

ISSN 2414-3146

Received 23 August 2023 Accepted 30 August 2023

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; coordination polymer; adamantane-1,3-dicarboxylate; *N*-(pyridin-3-yl)isonicotinamide; nickel(II).

CCDC reference: 2291890

Structural data: full structural data are available from iucrdata.iucr.org

Poly[[(µ₃-adamantane-1,3-dicarboxylato)aqua-[µ-N-(pyridin-3-yl)isonicotinamide]nickel(II)] monohydrate], a layered coordination polymer with (4,4) topology

Jamelah Z. Travis^a and Robert L. LaDuca^{b*}

^aDepartment of Chemistry, Hope College, Holland, MI 49423, USA, and ^bE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA. *Correspondence e-mail: laduca@msu.edu

The title compound, { $[Ni(C_{12}H_{14}O_4)(C_{11}H_9N_3O)(H_2O)]\cdot H_2O$ }_n, contains octahedrally coordinated Ni^{II} ions ligated by adamantane-1,3-dicarboxylate (adc) and *N*-(pyridin-3-yl)isonicotinamide (3-pina) ligands forming coordination polymer layers with a (4,4) grid topology. These diperiodic layer motifs aggregate in an *AAA* pattern mediated by supramolecular C–H···O interactions to form the full triperiodic crystal structure of the title compound.

Structure description

The title complex was obtained during attempts to prepare divalent nickel coordination polymers featuring adamantane-1,3-dicarboxylate (adc) ligands and hydrogen-bonding-capable dipyridylamide ligands. We have reported nickel adc coordination polymers featuring 4,4'-dipyridylamine (dpa) (Travis *et al.*, 2018). {[Ni(adc)(dpa)]·6.5H₂O]_n manifests a stacked arrangement of (4,4) rectangular-grid diperiodic coordination polymer motifs, while the crystal structure of the partially protonated compound {[Ni₂(adc)(adcH)₂(dpa)₂]·H₂O]_n displays an uncommon 10³ topology triperiodic **srs** network.

The asymmetric unit of the title compound, {[Ni(adc)(3-pina)(H₂O)]·H₂O}_n, contains two Ni^{II} atoms on crystallographic inversion centers (Ni1 and Ni2), a complete adc ligand, an *N*-(pyridin-3-yl)isonicotinamide (3-pina) ligand, one water molecule bound to Ni1, and one water molecule of crystallization (Fig. 1). Operation of the crystallographic inversion centers generates two distinct coordination environments. The Ni1 atoms possess an octahedral {N₂O₄} coordination environment with *trans* aqua ligands, *trans* Oatom donors from two adc ligands, and *trans* 3-pyridyl N-donor atoms from two 3-pina ligands. The Ni2 atoms also display an octahedral {N₂O₄} coordination environment, but

Figure 1

The nickel coordination environments in the title compound with a full ligand set. Displacement ellipsoids are drawn at the 50% probability level. Color code: Ni green, O red, N light blue, and C black. H-atom positions are shown as gray sticks. Symmetry codes are as listed in Table 1.

Table 1

Selected geometric parameters (Å, $^{\circ}$).

$Ni1 - O1^1$	2.0216 (19)	Ni2-O3	2.0766 (18)
Ni1-O1	2.0216 (19)	Ni2-O3 ⁿ	2.0766 (18)
Ni1-O6 ⁱ	2.079 (2)	Ni2-O4	2.1113 (18)
Ni1-O6	2.079 (2)	Ni2-O4 ⁱⁱ	2.1113 (18)
Ni1-N1	2.138 (2)	Ni2-N2 ⁱⁱⁱ	2.058 (2)
Ni1-N1 ⁱ	2.138 (2)	Ni2-N2 ^{iv}	2.058 (2)
O1 ⁱ -Ni1-O1	180.0	O3 ⁱⁱ -Ni2-O3	180.0
O1-Ni1-O6 ⁱ	90.58 (8)	O3-Ni2-O4 ⁱⁱ	116.95 (7)
O1-Ni1-O6	89.42 (8)	O3-Ni2-O4	63.05 (7)
O1 ⁱ -Ni1-O6 ⁱ	89.42 (8)	O3 ⁱⁱ -Ni2-O4	116.95 (7)
O1 ⁱ -Ni1-O6	90.58 (8)	O3 ⁱⁱ -Ni2-O4 ⁱⁱ	63.05 (7)
O1-Ni1-N1	90.06 (8)	O4-Ni2-O4 ⁱⁱ	180.0
O1-Ni1-N1 ⁱ	89.94 (8)	N2 ⁱⁱⁱ -Ni2-O3 ⁱⁱ	92.34 (8)
O1 ⁱ -Ni1-N1 ⁱ	90.06 (8)	N2 ⁱⁱⁱ -Ni2-O3	87.67 (8)
O1 ⁱ -Ni1-N1	89.94 (8)	N2 ^{iv} -Ni2-O3	92.33 (8)
$O6^{i} - Ni1 - O6$	180.0	N2 ^{iv} -Ni2-O3 ⁱⁱ	87.66 (8)
O6-Ni1-N1	93.49 (9)	N2 ^{iv} -Ni2-O4	94.86 (8)
O6 ⁱ -Ni1-N1	86.51 (9)	N2 ⁱⁱⁱ -Ni2-O4	85.14 (8)
O6 ⁱ -Ni1-N1 ⁱ	93.49 (9)	N2 ⁱⁱⁱ -Ni2-O4 ⁱⁱ	94.86 (8)
O6-Ni1-N1 ⁱ	86.51 (9)	N2 ^{iv} -Ni2-O4 ⁱⁱ	85.14 (8)
N1-Ni1-N1 ⁱ	180.0	N2 ⁱⁱⁱ -Ni2-N2 ^{iv}	180.0
Symmetry codes: -x + 2, -y + 1, -z	(i) $-x + 2, -y, -y, -y, -y, -y, -y, -y, -y, -y, -y$	-z; (ii) $-x+1, -y-$	+1, -z + 1; (iii)

