

ISSN 2414-3146

Received 30 August 2023 Accepted 7 September 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; triazolium salt; heterocyclic ionic compound.

CCDC reference: 2293675

Structural data: full structural data are available from iucrdata.iucr.org

1-E

1-Ethyl-4-isopropyl-1,2,4-triazolium bromide

Aaron Maynard,^a Taylor M. Keller,^b Michael Gau,^b Daniel R. Albert^a and Edward Rajaseelan^a*

^aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and ^bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. *Correspondence e-mail: edward.rajaseelan@millersville.edu

An ionic compound consisting of a triazolium cation and bromide anion, $C_7H_{14}N_3^+\cdot Br^-$, has been synthesized and structurally characterized using singlecrystal X-ray diffraction and NMR. The compound crystallizes in the monoclinic space group $P2_1/m$ with the non-hydrogen atoms of one cation lying on general positions and the others lying on a mirror plane. One bromide ion also lies on the mirror. The extended structure exhibits only weak intermolecular interactions between heterocyclic C-H groups and Br⁻ ions.

Structure description

Asymmetric 1,2,4-triazolium cations are of interest due to their utility as cations in ionic liquids (ILs) and as precursors to N-heterocyclic carbenes (NHCs) (Dwivedi *et al.*, 2014; Nelson, 2015; Strassner *et al.*, 2013; Riederer *et al.*, 2011; Chianese *et al.*, 2004). The crystal structures of several triazolium salts have been reported (Peña Hueso *et al.*, 2022; Kumasaki *et al.*, 2021; Ponjan *et al.*, 2020; Guino-o *et al.*, 2015). We have synthesized many imidazolium and triazolium salts as precursors in the synthesis of NHC complexes of rhodium and iridium (Castaldi *et al.*, 2021; Gnanamgari *et al.*, 2007; Idrees *et al.*, 2017; Nichol *et al.*, 2011; Newman *et al.*, 2021; Rushlow *et al.*, 2022).

The molecular structure of the title compound is shown in Fig. 1. There are one and a half molecules in the asymmetric unit with the non-hydrogen atoms of the N1 cation (except C4) and Br1 lying on the (x, 3/4, z) mirror plane. All the atoms of the N4 cation and Br2 occupy general positions. The bond lengths in the triazolium rings indicate aromaticity with C–N bonds exhibiting distances in the range of 1.305 (2)–1.366 (2) Å and N–N bond distances near 1.365 Å; the N–C–N bond angles in the triazolium ring range from 106.93 (18) to 111.35 (18)°. The C1–N2–C5–C6 torsion angle of the ethyl side chain in the N1 cation is constrained to be 0° by symmetry and the corresponding C8–N5–C12–C13 torsion angle in the N4 cation is 24.4 (2)°.

The crystal packing of the title compound is displayed in Fig. 2. There are weak nonclassical hydrogen-bonding interactions between the heterocyclic C-H groupings and Table 1

 $C7 - H7 \cdots Br2^{i}$

 $C8 - H8 \cdot \cdot \cdot Br2^{i}$

Hydrogen-bond geometry (Å, °).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$		
$C1 - H1 \cdots Br1^i$	0.95	2.67	3.610 (2)		
$C2-H2\cdots Br2^{i}$	0.95	2.70	3.6344 (18)		

0.95

0.95

Symmetry code: (i)	(x, y, z - 1)
--------------------	---------------

bromide ions. These weak interactions are shown as dotted red lines in Fig. 2 and summarized in Table 1.

2.69

2.68

Synthesis and crystallization

1-Ethyl triazole was purchased from AmBeed. All other compounds used in the syntheses of the title compound were obtained from Sigma-Aldrich. All materials in the synthesis were used as received. The synthesis was performed under nitrogen using reagent grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl₃ on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.).

