

IUCrData

ISSN 2414-3146

Received 9 August 2023 Accepted 2 September 2023

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; antiaromatic; heteroatom; macrocyclic compound.

CCDC reference: 2292415

Structural data: full structural data are available from iucrdata.iucr.org

$(3^{1}E, 3^{2}Z, 7^{1}E, 7^{2}Z)$ -4,8-Bis(3,5-dichlorophenyl)- $1^{4}, 3^{3}, 5^{3}, 7^{3}$ -tetrapropyl- $1^{1}H, 3^{2}H, 5^{1}H, 7^{2}H$ -1,5(2,5), 3,7(5,2)-tetrapyrrola-2,6(2,5)-dithiophenacyclooctaphane

Yoshihiro Ishimaru,^a* Ryo Ikeda^a and Takashi Fujihara^b

^aDivision of Material Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan, and ^bComprehensive Analysis Center for Science, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan. *Correspondence e-mail: ishimaru@fms.saitama-u.ac.jp

Purple crystals of the title compound, $C_{50}H_{44}Cl_4N_4S_2$ were obtained from the reaction of 2,5-bis(4-propyl-1*H*-pyrrol-2-yl)thiophene and 3,5-dichlorobenzaldehyde in the presence of trifluoroacetic acid for 3 h and subsequent addition of *p*-chloranil. The macrocycle in the title compound can be described as a highly planar structure with the average deviation of the 32 macrocyclic atoms from the least-squares plane being 0.0416 Å. Its molecular conformation is stabilized by two intramolecular N-H···N bonds and a three-dimensional network is formed by C-H··· π interactions.

Structure description

The molecular structures and electronic properties of hexapyrrolic expanded porphyrins with different numbers of π -electrons and *meso*-like positions have been studied extensively (Sessler *et al.*, 1995; Saito & Osuka *et al.*, 2011; Setsune *et al.*, 2015). Furthermore, the crucial influence of a heteroatom on the macrocycle conformation of core-modified hexaphyrins has been demonstrated (Narayanan *et al.*, 1998, 1999). [24]Amethyrin is a hexapyrrolic expanded porphyrin that has recently been a focus of theoretical studies, and exploring the molecular structures and electronic properties of its derivatives is highly desirable. Dithiaamethyrin is a core-modified amethyline with Group-16 heterocycles and *meso*-dichlorophenyl groups (Alka *et al.*, 2019). In a continuation of our research on the synthesis and characterization of expanded porphyrin derivatives (Ishimaru *et al.*, 2015, 2022), we synthesized the title compound, [24]dithiaamethyrin(1.0.0.1.0.0), and elucidated its crystal structure. It has a highly planar

Figure 1

The molecular structure of the title compound showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Non-labeled atoms are generated by symmetry operation -x + 1, -y + 1, -z + 1.

macrocyclic core and its ¹H NMR chemical shifts indicate strong antiaromaticity. Its molecular structure is shown in Fig. 1. Its planarity is reinforced by two intramolecular N1-H1···N2 hydrogen bonds (Table 1) in the dipyrromethene moiety, as shown in Fig. 1. All the bond lengths are consistent with those reported in a previous study on other dithiaamethyrins (Ishimaru *et al.*, 2015). The mean plane deviation (MPD) value of the 32 macrocyclic atoms is 0.0416 Å, and the *meso*-phenyl ring is twisted by 92.51° from the mean plane of [24]dithiaamethyrin(1.0.0.1.0.0). Neighboring molecules form dimers *via* intermolecular C-H···Cl and C-H··· π interactions owing to the H6···Cl1 (2.93 Å), H17A···Cl2 (3.34 Å), and C3-C11 (3.36 Å) distances, as shown in Fig. 2.