there are no bound water molecules. Instead, 4-pyridyl Ndonor atoms belonging to the isonicotinamide termini of two 3-pina ligands adopt the nominal *trans*-axial positions. The nominal equatorial plane at the Ni2 atoms are taken up by chelating carboxylate groups belonging to two adc ligands. The bond lengths and angles within the coordination environment are listed in Table 1.

Figure 3 The $[Ni_2(H_2O)_2(adc)_2(3-pina)_2]_n$ coordination polymer layer motif in the title compound.

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H6A\cdots O3^{v}$	0.87(1)	2.04 (2)	2.886 (3)	163 (3)
$O6-H6B\cdots O2^{i}$	0.85 (2)	1.86 (2)	2.684 (3)	163 (3)
$N3-H3\cdots O1W$	0.88	1.94	2.769 (3)	157
O1W−H1WA···O4 ^{vi}	0.84 (2)	2.00(2)	2.831 (3)	169 (4)
$O1W - H1WB \cdots O2^{iii}$	0.84 (2)	2.10 (2)	2.921 (3)	165 (4)
Symmetry codes: (i) $-x + 2$, -y, -z; (iii)	-x + 2, -y + 1	$z_{1}, -z_{2}; (v) - x + 1$	1, -y, -z; (vi)

Symmetry codes: (i) -x + 2, -y, -z; (iii) -x + 2, -y + 1, -z; (v) -x + 1, -y, -z; (vi) x, y, z - 1.

The adc ligands adopt a chelating/monodentate binding mode, producing $[Ni_2(H_2O)_2(adc)_2]_n$ monoperiodic chain motifs with an Ni1···Ni2 through-ligand distance of 9.694 (1) Å (Fig. 2). These are arranged parallel to the $[1\overline{11}]$ direction. In turn, the chain motifs are linked into diperiodic $[Ni_2(H_2O)_2(adc)_2(3-pina)_2]_n$ coordination polymer layer motifs with (4,4) grid topology (Fig. 3); these are oriented parallel to the (101) crystal planes. The bound water molecules (O6) engage in hydrogen bonding to adc carboxylate O atoms (O2 and O3) (Table 2). Water molecules of crystallization are held to the layer motifs by N-H···O hydrogen-bonding interactions involving the 3-pina amide groups (Table 2). Nonclassical C-H···O hydrogen-bonding interactions $[C22 \cdot \cdot \cdot O5 \text{ distance} = 3.110 (1) \text{ Å}]$ promote aggregation of the $[Ni_2(H_2O)_2(adc)_2(3-pina)_2]_n$ layers into the triperiodic full crystal structure of the title compound. The layers stack in an AAA pattern along both the *a* and the *c* crystal directions (Fig. 4).

Figure 2 The $[Ni_2(H_2O)_2(adc)_2]_n$ coordination polymer chain motif in the title compound.

Figure 4

The AAA stacking of coordination polymer layers in the title compound.

Synthesis and crystallization

Ni(NO₃)₂·6H₂O (108 mg, 0.37 mmol), adamantane-1,3-dicarboxylic acid (adcH₂) (93 mg, 0.37 mmol), N-(pyridin-3-yl)isonicotinamide (3-pina) (74 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 71% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to O atoms were located in a difference Fourier map and refined freely with $U_{\rm iso}({\rm H})$ values fixed at 1.5 $U_{\rm eq}({\rm O})$.

Funding information

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.

Table 3 Experimental details.