1-Ethyl-1,2,4-triazole (2.01 g, 20.61 mmol) and isopropyl bromide (10.14 g, 82.4 mmol) were added to toluene (20 ml) and the mixture was refluxed for 48 h. Once cooled, the liquid was decanted, the white solid product that formed was washed with ether, filtered, and dried. The title compound crystallized as clear needles by slow diffusion of pentane into a CH_2Cl_2

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The N1 molecule (except C4) and Br1 lie on the (x, 3/4, z) mirror plane. Atom C4ⁱ is generated by the symmetry operation x, $\frac{3}{2} - y$, z.

 Table 2

 Experimental details.

 $\frac{D - H \cdots A}{170}$

166

170

156

3.6316 (15)

3.5635 (15)

Crystal data	
Chemical formula	$C_7H_{14}N_2^+Br^-$
М.	220.12
Crystal system, space group	Monoclinic, $P2_1/m$
Temperature (K)	100
a, b, c (Å)	8.1283 (2), 21.3822 (7), 8.6376 (2)
β (°)	101.713 (3)
$V(Å^3)$	1469.96 (7)
Z	6
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	4.14
Crystal size (mm)	$0.38 \times 0.25 \times 0.04$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy-S
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD; 2022)
T_{\min}, T_{\max}	0.483, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23168, 3747, 3142
R _{int}	0.036
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.052, 1.04
No. of reflections	3747
No. of parameters	168
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.29

Computer programs: *CrysAlis PRO* (Rigaku OD, 2022), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009), and *publCIF* (Westrip, 2010).

Figure 2

Crystal packing of the title compound shown along the *a* axis. Nonclassical $C-H\cdots Br$ hydrogen-bonding interactions are shown as dotted red lines. solution. Yield: 1.04 g (23%). ¹H NMR: CDCl₃, δ (p.p.m.) 11.99 (s, 1 H, N-C₅H-N), 8.85 (s, 1 H, N-C₃H-N), 5.13 (m, 1 H, CH(CH₃)₂), 4.63 (q, 2 H, N-CH₂), 1.74 (d, 6 H, CH(CH₃)₂), 1.65 (t, 3 H, CH₂CH₃). ¹³C NMR: δ (p.p.m.) 142.27 (N-CH-N), 141.84 (N-CH-N), 53.15 [CH(CH₃)₂], 48.36 (N-CH₂), 23.14 [CH(CH₃)₂], 14.22 (N-CH₂CH₃).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Acknowledgements

AM was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

References

- Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, **6**, x211142.
- Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). *Organometallics*, **23**, 2461–2468.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatalysis, 1, 13–39.

- Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, **26**, 1226–1230.
- Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). *Acta Cryst.* E71, 628–635.
- Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). *IUCrData*, **2**, x171081.
- Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201.
- Nelson, D. J. (2015). Eur. J. Inorg. Chem. pp. 2012-2027.
- Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). *IUCrData*, **6**, x210836.
- Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). *Acta Cryst.* E67, m1860-m1861.
- Peña Hueso, A., Esparza Ruiz, A. & Flores Parra, A. (2022). *IUCr-Data*, **7**, x220172.
- Ponjan, N., Aroonchat, P. & Chainok, K. (2020). Acta Cryst. E76, 137–140.
- Riederer, S. K., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2011). *Dalton Trans.* **40**, 41–43.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). *IUCrData*, **7**, x220685.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Strassner, T., Unger, Y., Meyer, D., Molt, O., Münster, I. & Wagenblast, G. (2013). *Inorg. Chem. Commun.* **30**, 39–41.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2023). 8, x230784 [https://doi.org/10.1107/S2414314623007848]

1-Ethyl-4-isopropyl-1,2,4-triazolium bromide

Aaron Maynard, Taylor M. Keller, Michael Gau, Daniel R. Albert and Edward Rajaseelan

