6)	0.074 (4)
F10	0.4666 (6)	0.8928 (15)	0.5686 (8)	0.088 (4)
F11	0.4239 (5)	0.6940 (14)	0.5810 (7)	0.080 (4)
F12	0.4239 (6)	0.9832 (14)	0.6496 (8)	0.083 (4)
01	0.0440 (5)	0.7937 (12)	0.4605 (6)	0.043 (3)
O2	0.0846 (5)	0.3936 (13)	0.2722 (6)	0.048 (3)
O3	0.0748 (5)	0.1501 (12)	0.7178 (6)	0.042 (3)
N1	0.2297 (5)	0.3044 (12)	0.4120 (6)	0.028 (2)
N2	0.1715 (5)	0.3491 (12)	0.3385 (6)	0.026 (2)
H2N	0.141 (3)	0.352 (18)	0.320 (8)	0.039*
N3	0.1708 (3)	0.2377 (10)	0.5067 (9)	0.0227 (17)
N4	0.2307 (5)	0.1768 (11)	0.5990 (6)	0.021 (2)
N5	0.1704 (6)	0.1409 (14)	0.6749 (6)	0.031 (3)
H5N	0.140 (3)	0.140 (19)	0.694 (8)	0.046*
N6	0.2623 (5)	0.4355 (11)	0.5373 (5)	0.020 (2)
N7	0.3222 (5)	0.5914 (14)	0.5605 (7)	0.036 (3)
H7N	0.3513 (13)	0.636 (9)	0.566 (8)	0.053*
N8	0.3201 (3)	0.2446 (14)	0.4988 (9)	0.030 (2)
N9	0.2618 (5)	0.0479 (13)	0.4726 (6)	0.029 (2)
N10	0.3184 (5)	-0.0946 (14)	0.4384 (7)	0.032 (3)
H10N	0.3482 (12)	-0.129 (7)	0.429 (8)	0.049*
C1	0.2541 (5)	0.3511 (12)	0.3577 (6)	0.016 (2)
C2	0.3034 (6)	0.3852 (15)	0.3447 (7)	0.026 (3)
H2	0.328622	0.370813	0.376313	0.032*
C3	0.3153 (7)	0.4402 (17)	0.2855 (8)	0.037 (3)
Н3	0.349201	0.461762	0.275920	0.044*
C4	0.2769 (8)	0.465 (2)	0.2374 (9)	0.044 (4)
H4	0.286593	0.502895	0.196940	0.053*
C5	0.2275 (7)	0.4384 (17)	0.2473 (9)	0.037 (3)
Н5	0.202140	0.455960	0.216151	0.044*
C6	0.2178 (6)	0.3816 (14)	0.3086 (7)	0.025 (3)
C7	0.1808 (7)	0.3087 (16)	0.3992 (7)	0.029 (3)
C8	0.1445 (6)	0.2777 (16)	0.4518 (7)	0.026 (3)
C9	0.0937 (7)	0.2833 (18)	0.4488 (8)	0.032 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Н9	0.076700	0.306661	0.410022	0.038*
C10	0.0677 (4)	0.2528 (18)	0.5061 (12)	0.036 (2)
H10	0.032208	0.257357	0.506813	0.043*
C11	0.0934 (6)	0.2163 (16)	0.5614 (7)	0.025 (3)
H11	0.075601	0.192158	0.599537	0.030*
C12	0.1461 (6)	0.2152 (16)	0.5609 (7)	0.023(2)
C13	0.1806 (6)	0.1806 (14)	0.6111 (7)	0.025(3)
C14	0.2141 (7)	0.1101 (16)	0.7026 (8)	0.031 (3)
C15	0.2286 (8)	0.0600 (18)	0.7645 (9)	0.043 (4)
H15	0 204639	0.047661	0 797942	0.051*
C16	0.201000	0.0296 (18)	0.7745(8)	0.037(3)
H16	0.287942	-0.008088	0.815065	0.037(3)
C17	0.207742 0.3151 (7)	0.0501(17)	0.013003	0.045
U17	0.3131 (7)	0.0301(17)	0.7303 (8)	0.030(3)
C18	0.348083	0.020041 0.1051 (17)	0.740472	0.043
	0.3039(7)	0.1031(17) 0.125278	0.0099(8)	0.034(3)
HI8	0.328848	0.125378	0.038020	0.041*
C19	0.2526 (6)	0.1284 (15)	0.6588 (7)	0.029 (3)
C20	0.2400 (6)	0.5502 (14)	0.5638 (7)	0.022 (3)
C21	0.1872 (6)	0.5763 (14)	0.5768 (6)	0.026 (3)
H21	0.161950	0.511548	0.567312	0.031*
C22	0.1762 (6)	0.6978 (16)	0.6032 (8)	0.036 (3)
H22	0.142021	0.719526	0.610477	0.043*
C23	0.2129 (6)	0.7943 (16)	0.6207 (7)	0.036 (3)
H23	0.202184	0.876976	0.639669	0.043*
C24	0.2631 (7)	0.7742 (18)	0.6115 (8)	0.033 (3)
H24	0.287559	0.838158	0.624789	0.040*
C25	0.2760 (6)	0.6488 (16)	0.5801 (8)	0.029 (3)
C26	0.3113 (6)	0.4726 (14)	0.5348 (7)	0.026 (3)
C27	0.3465 (5)	0.3682 (14)	0.5110 (8)	0.030 (3)