Crystal data	
Chemical formula	$[Ni(C_{12}H_{14}O_4)(C_{11}H_9N_3O)-(H_2O)]\cdot H_2O$
Mr	516.18
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	10.718 (4), 10.933 (3), 11.586 (3)
α, β, γ (°)	113.462 (4), 109.626 (4), 96.053 (4)
$V(\dot{A}^3)$	1127.2 (6)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.91
Crystal size (mm)	$0.35 \times 0.31 \times 0.18$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12251, 4169, 3363
R _{int}	0.037
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.115, 1.07
No. of reflections	4169
No. of parameters	339
No. of restraints	7
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.82, -0.39

Computer programs: COSMO (Bruker, 2009), APEX2 (Bruker, 2013), SAINT (Bruker, 2013), olex2.solve (Bourhis et al., 2015), SHELXTL (Sheldrick, 2015), CrystalMakerX (Palmer, 2020), and OLEX2 (Dolomanov et al., 2009).

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Travis, J. Z., Pumford, S. R., Martinez, B. L. & LaDuca, R. L. (2018). Polyhedron, 142, 25-37.

full crystallographic data

IUCrData (2023). 8, x230758 [https://doi.org/10.1107/S2414314623007587]

Poly[[(μ_3 -adamantane-1,3-dicarboxylato)agua[μ -N-(pyridin-3yl)isonicotinamide]nickel(II)] monohydrate], a layered coordination polymer

with (4,4) topology

Jamelah Z. Travis and Robert L. LaDuca

 $Poly[[(\mu_3-adamantane-1,3-dicarboxylato)aqua[\mu-N-(pyridin-3-yl)isonicotinamide]nickel(II)] monohydrate]$

Crvstal data

$[\text{Ni}(\text{C}_{12}\text{H}_{14}\text{O}_{4})(\text{C}_{11}\text{H}_{9}\text{N}_{3}\text{O})(\text{H}_{2}\text{O})]\cdot\text{H}_{2}\text{O}$	Z = 2
$M_{r} = 516.18$	F(000) = 540
Triclinic, $P\overline{1}$	$D_x = 1.521 \text{ Mg m}^{-3}$
a = 10.718 (4) Å	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
b = 10.933 (3) Å	Cell parameters from 6384 reflections
c = 11.586 (3) Å	$\theta = 2.2-25.4^{\circ}$
a = 113.462 (4)°	$\mu = 0.91 \text{ mm}^{-1}$
$\beta = 109.626$ (4)°	T = 173 K
$\gamma = 96.053$ (4)°	Block, green
V = 1127.2 (6) Å ³	$0.35 \times 0.31 \times 0.18 \text{ mm}$
Bruker APEXII CCD	4169 independent reflections
diffractometer	3363 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{int} = 0.037$
Graphite monochromator	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Detector resolution: 836.6 pixels mm ⁻¹	$h = -12 \rightarrow 12$
φ and ω scans	$k = -13 \rightarrow 13$
12251 measured reflections	$l = -14 \rightarrow 13$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.115$	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 0.5423P]$

S = 1.074169 reflections 339 parameters 7 restraints Primary atom site location: iterative