1-Ethyl-4-isopropyl-1,2,4-triazolium bromide

Crystal data F(000) = 672 $C_7H_{14}N_3^+ \cdot Br^ M_r = 220.12$ $D_{\rm x} = 1.492 {\rm Mg m^{-3}}$ Monoclinic, $P2_1/m$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 8.1283 (2) ÅCell parameters from 9609 reflections $\theta = 3.1 - 28.2^{\circ}$ b = 21.3822(7) Å $\mu = 4.14 \text{ mm}^{-1}$ c = 8.6376(2) Å $\beta = 101.713 (3)^{\circ}$ T = 100 KV = 1469.96 (7) Å³ Plate, colourless Z = 6 $0.38 \times 0.25 \times 0.04 \text{ mm}$ Data collection Rigaku XtaLAB Synergy-S $T_{\rm min} = 0.483, T_{\rm max} = 1.000$ diffractometer 23168 measured reflections Radiation source: micro-focus sealed X-ray 3747 independent reflections 3142 reflections with $I > 2\sigma(I)$ tube, PhotonJet (Mo) X-ray Source Mirror monochromator $R_{\rm int} = 0.036$ Detector resolution: 10.0000 pixels mm⁻¹ $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ ω scans Absorption correction: multi-scan $k = -27 \rightarrow 28$ (CrysAlis PRO; Rigaku OD; 2022) $l = -11 \rightarrow 11$ Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.022$ H-atom parameters constrained $wR(F^2) = 0.052$ $w = 1/[\sigma^2(F_o^2) + (0.0235P)^2 + 0.254P]$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 3747 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 168 parameters 0 restraints $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.65535 (3)	0.750000	0.86475 (2)	0.01997 (6)	
Br2	0.36575 (2)	0.58378 (2)	1.16793 (2)	0.01912 (5)	
N1	0.5536 (2)	0.750000	0.34816 (19)	0.0180 (4)	
N2	0.3012 (2)	0.750000	0.22004 (19)	0.0181 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N12	0.2004 (2)	0.750000	0.275((2))	0.0225 (4)	
N3	0.2904(2)	0.750000	0.3/56(2)	0.0225(4)	
	0.4576(5)	0.750000	0.2031 (2)	0.01/5 (4)	
HI	0.495511	0.750000	0.106069	0.021*	
C2	0.44/1 (3)	0.750000	0.4505 (2)	0.0209 (4)	
H2	0.482097	0.750000	0.562368	0.025*	
C3	0.7407 (3)	0.750000	0.3888 (3)	0.0277 (5)	
H3	0.777584	0.750000	0.506529	0.033*	
C4	0.8056 (2)	0.80896 (8)	0.3239 (2)	0.0324 (4)	
H4A	0.772489	0.809040	0.208337	0.049*	
H4B	0.928441	0.810248	0.355041	0.049*	
H4C	0.757925	0.845690	0.366538	0.049*	
C5	0.1468 (3)	0.750000	0.0987 (3)	0.0315 (6)	
H5A	0.079611	0.787411	0.112921	0.038*	0.5
H5B	0.079611	0.712589	0.112921	0.038*	0.5
C6	0.1791 (3)	0.750000	-0.0638 (3)	0.0353 (6)	
H6A	0.225946	0.790528	-0.085598	0.053*	0.5
H6B	0.073605	0.742719	-0.139517	0.053*	0.5
H6C	0.259308	0.716754	-0.073790	0.053*	0.5
N4	0.45707 (16)	0.58697 (5)	0.70657 (14)	0.0163 (3)	
N5	0.71989 (15)	0.59178 (5)	0.80363 (14)	0.0170 (3)	
N6	0.70540 (17)	0.59818 (6)	0.64405 (15)	0.0234 (3)	
C7	0.5439 (2)	0.59462 (7)	0.58810 (18)	0.0223 (3)	
H7	0.493358	0.597046	0.478994	0.027*	
C8	0.57173 (19)	0.58536 (6)	0.84100 (17)	0.0167 (3)	
H8	0.550409	0.580476	0.944460	0.020*	
C9	0.27440(18)	0 57739 (7)	0 69275 (18)	0.0198(3)	
H9	0 249096	0 576878	0.801314	0.024*	
C10	0.1780(2)	0.63095 (8)	0.6001(2)	0.0296(4)	
H104	0.218468	0.670794	0.649669	0.044*	
H10R	0.057966	0.676396	0.599636	0.044*	
HIOC	0.195525	0.630178	0.399050	0.044*	
C11	0.195525 0.2264(2)	0.030178 0.51438(8)	0.491108	0.0787(4)	
	0.2204(2)	0.51458 (8)	0.01329 (19)	0.0287 (4)	
	0.240093	0.515044	0.505160	0.043*	
	0.109034	0.303040	0.018208	0.043*	
HIL	0.299190	0.481809	0.072508	0.043*	
	0.88457(19)	0.59542 (8)	0.9095 (2)	0.0242 (3)	
HI2A	0.91/169	0.639848	0.927513	0.029*	
HI2B	0.969276	0.574799	0.859048	0.029*	
C13	0.8832 (2)	0.56445 (8)	1.06588 (18)	0.0246 (3)	
H13A	0.847326	0.520823	1.048013	0.037*	
H13B	0.804907	0.586585	1.119266	0.037*	
H13C	0.996325	0.565779	1.132088	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02633 (12)	0.01928 (12)	0.01483 (11)	0.000	0.00543 (8)	0.000
Br2	0.01946 (8)	0.02267 (9)	0.01542 (8)	-0.00045 (5)	0.00400 (6)	-0.00014 (5)

