ISSN 2414-3146

Received 31 August 2022 Accepted 4 September 2022

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; ethidium salt; heptafluorobutyrate.

CCDC reference: 2205198

Structural data: full structural data are available from iucrdata.iucr.org

Crystal structure of ethidium heptafluorobutyrate

Runa Shimazaki and Masaaki Sadakiyo*

Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjukuku, Tokyo, 162-8601, Japan. *Correspondence e-mail: sadakiyo@rs.tus.ac.jp

In the title compound (systematic name: 3,8-diamino-5-ethyl-6-phenylphenanthridin-5-ium 2,2,3,3,4,4,4-heptafluorobutyrate), $C_{21}H_{20}N_3^+ \cdot C_4F_7O_2^-$, two ethidium ions, $C_{21}H_{20}N_3^+$ form a dimerized structure due to $\pi-\pi$ interactions, even though they are positively charged. The heptafluorobutyrate anions are connected to neighbouring cation dimers *via* hydrogen-bonding interactions, the hydrogen-bonding donor sites of the $-NH_2$ groups of the ethidium ions connecting to the hydrogen-bonding acceptor sites of the $-COO^-$ groups of the heptafluorobutyrate anions.

Structure description

Ethidium salts are widely used in scientific research as a result of their important applications, including as intercalators for DNA (Chen *et al.*, 2000) and as building units for covalent organic frameworks (Ma *et al.*, 2016). In this study, the structure of an ethidium salt with a heptafluorobutyrate anion is reported (Fig. 1). Two ethidium cations form a dimerized structure (Fig. 2) *via* π - π stacking and four dimeric pairs are located in the unit cell. There are two ethidium cations and two heptafluorobutyrate anions as the crystallographically independent components. The ethidium cations do not exhibit a completely planar structure but instead show a slightly bent shape (C19···C11···C24 = 170.82°, C12···C3···C25 = 165.57°). The closest $Cg \cdots Cg$ separation between the ethidium cations is 3.7502 (3) Å, indicating the presence of a π - π interaction. Some hydrogen bonds with relatively short distances are observed between the ethidium cation and heptafluorobutyrate anion (*e.g.*, N3–H34···O1 = 2.899 Å, N3–H3···O4 = 2.909 Å, N5–H5A···O4 = 2.935 Å, N4–H4A···O2 = 2.990 Å, N6–H6A···O3 = 2.939 Å; Table 1), which would be related to the formation of this packing structure (Fig. 3).

Synthesis and crystallization

A methanol solution (1 ml) of silver(I) heptafluorobutyrate (64.2 mg, 0.20 mmol) was mixed with a methanol solution (30 ml) of ethidium bromide (78.9 mg, 0.20 mmol) and

OPEN O ACCESS

(cc) 🛈

Table 1		
Hydrogen-bond geometry	(Å, '	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O4 ⁱ	0.88	2.04	2.909 (4)	171
$N3-H3A\cdotsO1^{ii}$	0.88	2.06	2.899 (3)	159
N4-H4···O3 ⁱⁱⁱ	0.88	2.26	3.088 (4)	158
$N4-H4A\cdots O2$	0.88	2.13	2.991 (3)	166
$C15-H15\cdots O1^{iii}$	0.95	2.62	3.353 (4)	135
N5-H5 A ···O4 ^{iv}	0.88	2.16	2.934 (3)	146
$N5-H5B\cdotsO1^{iii}$	0.88	2.30	3.076 (3)	147
N5-H5 B ···F3 ⁱⁱⁱ	0.88	2.54	3.208 (3)	133
C26-H26···F1	0.95	2.61	3.184 (3)	119
$N6-H6A\cdotsO3^{v}$	0.88	2.16	2.938 (3)	147
N6-H6 B ···O2 ⁱ	0.88	2.56	3.184 (4)	129
$N6-H6B\cdots F12^{i}$	0.88	2.34	3.097 (4)	144
$C33-H33A\cdots N3^{vi}$	0.99	2.59	3.223 (4)	122

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y, -z + 1; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) x - 1, y, z; (v) -x + 1, -y, -z + 1; (vi) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Figure 1

The crystal structure and hydrogen-bonding arrangements of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 2 The dimerized structure of the ethidium cations.