where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	1.000000	0.000000	0.000000	0.01704 (15)
Ni2	0.500000	0.500000	0.500000	0.01567 (15)
01	0.8747 (2)	0.02292 (19)	0.0998 (2)	0.0207 (4)
O2	0.9879 (2)	0.2140 (2)	0.3019 (2)	0.0278 (5)
03	0.44548 (19)	0.28855 (18)	0.3693 (2)	0.0194 (4)
O4	0.64885 (19)	0.39367 (18)	0.54244 (19)	0.0185 (4)
05	1.2822 (2)	0.3913 (2)	-0.0396 (2)	0.0257 (5)
O6	0.8399 (2)	-0.1579 (2)	-0.1770 (2)	0.0323 (5)
H6A	0.7521 (16)	-0.180 (3)	-0.228 (3)	0.049*
H6B	0.880 (3)	-0.185 (4)	-0.231 (3)	0.049*
N1	0.9443 (2)	0.1585 (2)	-0.0536(2)	0.0196 (5)
N2	1.4116 (2)	0.4695 (2)	-0.3776 (2)	0.0188 (5)
N3	1.0701 (2)	0.3768 (2)	-0.1866 (2)	0.0205 (5)
Н3	1.027254	0.396693	-0.253463	0.043 (11)*
C1	0.8886 (3)	0.1069 (3)	0.2187 (3)	0.0186 (6)
C2	0.7255 (3)	0.1976 (3)	0.3250 (3)	0.0173 (6)
H2A	0.684592	0.228008	0.254351	0.021*
H2B	0.804113	0.275068	0.404075	0.013 (7)*
C3	0.7765 (3)	0.0702 (3)	0.2634 (3)	0.0180 (6)
C4	0.6536 (3)	-0.0489 (3)	0.1424 (3)	0.0214 (6)
H4A	0.611146	-0.021060	0.069887	0.026*
H4B	0.685396	-0.130982	0.101700	0.012 (7)*
C5	0.8406 (3)	0.0254 (3)	0.3757 (3)	0.0231 (7)
H5A	0.874709	-0.055787	0.337929	0.028*
H5B	0.919763	0.102021	0.455123	0.017 (7)*
C6	0.5469 (3)	-0.0859 (3)	0.1919 (3)	0.0253 (7)
H6	0.467734	-0.164142	0.111628	0.021 (8)*
C7	0.4942 (3)	0.0395 (3)	0.2508 (3)	0.0218 (6)
H7A	0.423551	0.015057	0.281145	0.026*
H7B	0.451510	0.067798	0.178771	0.011 (7)*
C8	0.6825 (3)	0.1151 (3)	0.4850 (3)	0.0238 (7)
H8A	0.761453	0.192252	0.564112	0.029*
H8B	0.614538	0.092712	0.519184	0.033 (9)*
C9	0.7322 (3)	-0.0122 (3)	0.4243 (3)	0.0274 (7)
H9	0.774107	-0.041601	0.496624	0.030 (9)*
C10	0.6096 (4)	-0.1307 (3)	0.3019 (4)	0.0316 (8)
H10A	0.640577	-0.213959	0.263009	0.038*
H10B	0.539579	-0.154594	0.333230	0.027 (8)*
C11	0.6161 (3)	0.1596 (3)	0.3742 (3)	0.0175 (6)
C12	0.5672 (3)	0.2864 (3)	0.4325 (3)	0.0170 (6)
C14	0.8279 (3)	0.1933 (3)	-0.0554 (3)	0.0240 (7)
H14	0.770731	0.149260	-0.027780	0.030 (9)*
C15	1.0241 (3)	0.2222 (3)	-0.0922 (3)	0.0204 (6)
H15	1.108039	0.199666	-0.089106	0.039 (10)*
C16	0.7881 (3)	0.2911 (3)	-0.0962 (3)	0.0239 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	0.705149	0.313949	-0.095664	0.028 (8)*	
C17	0.9894 (3)	0.3197 (3)	-0.1365 (3)	0.0188 (6)	
C18	0.8696 (3)	0.3553 (3)	-0.1376 (3)	0.0220 (6)	
H18	0.843662	0.422547	-0.166249	0.022 (8)*	
C19	1.2793 (3)	0.3958 (3)	-0.4378 (3)	0.0204 (6)	
H19	1.233694	0.352711	-0.535775	0.002 (6)*	
C20	1.2063 (3)	0.3793 (3)	-0.3659 (3)	0.0204 (6)	
H20	1.112088	0.327124	-0.413126	0.016 (7)*	