Synthesis and crystallization

The title compound was prepared by a modified previously reported method by Ishimaru *et al.* (2015). 2,5-Bis(4-propyl-2-pyrrolyl)thiophene (200 mg) was dissolved in CH₂Cl₂ (*ca* 300 mL) under an Ar atmosphere, to which 3,5-dichlorobenzaldehyde (68.4 μ L) and trifluoroacetic acid (160 μ L) were added. The reaction mixture was stirred for 3 h, *p*-chloranil

Figure 2

View of the molecular arrangement of the title compound in the crystal. Dashed lines indicate the $C-H\cdots\pi$ interactions (ring centroids are shown as coloured spheres).

Table 1

Hydrogen-bond geometry (Å, °).

 $Cg1,\,Cg2$ and Cg4 are the centroids of the S2/C1–C4, N1/C5–C8 and C20–C25, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N2$	0.86 (2)	1.92 (2)	2.6013 (19)	135.7 (18)
$C14-H14A\cdots Cg4$	0.99	2.61	3.492 (2)	149
$C14 - H14B \cdots Cg1^{i}$	0.99	2.83	3.522 (2)	128
$C19-H19C\cdots Cg2^{ii}$	0.99	2.90	3.713 (2)	141

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{50}H_{44}Cl_4N_4S_2$
M _r	906.81
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	200
a, b, c (Å)	8.5016 (11), 10.1996 (16), 13.4724 (16)
α, β, γ (°)	104.368 (1), 91.416 (1), 99.030 (1)
$V(Å^3)$	1115.2 (3)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.40
Crystal size (mm)	$0.12\times0.04\times0.02$
Data collection	
Diffractometer	Bruker APEXII CCD area- detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11997, 4534, 3696
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.090, 1.22
No. of reflections	4534
No. of parameters	277
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.32

Computer programs: APEX2, SAINT, XPREP and XCIF (Bruker 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and ORTEP-3 for Windows (Farrugia, 2012), .

(544 mg) was added to it, and the mixture was stirred overnight at ambient temperature. Then, the mixture was neutralized with an aqueous NaHCO3 solution, and the crude products were passed through an alumina column. Finally, the products were purified by chromatography on a silica gel column using chloroform as elute. The third blue (2%) fraction afforded the title compound. The compound was recrystallized from a mixture of hexane and chloroform. Purple plates of suitable quality for diffraction were obtained by slow-diffusing hexane into chloroform. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 24.0 (*br*, 2H, pyrrole NH), 7.20–6.87 (*m*, 6H, o, p-Ph), 5.05 (s, 4H, thiophene β -H), 4.61 (s, 4H, pyrrole β -H), 0.76 (sextet, 8H, CH₂CH₂CH₃), 0.52 (t, 8H, CH₂CH₂CH₃), 0.32 (t, 12H, CH₂CH₂CH₃); MALDI-TOF MS found = 904.254, monoisotopic mass = 904.176 calculated for $C_{50}H_{44}Cl_4N_4S_2$. UV-vis (CH₂Cl₂): $\lambda = 387, 500$ nm.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

References

- Alka, A., Shetti, V. S. & Ravikanth, M. (2019). Coord. Chem. Rev. 401, 213063–213131.
- Bruker (2014). APEX2, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ishimaru, Y., Shimoyama, N., Fujihara, T., Watanabe, K. & Setsune, J. (2015). *Chem. Asian J.* **10**, 329–333.

- Ishimaru, Y., Takahashi, F., Mochizuki, S., Hosoda, N. & Fujihara, T. (2022). *Chem. Asian J.* **17**, e202200198.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
- Narayanan, S. J., Sridevi, B., Chandrashekar, T. K., Vij, A. & Roy, R. (1999). J. Am. Chem. Soc. 121, 9053–9068.
- Narayanan, S. J., Sridevi, B., Srinivasan, A., Chandrashekar, T. K. & Roy, R. (1998). *Tetrahedron Lett.* **39**, 7389–7392.
- Saito, S. & Osuka, A. (2011). Angew. Chem. Int. Ed. 50, 4342-4373.
- Sessler, J. L., Weghorn, S. J., Hiseada, Y. & Lynch, V. (1995). Chem. Eur. J. 1, 56–67.
- Setsune, J., Toda, M., Yoshida, T., Imamura, K. & Watanabe, K. (2015). *Chem. Eur. J.* **21**, 12715–12727.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2023). **8**, x230766 [https://doi.org/10.1107/S2414314623007666]