C28	0.3973 (5)	0.3810 (14)	0.4988 (7)	0.030 (3)
H28	0.414240	0.463642	0.506987	0.036*
C29	0.4226 (5)	0.2700 (15)	0.4742 (7)	0.035(3)
H29	0.457377	0.275983	0.465126	0.042*
C30	0 3968 (5)	0.1492(15)	0.4628 (6)	0.030(3)
H30	0 414388	0.071711	0.447839	0.036*
C31	0.3459(6)	0.1425(14)	0.4733(7)	0.028(3)
C32	0.3455 (6)	0.1423(14) 0.0362(15)	0.4733(7) 0.4618(7)	0.020(3)
C32	0.3105(0)	-0.1506(15)	0.4308(7)	0.025(3)
C34	0.2720(0) 0.2508(6)	-0.2854(15)	0.4308(7)	0.020(3)
C34	0.2398 (0)	0.2634 (10)	0.4070(7)	0.027(3)
П34	0.283973	-0.530201	0.394393	0.032
C35	0.2095 (6)	-0.3095 (17)	0.4051 (8)	0.036 (3)
H35	0.198913	-0.393808	0.387753	0.043*
036	0.1714 (6)	-0.2182 (16)	0.4265 (8)	0.035 (3)
H36	0.136846	-0.240112	0.423405	0.042*
C37	0.1876 (5)	-0.0952 (14)	0.4520 (6)	0.024 (3)
H37	0.164107	-0.031994	0.468619	0.029*
C38	0.2365 (6)	-0.0668 (14)	0.4530 (7)	0.024 (3)
C39	0.0503 (10)	0.607 (2)	0.5342 (11)	0.075 (7)

H39A	0.052672	0.582148	0.580088	0.113*
H39B	0.020112	0.565792	0.515506	0.113*
H39C	0.079855	0.572996	0.511162	0.113*
C40	0.0475 (8)	0.7574 (19)	0.5278 (8)	0.048 (4)
H40A	0.017872	0.791796	0.551371	0.057*
H40B	0.077751	0.799017	0.547017	0.057*
C41	0.0408 (7)	0.9406 (15)	0.4498 (9)	0.046 (4)
H41A	0.010402	0.977684	0.470652	0.055*
H41B	0.070461	0.986418	0.468538	0.055*
C42	0.0390 (9)	0.961 (2)	0.3828 (10)	0.073 (6)
H42A	0.036900	1.058186	0.373676	0.110*
H42B	0.069346	0.923976	0.362836	0.110*
H42C	0.009558	0.915281	0.364940	0.110*
C43	0.0841 (11)	0.614 (3)	0.3205 (11)	0.087 (9)
H43A	0.065395	0.699277	0.321833	0.131*
H43B	0.085209	0.574427	0.364004	0.131*
H43C	0.118219	0.631189	0.305314	0.131*
C44	0.0579 (8)	0.515 (2)	0.2740 (9)	0.057 (5)
H44A	0.023291	0.498075	0.288902	0.068*
H44B	0.056384	0.554979	0.230065	0.068*
C45	0.0627 (8)	0.298 (2)	0.2275 (8)	0.051 (4)
H45A	0.025870	0.299040	0.232993	0.062*
H45B	0.074628	0.206030	0.238549	0.062*
C46	0.0748 (9)	0.326 (2)	0.1574 (9)	0.069 (6)
H46A	0.058863	0.257949	0.129959	0.104*
H46B	0.062365	0.416238	0.145643	0.104*
H46C	0.111179	0.323123	0.151205	0.104*
C47	0.0695 (9)	-0.089(2)	0.6989 (9)	0.060 (6)
H47A	0.056533	-0.174994	0.715149	0.090*
H47B	0.055627	-0.070924	0.655783	0.090*
H47C	0.106089	-0.093155	0.696159	0.090*
C48	0.0544 (8)	0.024 (2)	0.7447 (8)	0.052 (4)
H48A	0.017518	0.030157	0.747938	0.062*
H48B	0.068217	0.007822	0.788502	0.062*
C49	0.0599 (7)	0.2660 (18)	0.7536 (10)	0.053 (4)
H49A	0.081330	0.276570	0.792397	0.063*
H49B	0.024761	0.256431	0.767869	0.063*
C50	0.0654 (7)	0.3909 (17)	0.7089 (9)	0.049 (4)
H50A	0.055352	0.472484	0.732478	0.074*
H50B	0.100400	0.399676	0.695133	0.074*
H50C	0.044044	0.379613	0.670697	0.074*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0292 (4)	0.0228 (4)	0.0298 (4)	-0.0012 (5)	-0.0013 (8)	-0.0070 (5)
P1	0.047 (3)	0.039 (2)	0.031 (2)	0.001 (2)	0.004 (2)	-0.0052 (18)
P2	0.039 (3)	0.050 (3)	0.043 (2)	-0.001 (2)	-0.002 (2)	-0.013 (2)