C21	1.2716 (3)	0.4397 (3)	-0.2230 (3)	0.0173 (6)	
C22	1.4077 (3)	0.5186 (3)	-0.1589 (3)	0.0193 (6)	
H22	1.455078	0.562638	-0.061051	0.015 (7)*	
C23	1.4739 (3)	0.5327 (3)	-0.2388 (3)	0.0211 (6)	
H23	1.566465	0.588835	-0.194019	0.034 (9)*	
C24	1.2087 (3)	0.4033 (3)	-0.1390 (3)	0.0193 (6)	
O1W	0.9387 (2)	0.5047 (2)	-0.3366 (3)	0.0396 (6)	
H1WA	0.8521 (19)	0.483 (4)	-0.370 (4)	0.059*	
H1WB	0.969 (4)	0.590 (2)	-0.312 (4)	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0171 (3)	0.0182 (3)	0.0183 (3)	0.0030 (2)	0.0112 (2)	0.0079 (2)
Ni2	0.0158 (3)	0.0161 (3)	0.0184 (3)	0.0053 (2)	0.0106 (2)	0.0079 (2)
01	0.0223 (11)	0.0220 (10)	0.0215 (11)	0.0055 (8)	0.0152 (9)	0.0086 (9)
O2	0.0206 (11)	0.0250 (11)	0.0283 (12)	-0.0013 (9)	0.0137 (10)	0.0024 (9)
O3	0.0157 (11)	0.0188 (9)	0.0242 (11)	0.0059 (8)	0.0093 (9)	0.0094 (9)
O4	0.0179 (11)	0.0182 (9)	0.0207 (11)	0.0059 (8)	0.0093 (9)	0.0088 (9)
05	0.0213 (11)	0.0356 (12)	0.0254 (11)	0.0057 (9)	0.0089 (10)	0.0201 (10)
O6	0.0156 (11)	0.0406 (13)	0.0269 (13)	0.0016 (10)	0.0110 (10)	0.0024 (10)
N1	0.0183 (13)	0.0221 (12)	0.0204 (13)	0.0038 (10)	0.0103 (11)	0.0103 (10)
N2	0.0178 (13)	0.0207 (12)	0.0214 (13)	0.0054 (10)	0.0103 (11)	0.0111 (10)
N3	0.0198 (13)	0.0272 (12)	0.0234 (13)	0.0070 (10)	0.0108 (11)	0.0183 (11)
C1	0.0200 (16)	0.0212 (14)	0.0218 (15)	0.0103 (12)	0.0125 (13)	0.0125 (13)
C2	0.0170 (15)	0.0172 (13)	0.0210 (15)	0.0037 (11)	0.0122 (13)	0.0086 (12)
C3	0.0189 (15)	0.0208 (13)	0.0200 (15)	0.0066 (12)	0.0139 (13)	0.0095 (12)
C4	0.0186 (15)	0.0212 (14)	0.0249 (16)	0.0066 (12)	0.0135 (13)	0.0072 (13)
C5	0.0232 (17)	0.0285 (15)	0.0283 (17)	0.0144 (13)	0.0153 (14)	0.0176 (14)
C6	0.0229 (17)	0.0165 (14)	0.0337 (18)	0.0006 (12)	0.0186 (15)	0.0047 (13)
C7	0.0180 (15)	0.0176 (13)	0.0326 (17)	0.0039 (12)	0.0171 (14)	0.0092 (13)
C8	0.0305 (18)	0.0300 (15)	0.0277 (17)	0.0146 (14)	0.0215 (15)	0.0197 (14)
C9	0.0336 (19)	0.0363 (17)	0.0376 (19)	0.0212 (15)	0.0267 (16)	0.0280 (16)
C10	0.042 (2)	0.0187 (14)	0.052 (2)	0.0130 (14)	0.0340 (18)	0.0201 (15)
C11	0.0170 (15)	0.0180 (13)	0.0211 (15)	0.0065 (11)	0.0124 (13)	0.0084 (12)
C12	0.0187 (16)	0.0182 (13)	0.0186 (15)	0.0047 (12)	0.0121 (13)	0.0092 (12)
C14	0.0224 (16)	0.0247 (15)	0.0284 (17)	0.0039 (13)	0.0149 (14)	0.0124 (13)
C15	0.0186 (15)	0.0215 (14)	0.0227 (15)	0.0047 (12)	0.0107 (13)	0.0102 (12)
C16	0.0178 (16)	0.0277 (15)	0.0296 (17)	0.0075 (12)	0.0140 (14)	0.0127 (14)
C17	0.0182 (15)	0.0199 (13)	0.0198 (15)	0.0029 (11)	0.0106 (13)	0.0090 (12)