Table 2	
Experimental details.	
Crystal data	C H N + C F O =
Chemical formula	$C_{21}H_{20}N_3 \cdot C_4F_7O_2$
M _r	527.44
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (A)	12.1592 (8), 18.9260 (14), 20.3097 (17)
β (°)	91.474 (3)
$V(Å^3)$	4672.2 (6)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.13
Crystal size (mm)	$0.25 \times 0.20 \times 0.15$
Data collection	
Diffractometer	Bruker PHOTON II CPAD
Absorption correction	Multi-scan (<i>SADABS</i> ; Krause <i>et</i>
т т	0.605, 0.711
I _{min} , I _{max}	58553 12404 0416
observed $[I > 2\sigma(I)]$ reflections	38333, 12404, 9410
R _{int}	0.109
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.717
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.089, 0.218, 1.11
No. of reflections	12404
No. of parameters	669
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} ~ { m \AA}^{-3})$	0.47, -0.45

Computer programs: *APEX4* and *SAINT* (Bruker, 2021), *SIR2019* (Burla *et al.*, 2015), *SHELXL2018/3* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 2014) and *Yadokari-XG* (Kabuto *et al.*, 2009).

then the mixture was stirred for 30 minutes at room temperature. The insoluble precipitate was removed by centrifugation. The remaining solution was evaporated to obtain a crude powder. The crude powder was dissolved in a mixed solvent (methanol:water = 1:1) and red crystals of the target compound were obtained by slow evaporation of the solution after 9 d at room temperature.

Figure 3 Illustration of the packing of the title compound along the *a* axis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 21K05089).

References

Brandenburg, K. (2014). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.

- Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- Chen, W., Turro, N. J. & Tomalia, D. A. (2000). Langmuir, 16, 15–19.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
- Ma, H., Liu, B., Li, B., Zhang, L., Li, Y.-G., Tan, H.-Q., Zang, H.-Y. & Zhu, G. (2016). J. Am. Chem. Soc. 138, 5897–5903.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2022). 7, x220884 [https://doi.org/10.1107/S2414314622008847]

Ethidium heptafluorobutyrate

Runa Shimazaki and Masaaki Sadakiyo

3,8-Diamino-5-ethyl-6-phenylphenanthridin-5-ium 2,2,3,3,4,4,4-heptafluorobutyrate

Crystal data $C_{21}H_{20}N_3^+ \cdot C_4F_7O_2^-$

 $M_r = 527.44$ Monoclinic, $P2_1/n$ a = 12.1592 (8) Å b = 18.9260 (14) Åc = 20.3097 (17) Å $\beta = 91.474 (3)^{\circ}$ V = 4672.2 (6) Å³ Z = 8

Data collection

Bruker PHOTON II CPAD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{\rm min} = 0.605, T_{\rm max} = 0.711$ 58553 measured reflections

Refinement

Hydrogen site location: inferred from Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.089$ H-atom parameters constrained $wR(F^2) = 0.218$ S = 1.11where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 12404 reflections $\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$ 669 parameters 0 restraints $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 2160 $D_{\rm x} = 1.500 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71069$ Å Cell parameters from 7105 reflections $\theta = 2.2 - 27.2^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KBlock, red $0.25 \times 0.20 \times 0.15 \text{ mm}$

12404 independent reflections 9416 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.109$ $\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -16 \rightarrow 17$ $k = -25 \rightarrow 25$ $l = -27 \rightarrow 26$