(3¹*E*,3²*Z*,7¹*E*,7²*Z*)-4,8-Bis(3,5-dichlorophenyl)-1⁴,3³,5³,7³-tetrapropyl-1¹*H*,3²*H*,5¹*H*,7²*H*-1,5(2,5),3,7(5,2)-tetrapyrrola-2,6(2,5)-dithiophenacyclooctaphane

Yoshihiro Ishimaru, Ryo Ikeda and Takashi Fujihara

(3¹*E*,3²*Z*,7¹*E*,7²*Z*)-4,8-Bis(3,5-dichlorophenyl)-1⁴,3³,5³,7³-tetrapropyl-1¹*H*,3²*H*,5¹*H*,7²*H*-1,5(2,5),3,7(5,2)-tetrapyrrola-2,6(2,5)-dithiophenacyclooctaphane

Z = 1F(000) = 472

 $D_{\rm x} = 1.350 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.4 - 27.9^{\circ}$

 $\mu = 0.40 \text{ mm}^{-1}$

Needle, purple

 $0.12 \times 0.04 \times 0.02 \text{ mm}$

T = 200 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3988 reflections

Crystal data

 $C_{50}H_{44}Cl_4N_4S_2$ $M_r = 906.81$ Triclinic, *P*1 a = 8.5016 (11) Å b = 10.1996 (16) Å c = 13.4724 (16) Å $a = 104.368 (1)^{\circ}$ $\beta = 91.416 (1)^{\circ}$ $\gamma = 99.030 (1)^{\circ}$ $V = 1115.2 (3) \text{ Å}^3$

Data collection

Bruker APEXII CCD area-detector	
diffractometer	11997 measured reflections
Radiation source: Bruker TXS fine-focus	4534 independent reflections
rotating anode	3696 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{ m int}=0.025$
monochromator	$\theta_{\rm max} = 26.4^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Detector resolution: 8.333 pixels mm ⁻¹	$h = -10 \rightarrow 10$
φ and ω scans	$k = -12 \rightarrow 12$
Absorption correction: multi-scan	$l = -16 \rightarrow 16$
(SADABS; Krause et al., 2015)	
(SADADS, Klause et ut., 2015)	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.090$ S = 1.224534 reflections 277 parameters 0 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.9622 (0.0034) x - 7.0043 (0.0050) y + 2.9660 (0.0089) z = 1.0352 (0.0023)

* 0.0014 (0.0011) C20 * 0.0028 (0.0011) C21 * -0.0041 (0.0011) C22 * 0.0009 (0.0012) C23 * 0.0033 (0.0012) C24 * -0.0044 (0.0012) C25

Rms deviation of fitted atoms = 0.0031

- 3.3824 (0.0012) x - 3.1159 (0.0024) y + 12.3311 (0.0021) z = 2.9131 (0.0011)

```
Angle to previous plane (with approximate esd) = 88.176(0.038)
```

* 0.0039(0.0012) C1 * -0.0849(0.0013) C2 * -0.0688(0.0014) C3 * 0.0266(0.0015) C4 * 0.0325(0.0015) C5 * -0.0332(0.0014) C6 * -0.0354(0.0013) C7 * 0.0386(0.0014) C8 * 0.0337(0.0014) C9 * -0.0004(0.0015) C10 * -0.0426(0.0014) C11 * -0.0522(0.0013) C12 * -0.0170(0.0013) C13 * 0.1059(0.0007) S1 * 0.0882(0.0014) N1 * 0.0051(0.0013) N2 3.1186(0.0019) C1_\$1 3.2074(0.0020) C2_\$1 3.1912(0.0021) C3_\$1 3.0959(0.0021) C4_\$1 3.0900(0.0021) C5_\$1 3.1557(0.0021) C6_\$1 3.1579(0.0020) C7_\$1 3.0839(0.0020) C8_\$1 3.0887(0.0020) C9_\$1 3.1228(0.0021) C10_\$1 3.1650(0.0020) C11_\$1 3.1746(0.0020) C12_\$1 3.1394(0.0020) C13_\$1 3.0165(0.0016) S1_\$1 3.0342(0.0020) N1_\$1 3.1173(0.0020) N2_\$1 Rms deviation of fitted atoms = 0.0516