F1	0.055 (6)	0.054 (6)	0.070(7)	-0.001(5)	0.019 (5)	0.005 (5)
F2	0.079 (8)	0.071 (8)	0.074 (8)	-0.012(7)	0.038 (6)	-0.004 (6)
F3	0.066 (7)	0.072 (8)	0.054 (6)	0.000 (6)	-0.023(5)	0.000 (5)
F4	0.102 (9)	0.089 (9)	0.053 (7)	-0.024(8)	-0.027 (6)	0.022 (6)
F5	0.088 (9)	0.048 (6)	0.052 (6)	-0.007(6)	0.014 (6)	-0.022(5)
F6	0.090 (9)	0.041 (5)	0.048 (6)	0.000 (5)	0.020 (6)	-0.012(5)
F7	0.082 (9)	0.066 (8)	0.150 (12)	-0.008(7)	-0.063(9)	0.011 (8)
F8	0.074 (8)	0.149(12)	0.069 (8)	0.001 (8)	-0.026(7)	0.035 (8)
F9	0.080 (8)	0.073(8)	0.068(7)	-0.013(7)	0.013 (6)	0.003 (6)
F10	0.078 (8)	0.067 (8)	0.120(10)	0.003(7)	0.051 (8)	-0.001(8)
F11	0.078(0)	0.080(7)	0.078 (8)	-0.019(7)	0.021(0) 0.012(7)	-0.042(7)
F12	0.001(9)	0.000(7)	0.070(0)	-0.002(6)	0.012(7) 0.022(8)	-0.030(7)
01	0.060(10)	0.020(0)	0.040 (6)	0.002(0)	-0.003(5)	0.030(7)
0^{2}	0.001(7)	0.020(3)	0.040 (0)	-0.003(6)	-0.016(5)	-0.004(5)
03	0.031(6)	0.055(7)	0.037(0)	0.003(0)	0.010(5)	-0.014(5)
N1	0.036(0) 0.034(4)	0.042(0) 0.021(4)	0.040(7) 0.028(4)	-0.002(3)	0.010(3)	0.014(3)
N2	0.034(4)	0.021(4) 0.019(4)	0.028(4)	0.000(4)	-0.002(3)	0.000(3)
N3	0.030(4)	0.012(4)	0.028(4)	-0.002(4)	-0.002(3)	0.002(3)
N/	0.028(3)	0.012(3)	0.028(3)	-0.004(3)	0.001(4)	-0.002(3)
N5	0.023(4)	0.013(4)	0.021(4)	0.003(3)	0.001(3)	0.002(3)
N6	0.033(4)	0.030(3)	0.029(4)	0.001(4)	-0.005(3)	0.004(4)
N7	0.030(4)	0.020(4)	0.010(4)	0.005(3)	-0.003(3)	-0.007(3)
N8	0.034(4)	0.030(4)	0.042(3)	0.000(4)	-0.002(4)	-0.006(4)
NO	0.030(3)	0.029(3)	0.030(4)	0.002(3)	0.001(4)	-0.000(3)
N10	0.034(4)	0.028(4)	0.024(4)	0.000(3)	-0.001(4)	-0.002(4)
N10 C1	0.033(4)	0.031(4)	0.032(3)	0.002(4)	-0.002(4) -0.001(3)	-0.003(4)
C^{1}	0.028(4)	0.009(4)	0.011(4)	-0.002(3)	0.001(3)	-0.002(3)
C_2	0.030(4)	0.023(3)	0.024(4)	-0.001(4)	0.001(4)	-0.003(4)
C_{3}	0.037(3)	0.038(3)	0.033(3)	0.001(4)	0.000(4)	0.000(4)
C4	0.048(5)	0.050(6)	0.034(5)	-0.001(4)	0.005(4)	0.002(4)
CS CC	0.042(3)	0.030(3)	0.032(3)	0.002(4)	-0.001(4)	0.002(4)
C0	0.028 (4)	0.021(5)	0.027(4)	0.002 (4)	-0.003(3)	-0.003(4)
C/	0.034(4)	0.026(5)	0.027(4)	-0.003(4)	0.000 (4)	0.000 (4)
C8	0.034 (4)	0.016 (4)	0.028 (4)	-0.001(4)	0.000 (4)	0.002 (4)
C9	0.036 (4)	0.029 (5)	0.030(5)	0.000 (4)	-0.002 (4)	0.001 (4)
C10	0.035 (4)	0.035 (4)	0.036 (4)	0.003 (4)	0.000 (4)	0.005 (4)
	0.032 (4)	0.019 (5)	0.025 (4)	0.000 (4)	0.004 (4)	-0.001(4)
C12	0.030 (4)	0.016 (4)	0.024 (4)	0.001 (4)	0.000(3)	-0.001 (4)
CI3	0.031 (4)	0.021 (5)	0.023 (4)	-0.001 (4)	-0.001(3)	-0.004 (4)
C14	0.032 (4)	0.030 (5)	0.031(4)	-0.002 (4)	0.003 (4)	-0.002 (4)
CI5	0.046 (5)	0.045 (6)	0.038 (5)	0.001 (4)	-0.002 (4)	-0.003 (4)
C16	0.042 (5)	0.036 (5)	0.034 (5)	0.003 (4)	-0.004 (4)	0.001 (4)
CI7	0.038 (5)	0.035 (5)	0.033 (5)	0.004 (4)	-0.001 (4)	0.000 (4)
C18	0.037 (5)	0.033 (5)	0.033 (5)	-0.001(4)	0.000 (4)	-0.001(4)
C19	0.036 (4)	0.024 (5)	0.028 (5)	-0.001 (4)	-0.001 (4)	0.007 (4)
C20	0.029 (4)	0.017 (4)	0.021 (5)	0.001 (3)	-0.001 (4)	0.004 (4)