 $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 9.0949P]$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All of hydrogen atoms are geometrically fixed using a riding-model approximation with C-H = 0.95 (for phenyl), 0.98 (for methyl), 0.99 (for methylene), and N-H = 0.88 Å.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	1.10423 (16)	0.34876 (11)	0.57616 (10)	0.0348 (5)
01	0.81718 (17)	-0.14092 (12)	0.72561 (11)	0.0272 (5)
F2	0.69849 (17)	0.00943 (11)	0.65047 (11)	0.0416 (5)
N1	0.64572 (19)	0.32175 (13)	0.36249 (12)	0.0194 (5)
N2	0.60689 (19)	0.18575 (12)	0.61439 (12)	0.0190 (5)
F3	0.96344 (17)	-0.02675 (11)	0.71179 (12)	0.0432 (6)
F4	1.27314 (17)	0.37587 (12)	0.55497 (10)	0.0396 (5)
F5	0.91654 (18)	-0.09184 (11)	0.59264 (11)	0.0419 (5)
F6	1.25336 (18)	0.50412 (11)	0.60348 (12)	0.0447 (6)
F7	0.8910(2)	0.07025 (11)	0.67357 (12)	0.0483 (6)
C1	0.6334 (2)	0.35297 (14)	0.47691 (14)	0.0179 (5)
F8	0.7581 (2)	-0.00011 (11)	0.75221 (11)	0.0463 (6)
N3	0.9615 (2)	0.19489 (14)	0.28830 (13)	0.0263 (5)
H3	0.923744	0.181066	0.253059	0.032*
H3A	1.029377	0.179993	0.295114	0.032*
O2	1.15659 (18)	0.33758 (13)	0.70389 (12)	0.0324 (5)
F9	1.12268 (19)	0.47801 (13)	0.53262 (11)	0.0480 (6)
O3	0.66684 (18)	-0.12731 (13)	0.66078 (13)	0.0346 (5)
C2	0.5845 (2)	0.34299 (14)	0.41299 (14)	0.0179 (5)
F10	0.8540 (2)	0.00707 (14)	0.55507 (12)	0.0572 (7)
F11	0.98781 (18)	0.45093 (13)	0.64091 (14)	0.0536 (6)
C3	0.7493 (2)	0.34630 (14)	0.48463 (14)	0.0169 (5)
C4	0.8107 (2)	0.31722 (14)	0.43182 (14)	0.0176 (5)
C5	0.7883 (2)	0.13477 (14)	0.44688 (15)	0.0203 (6)
H5	0.866288	0.137570	0.447140	0.024*
N4	0.9273 (2)	0.28652 (14)	0.72447 (13)	0.0272 (6)
H4	0.887391	0.301183	0.757333	0.033*
H4A	0.997967	0.296386	0.723928	0.033*
C6	0.5683 (2)	0.37085 (14)	0.53133 (14)	0.0183 (5)
H6	0.490632	0.374111	0.525647	0.022*
C7	0.7207 (2)	0.19843 (14)	0.61789 (14)	0.0185 (5)
C8	0.7560 (2)	0.30125 (14)	0.37144 (14)	0.0179 (5)
C9	0.5560 (2)	0.16008 (14)	0.56038 (14)	0.0189 (5)
C10	0.6156 (2)	0.14439 (14)	0.50267 (14)	0.0188 (5)
C11	0.7837 (2)	0.17952 (14)	0.56289 (14)	0.0181 (5)
C12	0.6164 (2)	0.38361 (14)	0.59262 (14)	0.0192 (5)
C13	0.5596 (2)	0.12177 (15)	0.44471 (14)	0.0208 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H13	0.482034	0.115938	0.444544	0.025*
C15 0.7690 (2) 0.23179 (15) 0.67315 (14) 0.0207 (6)H15 0.723365 0.242914 0.709883 $0.025*$ F121.1169 (2) 0.49419 (13) 0.70211 (12) 0.0530 (6)C16 0.4646 (2) 0.35300 (15) 0.40168 (14) 0.0194 (5)C17 0.8079 (2) 0.26311 (15) 0.32207 (14) 0.0207 (6)H17 0.769895 0.253550 0.281887 $0.022*$ C18 0.8990 (2) 0.1243 (15) 0.56844 (15) $0.022*$ C19 0.8796 (2) 0.24854 (15) 0.67443 (15) 0.0216 (6)H20 0.964477 0.312917 0.475781 $0.022*$ (5)H5A 0.5568 (2) 0.39977 (14) 0.66470 (12) 0.0252 (5)H5A 0.484888 0.402420 0.643371 $0.030*$ C21 0.7971 (2) 0.36382 (15) 0.54669 (14) 0.0212 (6)H21 0.87866 0.363064 0.552401 $0.023*$ C22 0.7334 (2) 0.38185 (15) 0.59871 (14) 0.0226 (6)H22 0.768009 0.393437 0.639774 $0.024*$ C23 0.7332 (2) 0.11406 (15) 0.39074 (15) 0.0226 (6)H23 0.773730 0.103458 0.352614 $0.027*$ C24 0.6170 (2) 0.10799 (15) 0.33756 (14) 0.0226 (6)H23 0.773730 0.103458 0.352614 $0.027*$ C34 0.32912 (15) 0.323579 0.623877	C14	0.7315 (2)	0.15223 (14)	0.50495 (14)	0.0178 (5)