average 3.12 (5)

Refinement. The N-bound H atom was located in a difference Fourier map and freely refined, whereas the C-bound H atoms were included in calculated positions and treated as riding atoms: C - H = 0.95 - 0.99Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for aromatic H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.83198 (19)	0.42761 (16)	0.57282 (12)	0.0240 (3)
C2	0.89838 (19)	0.31039 (15)	0.55421 (12)	0.0257 (4)
H2	1.0042	0.3083	0.5774	0.031*
C3	0.79371 (19)	0.19374 (16)	0.49733 (12)	0.0267 (4)
Н3	0.8216	0.1047	0.4784	0.032*
C4	0.64726 (19)	0.22118 (15)	0.47183 (12)	0.0242 (4)
C5	0.51325 (19)	0.12833 (15)	0.41208 (12)	0.0245 (3)
C6	0.49544 (19)	-0.01215 (16)	0.36638 (12)	0.0261 (4)
H6	0.5728	-0.0689	0.3702	0.031*
C7	0.34564 (19)	-0.05549 (15)	0.31416 (12)	0.0249 (4)
C8	0.27007 (19)	0.06199 (15)	0.32911 (12)	0.0239 (3)
С9	0.11941 (19)	0.08440 (15)	0.29306 (12)	0.0235 (3)
C10	0.07289 (19)	0.21206 (15)	0.30979 (12)	0.0242 (3)
C11	-0.07339 (19)	0.25311 (16)	0.27662 (12)	0.0241 (3)
C12	-0.05427 (19)	0.39144 (16)	0.31603 (12)	0.0264 (4)
H12	-0.1287	0.4491	0.3081	0.032*
C13	0.09840 (19)	0.43419 (15)	0.37157 (12)	0.0239 (3)
C14	0.2943 (2)	-0.20088 (15)	0.24958 (12)	0.0268 (4)
H14A	0.1762	-0.2215	0.2415	0.032*
H14B	0.3309	-0.2651	0.2859	0.032*
C15	0.3603 (2)	-0.22472 (17)	0.14366 (13)	0.0350 (4)
H15A	0.3158	-0.1666	0.1049	0.042*
H15B	0.4777	-0.1962	0.1516	0.042*