data reports

C18	0.0223 (16)	0.0222 (14)	0.0240 (16)	0.0052 (12)	0.0120 (13)	0.0114 (13)	
C19	0.0223 (16)	0.0219 (14)	0.0161 (15)	0.0045 (12)	0.0078 (13)	0.0085 (12)	
C20	0.0141 (15)	0.0241 (14)	0.0233 (16)	0.0028 (12)	0.0080 (13)	0.0114 (13)	
C21	0.0195 (15)	0.0170 (13)	0.0223 (15)	0.0084 (11)	0.0130 (13)	0.0112 (12)	
C22	0.0180 (15)	0.0226 (14)	0.0181 (15)	0.0039 (12)	0.0069 (13)	0.0109 (12)	
C23	0.0179 (16)	0.0234 (14)	0.0234 (16)	0.0032 (12)	0.0096 (13)	0.0118 (13)	
C24	0.0199 (16)	0.0190 (13)	0.0206 (15)	0.0055 (12)	0.0098 (13)	0.0092 (12)	
O1W	0.0216 (12)	0.0367 (13)	0.0624 (18)	0.0055 (11)	0.0071 (13)	0.0337 (14)	

Geometric parameters (Å, °)

Nil—O1 ⁱ	2.0216 (19)	С5—Н5В	0.9900	
Nil—O1	2.0216 (19)	С5—С9	1.536 (4)	
Ni1—O6 ⁱ	2.079 (2)	С6—Н6	1.0000	
Ni1-06	2.079 (2)	C6—C7	1.531 (4)	
Ni1—N1	2.138 (2)	C6—C10	1.519 (4)	
Ni1—N1 ⁱ	2.138 (2)	C7—H7A	0.9900	
Ni2—O3	2.0766 (18)	С7—Н7В	0.9900	
Ni2—O3 ⁱⁱ	2.0766 (18)	C7—C11	1.537 (4)	
Ni2—04	2.1113 (18)	C8—H8A	0.9900	
Ni2—O4 ⁱⁱ	2.1113 (18)	C8—H8B	0.9900	
Ni2—N2 ⁱⁱⁱ	2.058 (2)	C8—C9	1.531 (4)	
Ni2—N2 ^{iv}	2.058 (2)	C8—C11	1.533 (4)	
01—C1	1.260 (3)	С9—Н9	1.0000	
O2—C1	1.258 (3)	C9—C10	1.530 (5)	
O3—C12	1.272 (3)	C10—H10A	0.9900	
O4—C12	1.269 (3)	C10—H10B	0.9900	
O5—C24	1.224 (3)	C11—C12	1.515 (3)	
O6—H6A	0.871 (14)	C14—H14	0.9500	
O6—H6B	0.849 (18)	C14—C16	1.382 (4)	
N1-C14	1.337 (4)	C15—H15	0.9500	
N1-C15	1.340 (4)	C15—C17	1.389 (4)	
N2-C19	1.339 (4)	C16—H16	0.9500	
N2-C23	1.344 (4)	C16—C18	1.382 (4)	
N3—H3	0.8800	C17—C18	1.378 (4)	
N3—C17	1.410 (3)	C18—H18	0.9500	
N3—C24	1.351 (4)	C19—H19	0.9500	
C1—C3	1.534 (4)	C19—C20	1.366 (4)	
C2—H2A	0.9900	C20—H20	0.9500	
C2—H2B	0.9900	C20—C21	1.386 (4)	
C2—C3	1.542 (4)	C21—C22	1.385 (4)	
C2-C11	1.551 (4)	C21—C24	1.500 (4)	
C3—C4	1.530 (4)	C22—H22	0.9500	
C3—C5	1.544 (4)	C22—C23	1.384 (4)	
C4—H4A	0.9900	С23—Н23	0.9500	
C4—H4B	0.9900	O1W—H1WA	0.840 (18)	
C4—C6	1.526 (4)	O1W—H1WB	0.842 (18)	
C5—H5A	0.9900			

O1 ⁱ —Ni1—O1	180.0	С7—С6—Н6	109.0
O1—Ni1—O6 ⁱ	90.58 (8)	C10—C6—C4	110.4 (2)
O1—Ni1—O6	89.42 (8)	С10—С6—Н6	109.0
O1 ⁱ —Ni1—O6 ⁱ	89.42 (8)	C10—C6—C7	109.6 (3)
O1 ⁱ —Ni1—O6	90.58 (8)	С6—С7—Н7А	109.9
O1—Ni1—N1	90.06 (8)	С6—С7—Н7В	109.9
O1—Ni1—N1 ⁱ	89.94 (8)	C6—C7—C11	108.9 (2)
O1 ⁱ —Ni1—N1 ⁱ	90.06 (8)	H7A—C7—H7B	108.3
O1 ⁱ —Ni1—N1	89.94 (8)	С11—С7—Н7А	109.9
O6 ⁱ —Ni1—O6	180.0	С11—С7—Н7В	109.9
O6—Ni1—N1	93.49 (9)	H8A—C8—H8B	108.2
O6 ⁱ —Ni1—N1	86.51 (9)	C9—C8—H8A	109.7
O6 ⁱ —Ni1—N1 ⁱ	93.49 (9)	C9—C8—H8B	109.7
O6—Ni1—N1 ⁱ	86.51 (9)	C9—C8—C11	109.9 (2)
N1—Ni1—N1 ⁱ	180.0	C11—C8—H8A	109.7
O3 ⁱⁱ —Ni2—O3	180.0	C11—C8—H8B	109.7
03—Ni2—O4 ⁱⁱ	116.95 (7)	С5—С9—Н9	109.5
03—Ni2—O4	63.05 (7)	C8—C9—C5	109.1 (2)
O3 ⁱⁱ —Ni2—O4	116.95 (7)	С8—С9—Н9	109.5
O3 ⁱⁱ —Ni2—O4 ⁱⁱ	63.05 (7)	C10—C9—C5	109.9 (3)
04—Ni2—O4 ⁱⁱ	180.0	C10—C9—C8	109.3 (3)
N2 ⁱⁱⁱ —Ni2—O3 ⁱⁱ	92.34 (8)	C10—C9—H9	109.5
$N2^{iii}$ —Ni2—O3	87.67 (8)	C6—C10—C9	109.3 (2)
$N2^{iv}$ $Ni2$ $O3$	92.33 (8)	C6—C10—H10A	109.8
N2 ^{iv} —Ni2—O3 ⁱⁱ	87.66 (8)	C6—C10—H10B	109.8
N2 ^{iv} —Ni2—O4	94.86 (8)	C9—C10—H10A	109.8
N2 ⁱⁱⁱ —Ni2—O4	85.14 (8)	C9—C10—H10B	109.8
N2 ⁱⁱⁱ —Ni2—O4 ⁱⁱ	94.86 (8)	H10A—C10—H10B	108.3
N2 ^{iv} —Ni2—O4 ⁱⁱ	85.14 (8)	C7—C11—C2	109.4 (2)
N2 ⁱⁱⁱ —Ni2—N2 ^{iv}	180.0	C8—C11—C2	108.7 (2)
C1—O1—Ni1	133.44 (18)	C8—C11—C7	109.7 (2)
C12—O3—Ni2	89.28 (15)	C12—C11—C2	108.2 (2)
C12—O4—Ni2	87.83 (15)	C12—C11—C7	110.0 (2)
Ni1—O6—H6A	143 (2)	C12—C11—C8	110.8 (2)
Ni1—O6—H6B	101 (2)	O3—C12—Ni2	59.03 (13)
H6A—O6—H6B	107 (3)	O3—C12—C11	120.5 (2)
C14—N1—Ni1	121.94 (19)	O4—C12—Ni2	60.60 (13)
C14—N1—C15	118.1 (2)	O4—C12—O3	119.1 (2)
C15—N1—Ni1	119.93 (18)	O4—C12—C11	120.4 (2)
C19—N2—Ni2 ^v	118.35 (19)	C11—C12—Ni2	170.38 (19)
C19—N2—C23	117.7 (2)	N1—C14—H14	118.9
C23—N2—Ni2 ^v	123.49 (19)	N1—C14—C16	122.2 (3)
C17—N3—H3	117.7	C16—C14—H14	118.9
С24—N3—H3	117.7	N1—C15—H15	118.6
C24—N3—C17	124.6 (2)	N1—C15—C17	122.8 (3)
O1—C1—C3	116.0 (2)	C17—C15—H15	118.6
O2—C1—O1	124.8 (3)	C14—C16—H16	120.2
	X		