C21	0.032 (4)	0.022 (4)	0.022 (5)	0.000 (4)	0.002 (4)	0.006 (4)
C22	0.038 (5)	0.035 (5)	0.036 (5)	0.004 (4)	-0.003 (4)	-0.001 (4)
C23	0.044 (5)	0.031 (5)	0.032 (5)	0.003 (4)	-0.002(4)	-0.003 (4)

C24	0.041 (5)	0.027 (5)	0.031 (5)	0.002 (4)	-0.005 (4)	-0.001 (4)
C25	0.034 (5)	0.029 (4)	0.025 (5)	0.002 (4)	-0.003 (4)	0.000 (4)
C26	0.030 (4)	0.026 (4)	0.021 (4)	-0.001 (3)	0.001 (4)	-0.001 (4)
C27	0.029 (4)	0.035 (4)	0.025 (5)	0.000 (3)	-0.002 (4)	-0.001 (4)
C28	0.031 (4)	0.033 (4)	0.027 (5)	-0.002 (4)	-0.001 (4)	0.000 (4)
C29	0.033 (5)	0.036 (5)	0.036 (5)	0.001 (4)	0.000 (4)	0.000 (4)
C30	0.034 (4)	0.030 (4)	0.026 (5)	0.002 (4)	-0.001 (4)	0.003 (4)
C31	0.032 (4)	0.027 (4)	0.024 (5)	0.001 (3)	-0.004 (4)	-0.005 (4)
C32	0.034 (4)	0.029 (4)	0.024 (5)	0.000 (4)	-0.001 (4)	-0.004 (4)
C33	0.033 (4)	0.025 (4)	0.021 (5)	0.002 (3)	0.001 (4)	-0.003 (4)
C34	0.036 (5)	0.020 (4)	0.024 (5)	0.005 (4)	0.000 (4)	0.005 (4)
C35	0.041 (5)	0.033 (5)	0.034 (5)	-0.002 (4)	0.001 (4)	0.001 (4)
C36	0.038 (5)	0.033 (5)	0.035 (5)	-0.006 (4)	0.003 (4)	-0.001 (4)
C37	0.031 (4)	0.023 (4)	0.018 (4)	0.003 (4)	-0.003 (4)	0.003 (4)
C38	0.033 (4)	0.020 (4)	0.018 (4)	0.000 (3)	0.003 (4)	0.005 (4)
C39	0.101 (18)	0.049 (10)	0.075 (14)	-0.004 (11)	-0.028 (13)	0.031 (10)
C40	0.054 (10)	0.049 (9)	0.039 (8)	0.005 (8)	-0.004 (7)	-0.002 (7)
C41	0.061 (11)	0.019 (6)	0.059 (9)	0.003 (7)	-0.005 (8)	-0.012 (6)
C42	0.113 (19)	0.053 (12)	0.054 (9)	0.014 (12)	-0.002 (11)	0.001 (9)
C43	0.11 (2)	0.085 (15)	0.064 (15)	0.028 (14)	-0.053 (14)	-0.038 (13)
C44	0.061 (12)	0.066 (10)	0.043 (11)	0.010 (9)	-0.020 (9)	-0.017 (8)
C45	0.066 (12)	0.048 (9)	0.040 (8)	-0.011 (9)	-0.013 (8)	0.006 (7)
C46	0.112 (18)	0.052 (12)	0.043 (9)	0.024 (12)	0.002 (10)	0.002 (8)
C47	0.096 (17)	0.051 (9)	0.031 (9)	-0.032 (10)	0.022 (10)	0.003 (7)
C48	0.060 (12)	0.068 (9)	0.027 (9)	-0.003 (9)	0.009 (8)	0.001 (7)
C49	0.056 (10)	0.054 (8)	0.048 (9)	0.018 (8)	0.013 (9)	-0.012 (7)
C50	0.050 (10)	0.036 (8)	0.061 (11)	0.004 (7)	-0.012 (8)	-0.017 (7)

Geometric parameters (Å, °)

Ru1—N8	1.983 (9)	C16—C17	1.35 (2)
Ru1—N3	2.011 (8)	С16—Н16	0.9500
Ru1—N1	2.046 (13)	C17—C18	1.39 (2)
Ru1—N6	2.053 (12)	С17—Н17	0.9500
Ru1—N9	2.094 (13)	C18—C19	1.41 (2)
Ru1—N4	2.104 (12)	C18—H18	0.9500
P1—F5	1.570 (12)	C20—C25	1.41 (2)
P1—F4	1.571 (14)	C20—C21	1.46 (2)
P1—F3	1.586 (12)	C21—C22	1.35 (2)
P1—F2	1.591 (13)	C21—H21	0.9500
P1—F1	1.597 (12)	C22—C23	1.41 (2)
P1—F6	1.607 (12)	С22—Н22	0.9500
P2—F7	1.525 (15)	C23—C24	1.37 (2)
P2—F10	1.569 (15)	С23—Н23	0.9500
P2—F12	1.575 (14)	C24—C25	1.44 (2)
P2—F9	1.586 (14)	C24—H24	0.9500
P2—F8	1.607 (14)	C26—C27	1.48 (2)
P2—F11	1.615 (13)	C27—C28	1.386 (19)

O1—C40	1.44 (2)	C28—C29	1.385 (19)
O1—C41	1.472 (19)	C28—H28	0.9500
O2—C44	1.40 (2)	C29—C30	1.40(2)
02-C45	1.44 (2)	С29—Н29	0.9500
O3-C49	1 419 (19)	C_{30} C_{31}	1.38(2)
03	1.119(19) 1.47(2)	C30—H30	0.9500
N1	1.17(2) 1.34(2)	$C_{31} - C_{32}$	1.43(2)