C16	0.3206 (3)	-0.3744 (2)	0.08244 (16)	0.0564 (6)
H16A	0.3605	-0.4328	0.1217	0.085*
H16B	0.3710	-0.3856	0.0169	0.085*
H16C	0.2046	-0.4010	0.0694	0.085*
C17	-0.21765 (19)	0.16697 (16)	0.21235 (13)	0.0277 (4)
H17A	-0.2672	0.0985	0.2480	0.033*
H17B	-0.1832	0.1163	0.1461	0.033*
C18	-0.3418 (2)	0.25029 (18)	0.19110 (14)	0.0345 (4)
H18A	-0.2922	0.3195	0.1561	0.041*
H18B	-0.3777	0.2999	0.2572	0.041*
C19	-0.4859 (2)	0.1619 (2)	0.12488 (16)	0.0460 (5)
H19A	-0.4519	0.1158	0.0581	0.069*
H19B	-0.5634	0.2200	0.1149	0.069*
H19C	-0.5354	0.0929	0.1590	0.069*
C20	0.00756 (19)	-0.04103 (15)	0.23484 (12)	0.0238 (3)
C21	-0.09188 (19)	-0.11751 (15)	0.28815 (13)	0.0254 (4)
H21	-0.0922	-0.0879	0.3608	0.031*
C22	-0.18983 (19)	-0.23646 (16)	0.23485 (13)	0.0268 (4)
C23	-0.1916 (2)	-0.28359 (16)	0.12933 (13)	0.0314 (4)
H23	-0.2590	-0.3660	0.0935	0.038*
C24	-0.0920 (2)	-0.20670 (17)	0.07785 (13)	0.0315 (4)
C25	0.00693 (19)	-0.08578 (16)	0.12869 (12)	0.0275 (4)
H25	0.0735	-0.0342	0.0913	0.033*
Cl1	-0.31419 (5)	-0.33119 (4)	0.30225 (4)	0.03638 (13)
Cl2	-0.08880 (7)	-0.26370 (5)	-0.05468 (4)	0.05066 (16)
H1N	0.353 (2)	0.252 (2)	0.4028 (15)	0.050 (6)*
N1	0.37688 (16)	0.17056 (14)	0.38987 (11)	0.0262 (3)
N2	0.17494 (15)	0.32997 (13)	0.36802 (10)	0.0255 (3)
S1	0.63866 (5)	0.39334 (4)	0.51941 (3)	0.02906 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0230 (8)	0.0203 (8)	0.0263 (8)	0.0017 (6)	-0.0030(7)	0.0032 (7)
C2	0.0219 (8)	0.0245 (8)	0.0294 (9)	0.0041 (7)	-0.0026 (7)	0.0048 (7)
C3	0.0286 (9)	0.0178 (8)	0.0317 (9)	0.0059 (7)	0.0004 (7)	0.0016 (7)
C4	0.0271 (9)	0.0162 (7)	0.0269 (8)	0.0024 (6)	0.0004 (7)	0.0017 (6)
C5	0.0242 (8)	0.0199 (8)	0.0275 (8)	0.0023 (6)	-0.0003 (7)	0.0033 (7)
C6	0.0257 (9)	0.0198 (8)	0.0308 (9)	0.0039 (6)	-0.0004 (7)	0.0029 (7)
C7	0.0275 (9)	0.0186 (8)	0.0262 (8)	0.0004 (7)	0.0027 (7)	0.0032 (7)
C8	0.0234 (8)	0.0175 (8)	0.0261 (8)	-0.0014 (6)	-0.0014 (7)	0.0005 (6)
C9	0.0237 (8)	0.0204 (8)	0.0229 (8)	-0.0004 (6)	0.0012 (7)	0.0019 (6)
C10	0.0247 (8)	0.0184 (8)	0.0261 (8)	-0.0009 (6)	-0.0011 (7)	0.0025 (6)
C11	0.0235 (8)	0.0222 (8)	0.0242 (8)	0.0001 (6)	-0.0007 (7)	0.0038 (7)
C12	0.0258 (9)	0.0232 (8)	0.0299 (9)	0.0045 (7)	-0.0022 (7)	0.0060(7)
C13	0.0252 (8)	0.0196 (8)	0.0251 (8)	0.0016 (6)	-0.0008(7)	0.0038 (7)
C14	0.0273 (9)	0.0153 (8)	0.0342 (9)	0.0012 (6)	-0.0025 (7)	0.0013 (7)
C15	0.0388 (11)	0.0252 (9)	0.0362 (10)	0.0046 (8)	0.0025 (8)	-0.0003 (8)