O2—C1—C3	119.1 (2)	C18—C16—C14	119.6 (3)
H2A—C2—H2B	108.2	C18—C16—H16	120.2
C3—C2—H2A	109.7	C15—C17—N3	121.4 (2)
C3—C2—H2B	109.7	C18—C17—N3	119.7 (2)
C3—C2—C11	109.7 (2)	C18—C17—C15	118.8 (3)
C11—C2—H2A	109.7	C16-C18-H18	120.8
C11—C2—H2B	109.7	C17—C18—C16	118.5 (3)
C1—C3—C2	110.6 (2)	C17—C18—H18	120.8
C1—C3—C5	107.9 (2)	N2—C19—H19	118.2
C2—C3—C5	108.7 (2)	N2—C19—C20	123.5 (3)
C4-C3-C1	111.7 (2)	C20-C19-H19	118.2
C4—C3—C2	109.0 (2)	C19—C20—H20	120.5
C4—C3—C5	108.9 (2)	C19-C20-C21	119.0 (3)
C3—C4—H4A	109.6	$C_{21} - C_{20} - H_{20}$	120.5
C3—C4—H4B	109.6	C_{20} C_{21} C_{24}	1221(2)
H4A—C4—H4B	108.1	$C_{22} - C_{21} - C_{20}$	1181(3)
C6-C4-C3	1101(2)	C^{22} C^{21} C^{24}	119.1(3)
C6-C4-H4A	109.6	$C_{22} = C_{21} = C_{24}$	120.3
C6-C4-H4B	109.6	$C_{21} = C_{22} = 1122$	120.5 119 4 (3)
C_3 C_5 H_5	109.0	$C_{23} = C_{22} = C_{21}$	120.3
$C_3 = C_5 = H_5 R$	109.7	N2 C23 C22	120.3 122.1(3)
H5A C5 H5B	109.7	N2 C23 H23	1122.1 (5)
$C_{0}^{0} C_{5}^{0} C_{3}^{0}$	108.2 100.0(2)	112 - 223 - 1123	118.9
C_{9}	109.9 (2)	$C_{22} = C_{23} = 1123$	110.9 124.6(3)
$C_9 = C_5 = H_5 P$	109.7	05 - C24 - N3	124.0(3)
С9—С5—Н5В	109.7	$V_{2} = C_{2} + C_{2}$	119.4(3) 115.8(2)
C4 = C6 = C7	109.0	$N_{3} = C_{24} = C_{21}$	113.6(2)
C4C7	109.8 (2)	НІ WA—ОІ W—НІ WB	109 (3)
Ni1-01-C1-02	9.4 (4)	C5-C9-C10-C6	-59.2(3)
Ni1-01-C1-C3	-168.59(17)	C6-C7-C11-C2	59.9 (3)
$N_{1} - N_{1} - C_{14} - C_{16}$	-176.9(2)	C6-C7-C11-C8	-592(3)
$N_{1} - N_{1} - C_{15} - C_{17}$	175.9(2)	C6-C7-C11-C12	1787(2)
Ni2 - 03 - 012 - 04	87(2)	C7 - C6 - C10 - C9	-61.6(3)
Ni2 - 03 - C12 - C11	-168.8(2)	C7-C11-C12-O3	-87(3)
Ni2 - 04 - C12 - 03	-85(2)	C7-C11-C12-O4	173.8(2)
Ni2 - 04 - C12 - C11	169.0(2)	C_{8} C_{9} C_{10} C_{6}	604(3)
$N_{12} = 04 = 012 = 011$ $N_{12} = -0.20$	-1739(2)	$C_{8} = C_{11} = C_{12} = C_{3}$	-1302(3)
$N_{12} - N_{2} - C_{23} - C_{22}$	174.8(2)	C8-C11-C12-O4	52 3 (3)
01-C1-C3-C2	-1325(2)	C9-C8-C11-C2	-60.7(3)
01 - C1 - C3 - C4	-10.9(3)	$C_{9} = C_{8} = C_{11} = C_{7}$	58 8 (3)
01 - 01 - 03 - 05	10.9(3) 108.7(3)	$C_{9} = C_{8} = C_{11} = C_{12}$	-1795(2)
$0^{2}-C^{1}-C^{3}-C^{2}$	49 3 (3)	C_{10} C_{6} C_{7} C_{11}	60.8(3)
02 - C1 - C3 - C4	170.9(2)	$C_{11} - C_{2} - C_{3} - C_{1}$	-1780(2)
02-01-03-05	-69 5 (3)	$C_{11} = C_{2} = C_{3} = C_{4}$	58 8 (3)
N1 - C14 - C16 - C18	0.4(4)	$C_{11} = C_{2} = C_{3} = C_{5}$	-597(3)
N1-C15-C17-N3	-1750(2)	$C_{11} = C_{8} = C_{9} = C_{5}$	610(3)
N1-C15-C17-C18	17(4)	$C_{11} = C_{8} = C_{9} = C_{10}$	-592(3)
N_{2} C_{19} C_{20} C_{21}	-09(4)	C14 - N1 - C15 - C17	-15(4)
1.2 017 020 021	<u>,,,,,</u>		1.2 (7)