N1—C1	1.37(2)	$C_{33} - C_{34}$	1.13(2) 1.38(2)
N2-C7	1.377(17) 1 340 (19)	C_{33} C_{34}	1.30(2) 1 41(2)
N2 - C6	1.340(1)) 1 42 (2)	C_{34} C_{35}	1.41(2) 1.37(2)
N2 H2N	1.42(2)	C_{34} H34	0.9500
N3 C12	1.32(2)	C_{35} C_{36}	1.43(2)
N3 C8	1.32(2) 1.30(2)	$C_{35} = C_{30}$	1.45(2)
$N_{4} = C_{6}$	1.39(2) 1.36(2)	$C_{33} = 1133$	0.9300
N4-C10	1.30(2) 1.440(10)	$C_{30} = C_{37}$	1.39(2)
N4-C19	1.449 (19)	С30—П30	0.9300
N5	1.34(2)	$C_{37} = C_{38}$	1.34 (2)
	1.402 (19)	C3/—H3/	0.9500
N5—H5N	0.91(3)	$C_{39} = C_{40}$	1.50 (3)
N6-C26	1.36 (2)	С39—Н39А	0.9800
N6—C20	1.392 (18)	С39—Н39В	0.9800
N/—C26	1.321 (19)	С39—Н39С	0.9800
N7—C25	1.42 (2)	C40—H40A	0.9900
N7—H7N	0.90 (3)	C40—H40B	0.9900
N8—C31	1.330 (19)	C41—C42	1.40 (3)
N8—C27	1.432 (18)	C41—H41A	0.9900
N9—C32	1.32 (2)	C41—H41B	0.9900
N9—C38	1.380 (19)	C42—H42A	0.9800
N10—C33	1.39 (2)	C42—H42B	0.9800
N10—C32	1.396 (19)	C42—H42C	0.9800
N10—H10N	0.89 (3)	C43—C44	1.54 (3)
C1—C2	1.38 (2)	C43—H43A	0.9800
C1—C6	1.435 (19)	C43—H43B	0.9800
C2—C3	1.38 (2)	C43—H43C	0.9800
С2—Н2	0.9500	C44—H44A	0.9900
C3—C4	1.45 (3)	C44—H44B	0.9900
С3—Н3	0.9500	C45—C46	1.51 (2)
C4—C5	1.36 (3)	C45—H45A	0.9900
C4—H4	0.9500	C45—H45B	0.9900
C5—C6	1.41 (2)	C46—H46A	0.9800
С5—Н5	0.9500	C46—H46B	0.9800
С7—С8	1.49 (2)	C46—H46C	0.9800
C8—C9	1.36 (2)	C47—C48	1.52 (3)
C9—C10	1.40 (3)	C47—H47A	0.9800
C9—H9	0.9500	C47—H47B	0.9800
C10—C11	1.38 (3)	C47—H47C	0.9800
С10—Н10	0.9500	C48—H48A	0.9900
C11—C12	1 41 (2)	C48—H48B	0 9900
C11—H11	0.9500	C49—C50	1.55 (3)
····	0.000	0	1.00 (0)

C12—C13	1.43 (2)	C49—H49A	0.9900
C14—C19	1.38 (2)	C49—H49B	0.9900
C14—C15	1 42 (2)	C50—H50A	0 9800
C15—C16	1.39(3)	C50—H50B	0.9800
C15—H15	0.9500	C50 - H50D	0.9800
	0.9500		0.9000
N8—Ru1—N3	177.3 (7)	C14—C19—C18	126.6 (15)
N8—Ru1—N1	99.1 (7)	C14—C19—N4	107.5 (14)
N3—Ru1—N1	79.5 (6)	C18—C19—N4	125.9 (15)
N8—Ru1—N6	78.9 (5)	N6—C20—C25	111.4 (13)
N3—Ru1—N6	103.5 (5)	N6—C20—C21	129.0 (13)
N1—Ru1—N6	95.0 (5)	C25—C20—C21	119.6 (13)
N8—Ru1—N9	77 3 (6)	C^{22} C^{21} C^{20}	1162(14)
N3—Ru1—N9	100.3 (5)	$C_{22} = C_{21} = H_{21}$	121.9
N1—Ru1—N9	91.0 (5)	C_{20} C_{21} H_{21}	121.9
N6-Ru1-N9	156 1 (3)	C_{21} C_{22} C_{23}	123.5 (16)
N8—Ru1—N4	104 5 (6)	$C_{21} = C_{22} = C_{23}$	118.2
N3 Ru1 N4	76.9 (6)	C_{23} C_{22} H_{22}	118.2
N1 $Ru1$ $N4$	1564(4)	$C_{23} = C_{22} = H_{22}$	123.1 (16)
N6 Pu1 N4	130.4(4)	$C_{24} = C_{23} = C_{22}$	123.1 (10)
$NO P_{11} N4$	91.3(4) 92.1(5)	$C_{24} = C_{23} = H_{23}$	118.5
$F_{5} = R_{1} = R_{4}$	92.1(3)	$C_{22} = C_{23} = H_{23}$	110.5
$\Gamma J - \Gamma I - \Gamma 4$ E5 D1 E2	90.2 (8)	$C_{23} = C_{24} = C_{23}$	113.0 (10)
F_{3} F_{1} F_{3} F_{4} F_{1} F_{2}	90.1(7)	$C_{25} = C_{24} = H_{24}$	122.5
F4—P1—F3	1/9.0(10)	$C_{23} = C_{24} = H_{24}$	122.5
F_{2}	91.7 (8)	$C_{20} = C_{25} = C_{24}$	104.4(13)
F4 - F1 - F2	90.8 (9)	$C_{20} = C_{25} = C_{24}$	122.0 (15)
F3 - PI - F2	89.5 (8)	N = C25 = C24	133.0 (15)