N1	0.0180 (9)	0.0217 (9)	0.0145 (8)	0.000	0.0036 (7)	0.000
N2	0.0193 (9)	0.0205 (9)	0.0149 (8)	0.000	0.0043 (7)	0.000
N3	0.0242 (10)	0.0261 (10)	0.0194 (9)	0.000	0.0094 (7)	0.000
C1	0.0181 (10)	0.0194 (11)	0.0142 (10)	0.000	0.0015 (8)	0.000
C2	0.0265 (11)	0.0219 (11)	0.0154 (10)	0.000	0.0066 (9)	0.000
C3	0.0196 (11)	0.0469 (15)	0.0148 (10)	0.000	-0.0009 (9)	0.000
C4	0.0238 (8)	0.0396 (10)	0.0359 (9)	-0.0128 (7)	0.0108 (7)	-0.0165 (8)
C5	0.0159 (11)	0.0541 (16)	0.0222 (12)	0.000	-0.0021 (9)	0.000
C6	0.0224 (12)	0.0617 (18)	0.0196 (11)	0.000	-0.0007 (9)	0.000
N4	0.0165 (6)	0.0197 (7)	0.0132 (6)	0.0001 (5)	0.0040 (5)	0.0014 (4)
N5	0.0169 (6)	0.0181 (7)	0.0171 (6)	-0.0005 (5)	0.0059 (5)	0.0009 (4)
N6	0.0244 (7)	0.0275 (7)	0.0204 (7)	-0.0008 (5)	0.0093 (5)	-0.0004 (5)
C7	0.0236 (8)	0.0278 (9)	0.0167 (7)	-0.0001 (6)	0.0068 (6)	-0.0005 (6)
C8	0.0170 (7)	0.0164 (7)	0.0170 (7)	0.0000 (5)	0.0041 (6)	0.0013 (5)
C9	0.0138 (7)	0.0284 (9)	0.0169 (7)	-0.0003 (6)	0.0023 (6)	0.0025 (6)
C10	0.0242 (8)	0.0386 (10)	0.0273 (8)	0.0118 (7)	0.0077 (7)	0.0102 (7)
C11	0.0231 (8)	0.0329 (9)	0.0280 (8)	-0.0061 (7)	0.0003 (7)	-0.0008 (7)
C12	0.0134 (7)	0.0286 (9)	0.0302 (9)	-0.0012 (6)	0.0035 (6)	0.0032 (7)
C13	0.0187 (8)	0.0305 (9)	0.0232 (8)	0.0006 (6)	0.0013 (6)	-0.0004 (6)