C16	0.0759 (16)	0.0315 (11)	0.0489 (13)	0.0056 (11)	0.0029 (12)	-0.0112 (10)
C17	0.0260 (9)	0.0231 (8)	0.0298 (9)	-0.0009 (7)	-0.0028 (7)	0.0025 (7)
C18	0.0290 (10)	0.0303 (9)	0.0412 (10)	0.0005 (7)	-0.0092 (8)	0.0075 (8)
C19	0.0346 (11)	0.0455 (12)	0.0538 (13)	-0.0041 (9)	-0.0158 (9)	0.0136 (10)
C20	0.0215 (8)	0.0169 (7)	0.0303 (9)	0.0028 (6)	-0.0014 (7)	0.0014 (7)
C21	0.0244 (9)	0.0207 (8)	0.0295 (9)	0.0048 (6)	-0.0008 (7)	0.0030 (7)
C22	0.0205 (8)	0.0211 (8)	0.0386 (10)	0.0029 (6)	0.0031 (7)	0.0076 (7)
C23	0.0276 (9)	0.0221 (8)	0.0376 (10)	-0.0033 (7)	-0.0056 (8)	-0.0001 (7)
C24	0.0346 (10)	0.0262 (9)	0.0282 (9)	0.0016 (7)	-0.0028 (8)	-0.0003 (7)
C25	0.0271 (9)	0.0224 (8)	0.0302 (9)	-0.0005 (7)	-0.0003 (7)	0.0044 (7)
C11	0.0293 (2)	0.0266 (2)	0.0536 (3)	-0.00007 (17)	0.0072 (2)	0.0134 (2)
Cl2	0.0637 (4)	0.0443 (3)	0.0294 (3)	-0.0123 (2)	-0.0027 (2)	-0.0038 (2)
N1	0.0247 (7)	0.0163 (7)	0.0335 (8)	0.0024 (6)	-0.0048 (6)	0.0000 (6)
N2	0.0252 (7)	0.0168 (6)	0.0306 (7)	0.0004 (5)	-0.0027 (6)	0.0012 (6)
S1	0.0236 (2)	0.0174 (2)	0.0414 (3)	0.00337 (16)	-0.00734 (18)	-0.00045 (17)

Geometric parameters (Å, °)

C1—C2	1.371 (2)	C14—H14B	0.9900
C1-C13 ⁱ	1.446 (2)	C15—C16	1.524 (2)
C1—S1	1.7256 (16)	C15—H15A	0.9900
С2—С3	1.406 (2)	C15—H15B	0.9900
С2—Н2	0.9500	C16—H16A	0.9800
C3—C4	1.372 (2)	C16—H16B	0.9800
С3—Н3	0.9500	C16—H16C	0.9800
C4—C5	1.442 (2)	C17—C18	1.519 (2)
C4—S1	1.7274 (15)	C17—H17A	0.9900
C5—N1	1.350 (2)	C17—H17B	0.9900
С5—С6	1.394 (2)	C18—C19	1.520 (2)
С6—С7	1.392 (2)	C18—H18A	0.9900
С6—Н6	0.9500	C18—H18B	0.9900
С7—С8	1.420 (2)	C19—H19A	0.9800
C7—C14	1.511 (2)	C19—H19B	0.9800
C8—N1	1.3852 (19)	C19—H19C	0.9800
С8—С9	1.430 (2)	C20—C25	1.389 (2)
C9—C10	1.387 (2)	C20—C21	1.393 (2)
C9—C20	1.496 (2)	C21—C22	1.379 (2)
C10—N2	1.4088 (18)	C21—H21	0.9500
C10-C11	1.466 (2)	C22—C23	1.382 (2)
C11—C12	1.360 (2)	C22—C11	1.7431 (16)
C11—C17	1.502 (2)	C23—C24	1.380 (2)
C12—C13	1.431 (2)	С23—Н23	0.9500
С12—Н12	0.9500	C24—C25	1.387 (2)
C13—N2	1.323 (2)	C24—C12	1.7375 (18)
C13—C1 ⁱ	1.446 (2)	C25—H25	0.9500
C14—C15	1.523 (2)	N1—H1N	0.86 (2)
C14—H14A	0.9900		