F5—PI—FI	89.2 (7)	N/—C26—N6	115.8 (14)
F4—P1—F1	89.1 (8)	N/	127.8 (14)
F3—PI—FI	90.6 (7)	N6—C26—C27	115.9 (12)
F2—P1—F1	179.1 (8)	C28—C27—N8	121.8 (12)
F5—P1—F6	178.3 (7)	C28—C27—C26	128.3 (13)
F4—P1—F6	90.4 (8)	N8—C27—C26	109.9 (12)
F3—P1—F6	89.3 (7)	C29—C28—C27	118.2 (13)
F2—P1—F6	89.9 (7)	C29—C28—H28	120.9
F1—P1—F6	89.1 (6)	С27—С28—Н28	120.9
F7—P2—F10	88.7 (10)	C28—C29—C30	119.8 (13)
F7—P2—F12	91.9 (9)	С28—С29—Н29	120.1
F10—P2—F12	89.5 (8)	С30—С29—Н29	120.1
F7—P2—F9	92.3 (10)	C31—C30—C29	120.0 (14)
F10—P2—F9	179.0 (9)	С31—С30—Н30	120.0
F12—P2—F9	90.8 (8)	С29—С30—Н30	120.0
F7—P2—F8	177.9 (10)	N8—C31—C30	122.4 (13)
F10—P2—F8	92.1 (9)	N8—C31—C32	106.3 (13)
F12—P2—F8	90.1 (10)	C30—C31—C32	131.2 (14)
F9—P2—F8	86.9 (8)	N9—C32—N10	106.7 (14)
F7—P2—F11	91.2 (9)	N9—C32—C31	123.7 (14)
F10—P2—F11	91.7 (8)	N10-C32-C31	129.6 (15)

F12—P2—F11	176.6 (9)	C34—C33—N10	132.5 (14)
F9—P2—F11	87.9 (7)	C34—C33—C38	122.2 (15)
F8—P2—F11	86.7 (9)	N10-C33-C38	105.3 (13)
C40—O1—C41	113.2 (13)	C35—C34—C33	114.5 (15)
C44—O2—C45	111.9 (14)	С35—С34—Н34	122.7
C49—O3—C48	112.5 (13)	С33—С34—Н34	122.7
C7—N1—C1	106.9 (13)	C34—C35—C36	125.3 (16)
C7—N1—Ru1	113.7 (10)	С34—С35—Н35	117.3
C1—N1—Ru1	139.2 (11)	С36—С35—Н35	117.3
C7—N2—C6	108.2 (13)	C37—C36—C35	116.4 (15)
C7—N2—H2N	125 (10)	С37—С36—Н36	121.8
C6—N2—H2N	127 (10)	С35—С36—Н36	121.8
C12—N3—C8	119.1 (9)	C38—C37—C36	119.5 (14)
C12—N3—Ru1	121.7 (12)	С38—С37—Н37	120.2
C8—N3—Ru1	118.5 (11)	С36—С37—Н37	120.2
C13—N4—C19	104.5 (12)	C37—C38—N9	131.0 (14)
C13—N4—Ru1	110.7 (10)	C37—C38—C33	121.8 (14)
C19—N4—Ru1	144.8 (11)	N9—C38—C33	107.2 (13)
C14—N5—C13	107.2 (14)	С40—С39—Н39А	109.5
C14—N5—H5N	127 (10)	C40—C39—H39B	109.5
C13—N5—H5N	126 (10)	H39A—C39—H39B	109.5
C26—N6—C20	101.9 (12)	С40—С39—Н39С	109.5
C26—N6—Ru1	116.0 (9)	H39A—C39—H39C	109.5
C20—N6—Ru1	142.1 (11)	H39B—C39—H39C	109.5
C26—N7—C25	106.2 (13)	O1—C40—C39	109.7 (15)
C26—N7—H7N	132 (3)	O1—C40—H40A	109.7
C25—N7—H7N	122 (3)	С39—С40—Н40А	109.7
C31—N8—C27	117.5 (10)	O1—C40—H40B	109.7
C31—N8—Ru1	122.6 (10)	C39—C40—H40B	109.7
C27—N8—Ru1	118.8 (9)	H40A—C40—H40B	108.2
C32—N9—C38	111.1 (13)	C42—C41—O1	107.0 (14)
C32—N9—Ru1	109.4 (10)	C42—C41—H41A	110.3
C38—N9—Ru1	139.0 (11)	O1—C41—H41A	110.3
C33—N10—C32	109.5 (13)	C42—C41—H41B	110.3
C33—N10—H10N	126 (2)	O1—C41—H41B	110.3
C32—N10—H10N	125 (3)	H41A—C41—H41B	108.6
N1—C1—C2	133.6 (13)	C41—C42—H42A	109.5
N1—C1—C6	109.0 (13)	C41—C42—H42B	109.5
C2—C1—C6	117.0 (12)	H42A—C42—H42B	109.5
C3—C2—C1	119.3 (15)	C41—C42—H42C	109.5
C3—C2—H2	120.3	H42A—C42—H42C	109.5
C1—C2—H2	120.3	H42B—C42—H42C	109.5
C2—C3—C4	120.7 (17)	C44—C43—H43A	109.5
С2—С3—Н3	119.6	C44—C43—H43B	109.5
С4—С3—Н3	119.6	H43A—C43—H43B	109.5
C5—C4—C3	123.4 (18)	C44—C43—H43C	109.5
С5—С4—Н4	118.3	H43A—C43—H43C	109.5
С3—С4—Н4	118.3	H43B—C43—H43C	109.5

C4—C5—C6	113.0 (17)	O2—C44—C43	109.4 (16)
С4—С5—Н5	123.5	O2—C44—H44A	109.8
С6—С5—Н5	123.5	C43—C44—H44A	109.8