Geometric parameters (Å, °)

N1—C1	1.335 (2)	N4—C7	1.366 (2)
N1-C2	1.357 (3)	N4—C8	1.3337 (19)
N1-C3	1.490 (3)	N4—C9	1.4795 (19)
N2—N3	1.364 (2)	N5—N6	1.3662 (18)
N2—C1	1.308 (3)	N5—C8	1.316 (2)
N2—C5	1.463 (3)	N5—C12	1.4618 (19)
N3—C2	1.307 (3)	N6—C7	1.305 (2)
C3—C4	1.517 (2)	C9—C10	1.520 (2)
$C3-C4^i$	1.517 (2)	C9—C11	1.520 (2)
C5—C6	1.480 (3)	C12—C13	1.507 (2)
C1—N1—C2	106.43 (18)	C7—N4—C9	128.25 (12)
C1—N1—C3	126.56 (18)	C8—N4—C7	106.21 (13)
C2—N1—C3	127.01 (17)	C8—N4—C9	125.39 (13)
N3—N2—C5	119.20 (18)	N6-N5-C12	120.41 (13)
C1—N2—N3	111.63 (16)	C8—N5—N6	111.24 (12)
C1—N2—C5	129.18 (18)	C8—N5—C12	128.29 (13)
C2—N3—N2	103.67 (18)	C7—N6—N5	104.00 (13)
N2-C1-N1	106.93 (18)	N6—C7—N4	111.31 (13)
N3-C2-N1	111.35 (18)	N5—C8—N4	107.24 (13)
N1-C3-C4 ⁱ	109.14 (11)	N4—C9—C10	109.85 (12)
N1-C3-C4	109.14 (11)	N4—C9—C11	108.78 (12)
$C4$ — $C3$ — $C4^i$	112.4 (2)	C11—C9—C10	112.16 (13)
N2—C5—C6	112.79 (19)	N5-C12-C13	111.39 (13)
N2—N3—C2—N1	0.000 (1)	N5—N6—C7—N4	0.69 (16)

N3—N2—C1—N1	0.000 (1)	N6—N5—C8—N4	0.42 (15)
N3—N2—C5—C6	180.000 (1)	N6—N5—C12—C13	-158.90 (13)
C1—N1—C2—N3	0.000 (1)	C7—N4—C8—N5	0.01 (15)
C1—N1—C3—C4 ⁱ	-61.59 (13)	C7—N4—C9—C10	-56.70 (19)
C1—N1—C3—C4	61.59 (13)	C7—N4—C9—C11	66.41 (18)
C1—N2—N3—C2	0.000 (1)	C8—N4—C7—N6	-0.46 (16)
C1—N2—C5—C6	0.000 (1)	C8—N4—C9—C10	128.34 (14)
C2_N1_C1_N2	0.000 (1)	C8 N4 C9 C11	-108 55 (15)
C2—N1—C1—N2 C2—N1—C3—C4 ⁱ C2—N1—C3—C4 C3—N1—C1—N2	118.41 (13) -118.41 (13) 180.000 (1)	C8—N5—N6—C7 C8—N5—C12—C13 C9—N4—C7—N6	-0.69 (16) 24.4 (2) -176.18 (13)
C3—N1—C2—N3	180.000 (1)	C9—N4—C8—N5	175.89 (12)
C5—N2—N3—C2	180.000 (1)	C12—N5—N6—C7	-177.94 (13)
C5—N2—C1—N1	180.000 (1)	C12—N5—C8—N4	177.41 (13)

Symmetry code: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···Br1 ⁱⁱ	0.95	2.67	3.610 (2)	170
C2—H2···Br2 ⁱⁱ	0.95	2.70	3.6344 (18)	166
C7—H7···Br2 ⁱⁱ	0.95	2.69	3.6316 (15)	170
C8—H8····Br2 ⁱⁱ	0.95	2.68	3.5635 (15)	156

Symmetry code: (ii) x, y, z-1.