C2-C1-C13 ⁱ	129.06 (15)	C14—C15—H15B	109.1
C2-C1-S1	110.85 (12)	H15A—C15—H15B	107.8
C13 ⁱ —C1—S1	120.09 (12)	C15—C16—H16A	109.5
C1—C2—C3	113.04 (15)	C15—C16—H16B	109.5
C1—C2—H2	123.5	H16A—C16—H16B	109.5
С3—С2—Н2	123.5	C15—C16—H16C	109.5
C4—C3—C2	113.38 (14)	H16A—C16—H16C	109.5
С4—С3—Н3	123.3	H16B—C16—H16C	109.5
С2—С3—Н3	123.3	C11—C17—C18	113.31 (13)
C3—C4—C5	128.64 (14)	C11—C17—H17A	108.9
C3—C4—S1	110.58 (12)	C18—C17—H17A	108.9
C5—C4—S1	120.77 (12)	C11—C17—H17B	108.9
N1—C5—C6	107.54 (14)	C18—C17—H17B	108.9
N1—C5—C4	122.37 (14)	H17A—C17—H17B	107.7
C6—C5—C4	130.08 (15)	C17—C18—C19	112.65 (15)
C7—C6—C5	108.72 (14)	C17—C18—H18A	109.1
С7—С6—Н6	125.6	C19—C18—H18A	109.1
С5—С6—Н6	125.6	C17—C18—H18B	109.1
C6—C7—C8	106.71 (13)	C19—C18—H18B	109.1
C6—C7—C14	121.77 (14)	H18A—C18—H18B	107.8
C8—C7—C14	131.34 (15)	C18—C19—H19A	109.5
N1—C8—C7	106.51 (14)	C18—C19—H19B	109.5
N1—C8—C9	120.11 (14)	H19A—C19—H19B	109.5
C7—C8—C9	133.36 (14)	C18—C19—H19C	109.5
С10—С9—С8	124.29 (14)	H19A—C19—H19C	109.5
C10—C9—C20	119.73 (14)	H19B—C19—H19C	109.5
C8—C9—C20	115.98 (13)	C25—C20—C21	119.52 (14)
C9—C10—N2	120.08 (14)	С25—С20—С9	120.83 (14)
C9—C10—C11	131.21 (14)	С21—С20—С9	119.58 (14)
N2-C10-C11	108.71 (13)	C22—C21—C20	119.60 (15)
C12—C11—C10	105.56 (14)	C22—C21—H21	120.2
C12—C11—C17	124.79 (15)	C20—C21—H21	120.2
C10—C11—C17	129.65 (14)	C21—C22—C23	121.91 (15)
C11—C12—C13	107.51 (14)	C21—C22—C11	119.24 (13)
C11—C12—H12	126.2	C23—C22—C11	118.85 (12)
C13—C12—H12	126.2	C24—C23—C22	117.68 (15)
N2—C13—C12	112.01 (14)	С24—С23—Н23	121.2
N2-C13-C1 ⁱ	121.23 (14)	С22—С23—Н23	121.2
C12-C13-C1 ⁱ	126.76 (15)	C23—C24—C25	122.05 (16)
C7—C14—C15	112.74 (13)	C23—C24—Cl2	119.06 (13)
C7—C14—H14A	109.0	C25—C24—Cl2	118.88 (13)
C15—C14—H14A	109.0	C24—C25—C20	119.23 (15)
C7—C14—H14B	109.0	С24—С25—Н25	120.4
C15—C14—H14B	109.0	C20—C25—H25	120.4
H14A—C14—H14B	107.8	C5—N1—C8	110.52 (13)
C16—C15—C14	112.51 (15)	C5—N1—H1N	130.5 (14)
C16—C15—H15A	109.1	C8—N1—H1N	118.7 (14)
C14—C15—H15A	109.1	C13—N2—C10	106.20 (13)