C5—C6—N2	129.8 (15)	O2—C44—H44B	109.8
C5—C6—C1	126.5 (16)	C43—C44—H44B	109.8
N2—C6—C1	103.6 (12)	H44A—C44—H44B	108.2
N1—C7—N2	112.1 (14)	O2—C45—C46	113.8 (16)
N1—C7—C8	119.1 (14)	O2—C45—H45A	108.8
N2—C7—C8	128.7 (16)	C46—C45—H45A	108.8
C9—C8—N3	123.6 (14)	O2—C45—H45B	108.8
C9—C8—C7	127.4 (15)	C46—C45—H45B	108.8
N3—C8—C7	109.0 (14)	H45A—C45—H45B	107.7
C8-C9-C10	116 5 (15)	C45—C46—H46A	109.5
C8-C9-H9	121 7	C45—C46—H46B	109.5
C10—C9—H9	121.7	H46A - C46 - H46B	109.5
$C_{11} - C_{10} - C_{9}$	121.7 120.5(10)	C45-C46-H46C	109.5
$C_{11} - C_{10} - H_{10}$	119.8	H46A - C46 - H46C	109.5
C_{10} C_{10} H_{10}	110.8	H46B C46 H46C	109.5
$C_{10} = C_{10} = C_{10} = C_{10}$	119.0 110.5(14)	$C_{48} = C_{40} = H_{40}C_{40}$	109.5
$C_{10} = C_{11} = C_{12}$	119.5 (14)	$C_{48} = C_{47} = H_{47}R$	109.5
C_{10} C_{11} H_{11}	120.2	C40 - C47 - H47D	109.5
N2 C12 C11	120.2	H4/A - C4/-H4/B	109.5
$N_{2} = C_{12} = C_{12}$	120.4(14)	1474 - 147C	109.5
N_{3} $-C_{12}$ $-C_{13}$	109.3(14) 120.0(15)	H4/A - C4/ - H4/C	109.5
CII = CI2 = CI3	129.9 (15)	H4/B - C4/ - H4/C	109.5
N4—C13—N5	110.8 (14)	03-C48-C47	106.8 (13)
N4—C13—C12	120.5 (14)	03—C48—H48A	110.4
N5—C13—C12	128.7 (15)	C47—C48—H48A	110.4
N5—C14—C19	110.0 (15)	03—C48—H48B	110.4
N5—C14—C15	134.5 (16)	C47—C48—H48B	110.4
C19—C14—C15	115.5 (17)	H48A—C48—H48B	108.6
C16—C15—C14	118.1 (18)	O3—C49—C50	107.9 (15)
C16—C15—H15	121.0	O3—C49—H49A	110.1
C14—C15—H15	121.0	С50—С49—Н49А	110.1
C17—C16—C15	124.2 (18)	O3—C49—H49B	110.1
C17—C16—H16	117.9	С50—С49—Н49В	110.1
C15—C16—H16	117.9	H49A—C49—H49B	108.4
C16—C17—C18	120.6 (18)	С49—С50—Н50А	109.5
C16—C17—H17	119.7	C49—C50—H50B	109.5
C18—C17—H17	119.7	H50A—C50—H50B	109.5
C17—C18—C19	114.7 (16)	C49—C50—H50C	109.5
C17—C18—H18	122.6	H50A—C50—H50C	109.5
C19—C18—H18	122.6	H50B—C50—H50C	109.5
C7—N1—C1—C2	170.7 (15)	Ru1—N6—C20—C21	-3 (2)
Ru1—N1—C1—C2	-4 (3)	N6-C20-C21-C22	179.8 (14)
C7—N1—C1—C6	-1.8 (16)	C25—C20—C21—C22	1 (2)
Ru1—N1—C1—C6	-176.8 (11)	C20—C21—C22—C23	-3 (2)
N1—C1—C2—C3	-174.8 (15)	C21—C22—C23—C24	1 (2)

C6—C1—C2—C3	-3 (2)	C22—C23—C24—C25	2 (2)
C1—C2—C3—C4	1 (2)	N6-C20-C25-N7	1.8 (17)
C2—C3—C4—C5	0 (3)	C21—C20—C25—N7	-179.5 (13)
C3—C4—C5—C6	-1 (3)	N6-C20-C25-C24	-176.6(13)
C4—C5—C6—N2	174.9 (16)	C21—C20—C25—C24	2 (2)
C4—C5—C6—C1	-1 (2)	C26—N7—C25—C20	1.0 (17)
C7—N2—C6—C5	-174.4 (16)	C26—N7—C25—C24	179.2 (17)
C7—N2—C6—C1	1.9 (15)	C23—C24—C25—C20	-4 (2)
N1—C1—C6—C5	176.4 (14)	C23—C24—C25—N7	178.2 (17)
C2-C1-C6-C5	3 (2)	C25—N7—C26—N6	-3.7(19)
N1-C1-C6-N2	-0.1(14)	$C_{25} N_{7} C_{26} C_{27}$	-1754(15)
$C_2 - C_1 - C_6 - N_2$	-174.0(12)	$C_{20} - N_{6} - C_{26} - N_{7}$	4.6 (17)
C1 - N1 - C7 - N2	32(17)	Ru1 - N6 - C26 - N7	-175.0(10)
Ru1 - N1 - C7 - N2	179.6(10)	$C_{20} - N_{6} - C_{26} - C_{27}$	1773(12)
C1 - N1 - C7 - C8	-173.6(13)	$R_{11} - N6 - C26 - C27$	-23(16)
Ru1 - N1 - C7 - C8	29(18)	$C_{31} = N_8 = C_{27} = C_{28}$	-2(2)
C6-N2-C7-N1	-33(18)	$R_{\rm H} = - N 8 - C 27 - C 28$	-1704(12)