N3-C17-C18-C16	175.9 (3)	C14—C16—C18—C17	-0.2 (4)
C1—C3—C4—C6	177.9 (2)	C15—N1—C14—C16	0.4 (4)
C1—C3—C5—C9	179.9 (2)	C15—C17—C18—C16	-0.8 (4)
C2—C3—C4—C6	-59.6 (3)	C17—N3—C24—O5	-6.1 (4)
C2—C3—C5—C9	59.9 (3)	C17—N3—C24—C21	169.4 (2)
C2-C11-C12-O3	110.7 (3)	C19—N2—C23—C22	2.8 (4)
C2-C11-C12-O4	-66.8 (3)	C19—C20—C21—C22	2.2 (4)
C3—C2—C11—C7	-59.5 (3)	C19—C20—C21—C24	-167.4 (2)
C3—C2—C11—C8	60.3 (3)	C20—C21—C22—C23	-1.0 (4)
C3-C2-C11-C12	-179.3 (2)	C20—C21—C24—O5	140.1 (3)
C3—C4—C6—C7	61.0 (3)	C20-C21-C24-N3	-35.7 (4)
C3-C4-C6-C10	-60.0 (3)	C21—C22—C23—N2	-1.6 (4)
C3—C5—C9—C8	-60.5 (3)	C22—C21—C24—O5	-29.4 (4)
C3—C5—C9—C10	59.4 (3)	C22—C21—C24—N3	154.9 (2)
C4—C3—C5—C9	-58.8 (3)	C23—N2—C19—C20	-1.6 (4)
C4—C6—C7—C11	-60.8 (3)	C24—N3—C17—C15	-34.5 (4)
C4—C6—C10—C9	59.5 (3)	C24—N3—C17—C18	148.9 (3)
C5—C3—C4—C6	58.9 (3)	C24—C21—C22—C23	168.9 (2)

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) x-1, y, z+1; (v) x+1, y, z-1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D··· A	D—H··· A
О6—H6 <i>A</i> ···O3 ^{vi}	0.87 (1)	2.04 (2)	2.886 (3)	163 (3)
$O6-H6B\cdotsO2^{i}$	0.85 (2)	1.86 (2)	2.684 (3)	163 (3)
N3—H3…O1 <i>W</i>	0.88	1.94	2.769 (3)	157
O1 <i>W</i> —H1 <i>WA</i> ···O4 ^{vii}	0.84 (2)	2.00 (2)	2.831 (3)	169 (4)
O1 <i>W</i> —H1 <i>WB</i> ···O2 ⁱⁱⁱ	0.84 (2)	2.10 (2)	2.921 (3)	165 (4)

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (iii) -*x*+2, -*y*+1, -*z*; (vi) -*x*+1, -*y*, -*z*; (vii) *x*, *y*, *z*-1.