C16—C15—H15B	109.1	C1—S1—C4	92.15 (8)
C13 ⁱ —C1—C2—C3	179.71 (16)	C8—C7—C14—C15	94.1 (2)
S1—C1—C2—C3	-0.08 (18)	C7—C14—C15—C16	174.90 (16)
C1—C2—C3—C4	0.3 (2)	C12—C11—C17—C18	2.1 (2)
C2—C3—C4—C5	178.12 (15)	C10-C11-C17-C18	-177.42 (16)
C2—C3—C4—S1	-0.32 (18)	C11—C17—C18—C19	179.25 (15)
C3—C4—C5—N1	-177.74 (16)	C10-C9-C20-C25	89.16 (19)
S1—C4—C5—N1	0.6 (2)	C8—C9—C20—C25	-91.51 (19)
C3—C4—C5—C6	1.2 (3)	C10-C9-C20-C21	-93.89 (19)
S1—C4—C5—C6	179.48 (14)	C8—C9—C20—C21	85.44 (18)
N1-C5-C6-C7	0.81 (19)	C25—C20—C21—C22	-0.1 (2)
C4—C5—C6—C7	-178.24 (16)	C9—C20—C21—C22	-177.12 (14)
C5—C6—C7—C8	-0.32 (18)	C20—C21—C22—C23	0.7 (2)
C5-C6-C7-C14	175.29 (14)	C20—C21—C22—C11	-179.84 (12)
C6—C7—C8—N1	-0.27 (18)	C21—C22—C23—C24	-0.5 (3)
C14—C7—C8—N1	-175.30 (16)	Cl1—C22—C23—C24	-179.97 (13)
C6—C7—C8—C9	177.90 (17)	C22—C23—C24—C25	-0.3 (3)
C14—C7—C8—C9	2.9 (3)	C22—C23—C24—Cl2	179.18 (13)
N1-C8-C9-C10	3.8 (2)	C23—C24—C25—C20	0.8 (3)
C7—C8—C9—C10	-174.14 (17)	Cl2—C24—C25—C20	-178.67 (13)
N1-C8-C9-C20	-175.46 (14)	C21—C20—C25—C24	-0.6 (2)
C7—C8—C9—C20	6.6 (3)	C9—C20—C25—C24	176.39 (15)
C8—C9—C10—N2	-1.8 (2)	C6—C5—N1—C8	-1.00 (18)
C20—C9—C10—N2	177.47 (13)	C4—C5—N1—C8	178.14 (14)
C8—C9—C10—C11	178.31 (16)	C7—C8—N1—C5	0.79 (18)
C20—C9—C10—C11	-2.4 (3)	C9—C8—N1—C5	-177.67 (14)
C9-C10-C11-C12	179.53 (17)	C12-C13-N2-C10	-0.63 (18)
N2-C10-C11-C12	-0.36 (17)	C1 ⁱ —C13—N2—C10	179.02 (14)
C9—C10—C11—C17	-0.9 (3)	C9—C10—N2—C13	-179.30 (14)
N2-C10-C11-C17	179.25 (15)	C11—C10—N2—C13	0.61 (17)
C10-C11-C12-C13	-0.01 (17)	C2-C1-S1-C4	-0.08 (13)
C17—C11—C12—C13	-179.65 (15)	C13 ⁱ —C1—S1—C4	-179.90 (13)
C11—C12—C13—N2	0.41 (19)	C3—C4—S1—C1	0.23 (13)
C11—C12—C13—C1 ⁱ	-179.21 (15)	C5—C4—S1—C1	-178.35 (13)
C6—C7—C14—C15	-80.34 (19)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the S2/C1–C4, N1/C5–C8 and C20–C25 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> …N2	0.86 (2)	1.92 (2)	2.6013 (19)	135.7 (18)
C14—H14 <i>A</i> … <i>Cg</i> 4	0.99	2.61	3.492 (2)	149
C14—H14 B ···Cg1 ⁱⁱ	0.99	2.83	3.522 (2)	128
С19—Н19С…Сд2ііі	0.99	2.90	3.713 (2)	141

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x-1, y, z.