C6-N2-C7-C8	173 1 (15)	$C_{31} N_8 C_{27} C_{26}$	175.9(14)
$C_{12} = N_{2} = C_{12} = C_{12}$	-6(3)	$R_{11} = N_8 = C_{27} = C_{26}$	75(19)
$R_{12} = 103 = C8 = C9$	-176.8(13)	N7 C26 C27 C28	-14(3)
Ru1 - N3 - C8 - C9	170.8(13) 174.9(11)	$N = C_{20} = C_{27} = C_{28}$	174(3)
$C_{12} - N_{3} - C_{8} - C_{7}$	1/4.9 (11)	$N_{0} = C_{20} = C_{27} = C_{28}$	1/4.0(15)
Ru1 - 103 - Co - C/	4.5(10)	$N = C_{20} = C_{27} = N_{8}$	-3.1(10)
N1 - C7 - C8 - C9	1/0.0(10)	$N_{0} = C_{20} = C_{27} = C_{20}$	-3.1(19)
$N_2 = C_1 = C_3 = C_9$	0(3)	$N_{0} = C_{2} = C_{2} = C_{2}$	0(2)
N1 - C7 - C8 - N3	-5(2)	$C_{26} = C_{27} = C_{28} = C_{29}$	-1//.6(15)
N2-C/-C8-N3	1/9.2 (15)	$C_2/-C_{28}-C_{29}-C_{30}$	0(2)
N3-C8-C9-C10	3 (3)	$C_{28} = C_{29} = C_{30} = C_{31}$	3 (2)
C/C8C9C10	-1/8.2 (16)	C27—N8—C31—C30	5 (2)
C8—C9—C10—C11	-1(3)	Ru1—N8—C31—C30	172.6 (11)
C9—C10—C11—C12	3 (3)	C27—N8—C31—C32	-175.9 (14)
C8—N3—C12—C11	7 (2)	Ru1—N8—C31—C32	-8.0 (19)
Ru1—N3—C12—C11	177.5 (11)	C29—C30—C31—N8	-5 (2)
C8—N3—C12—C13	-177.8 (11)	C29—C30—C31—C32	175.5 (15)
Ru1—N3—C12—C13	-7.5 (17)	C38—N9—C32—N10	-4.2 (18)
C10—C11—C12—N3	-6 (2)	Ru1—N9—C32—N10	-177.8 (10)
C10-C11-C12-C13	-179.5 (16)	C38—N9—C32—C31	175.8 (14)
C19—N4—C13—N5	1.4 (15)	Ru1—N9—C32—C31	2.3 (19)
Ru1—N4—C13—N5	-177.6 (9)	C33—N10—C32—N9	4.3 (18)
C19—N4—C13—C12	-175.6 (13)	C33—N10—C32—C31	-175.8 (15)
Ru1—N4—C13—C12	5.4 (17)	N8—C31—C32—N9	3 (2)
C14—N5—C13—N4	-0.9 (17)	C30—C31—C32—N9	-177.4 (15)
C14—N5—C13—C12	175.8 (15)	N8—C31—C32—N10	-176.7 (16)
N3—C12—C13—N4	1 (2)	C30—C31—C32—N10	3 (3)
C11—C12—C13—N4	175.2 (15)	C32—N10—C33—C34	177.4 (16)
N3—C12—C13—N5	-175.7 (14)	C32—N10—C33—C38	-2.7 (17)
C11—C12—C13—N5	-1 (3)	N10-C33-C34-C35	-177.1 (16)
C13—N5—C14—C19	0.0 (18)	C38—C33—C34—C35	3 (2)
C13—N5—C14—C15	-177.4 (18)	C33—C34—C35—C36	-2 (2)

C16 C17 C18 0 (2) N5 C14 C19 -3 (2) C15 C14 C19 -17 C15 C14 C19 C18 N5 C14 C19 C18 N5 C14 C19 C18 0 0.9 N4 0.9	(2) (79.3 (16) (1) (3) (2) (18) (2)	C32—N9—C38—C37 Ru1—N9—C38—C37 C32—N9—C38—C33 Ru1—N9—C38—C33	-176.3 (15) -6 (3) 2.6 (17) 173.4 (12)
C15—C14—C19—N4 178 C17—C18—C19—C14 4 (2 C17—C18—C19—N4 -17 C13—N4—C19—C14 -1. Ru1—N4—C19—C14 176 C13—N4—C19—C18 178 Ru1—N4—C19—C18 -3 C26—N6—C20—C25 -3. Ru1—N6—C20—C25 175	8.9 (13) 0 2) 1 76.0 (14) 0 .4 (16) 1 6.9 (12) 0 8.8 (15) 0 (3) 0 .7 (15) 0 5.7 (11) 0	C34—C33—C38—C37 N10—C33—C38—C37 C34—C33—C38—N9 N10—C33—C38—N9 C41—O1—C40—C39 C40—O1—C41—C42 C45—O2—C44—C43 C44—O2—C45—C46 C49—O3—C48—C47	-1 (2) 179.2 (14) -180.0 (14) 0.1 (16) 179.7 (15) 178.4 (18) -178.1 (18) 78 (2) 175.3 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> …O2	0.90 (3)	1.85 (5)	2.730 (18)	166 (17)
N5—H5 <i>N</i> ···O3	0.91 (3)	1.81 (5)	2.704 (19)	170 (18)
N7—H7 <i>N</i> …F8	0.90 (3)	2.58 (7)	3.30(2)	137 (8)
N7—H7 <i>N</i> …F11	0.90 (3)	2.05 (4)	2.93 (2)	167 (10)
N10—H10 <i>N</i> …F6 ⁱ	0.89 (3)	2.16 (3)	3.028 (19)	166 (6)

Symmetry code: (i) x, y-1, z.