H15 0.725365 0.242914 0.709883 0.025^* F121.1169 (2) $0.49419 (13)$ $0.70211 (12)$ $0.0530 (6)$ C16 $0.4664 (2)$ $0.35300 (15)$ $0.40168 (14)$ $0.0194 (5)$ C17 $0.8079 (2)$ $0.26311 (15)$ $0.32207 (14)$ $0.027 (6)$ H17 0.769895 0.253550 0.281587 0.025^* C18 $0.8990 (2)$ $0.19243 (15)$ $0.56844 (15)$ $0.0208 (6)$ H18 0.944662 0.177669 0.533780 0.025^* C19 $0.8796 (2)$ $0.24854 (15)$ $0.67443 (15)$ $0.0215 (6)$ C20 $0.9232 (2)$ $0.29873 (15)$ $0.43770 (14)$ $0.0200 (5)$ H20 0.964477 0.312917 0.475781 0.024^* N5 $0.5568 (2)$ $0.39977 (14)$ $0.64670 (12)$ $0.0252 (5)$ H5A 0.484588 0.402420 0.643371 0.030^* H5B 0.590542 0.407535 0.684857 0.030^* C21 $0.7971 (2)$ $0.36382 (15)$ $0.54669 (14)$ $0.0192 (5)$ H21 0.874886 0.363064 0.552401 0.023^* C22 $0.7334 (2)$ $0.38185 (15)$ $0.59871 (14)$ $0.0226 (6)$ H22 0.73370 0.10348 0.352614 0.027^* C24 $0.6170 (2)$ $0.10799 (15)$ $0.38796 (14)$ $0.0212 (6)$ C25 $0.9149 (2)$ $0.2325 (15)$ $0.33223 (14)$ $0.0226 (6)$ H23 0.773730 0.10348 0.352614	C15	0.7690 (2)	0.23179 (15)	0.67315 (14)	0.0207 (6)
F121.1169 (2)0.49419 (13)0.70211 (12)0.0530 (6)C160.4646 (2)0.35300 (15)0.40168 (14)0.0194 (5)C170.8079 (2)0.26311 (15)0.32207 (14)0.0207 (6)H170.7698950.2535500.2815870.025*C180.8990 (2)0.19243 (15)0.56844 (15)0.0215 (6)C190.8796 (2)0.24854 (15)0.67443 (15)0.0215 (6)C200.9232 (2)0.29873 (15)0.43770 (14)0.0200 (5)H200.9644770.3129170.4757810.024*N50.5568 (2)0.39977 (14)0.64670 (12)0.0222 (5)H5A0.4845880.4024200.6433710.030*H5B0.5905420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.54669 (14)0.0223 (6)H220.7680090.334370.6397740.024*F131.0447 (2)0.55673 (12)0.6249 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.0799 (15)0.33075 (13)0.0296 (6)H261.0229060.2325390.6218170.0226 (6)H230.7737300.134580.3522610.0223 (6)H240.6170 (2)0.02595 (15)0.33075 (13)0.0296 (6)H261.02290 (6)0.2325390.6218170.027*N60.5561 (2) <t< td=""><td>H15</td><td>0.725365</td><td>0.242914</td><td>0.709883</td><td>0.025*</td></t<>	H15	0.725365	0.242914	0.709883	0.025*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F12	1.1169 (2)	0.49419 (13)	0.70211 (12)	0.0530(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.4646 (2)	0.35300 (15)	0.40168 (14)	0.0194 (5)
H17 0.769895 0.253550 0.281587 0.025^{*} C18 0.8990 (2) 0.19243 (15) 0.56844 (15) 0.0208 (6)H18 0.944662 0.177669 0.533780 0.025^{*} C19 0.8796 (2) 0.24854 (15) 0.67443 (15) 0.0215 (6)C20 0.9232 (2) 0.29873 (15) 0.43770 (14) 0.0200 (5)H20 0.964477 0.312917 0.475781 0.022^{*} N5 0.5568 (2) 0.39977 (14) 0.64670 (12) 0.0252 (5)H5A 0.484888 0.402420 0.643371 0.030^{*} C21 0.7971 (2) 0.36382 (15) 0.59871 (14) 0.0224^{*} H21 0.874886 0.36364 0.552401 0.0224^{*} C22 0.768009 0.393437 0.639774 0.0224^{*} F13 1.0447 (2) 0.5573 (12) 0.62469 (15) 0.06226 (6)H22 0.768009 0.393437 0.639774 0.0226 (6)H23 0.773730 0.11496 (15) 0.39074 (15) 0.0226 (6)H23 0.773730 0.103488 0.352614 0.027^{*} C24 0.6170 (2) 0.10799 (15) 0.38276 (14) 0.0212 (6)C25 0.9149 (2) 0.23925 (15) 0.33223 (14) 0.0205 (6)H26 1.022906 0.232539 0.623817 0.027^{*} N6 0.5651 (2) 0.226090 (16) 0.38982 (15) 0.035^{*} C27 0.9738 (2) 0.26690 (16) $0.$	C17	0.8079 (2)	0.26311 (15)	0.32207 (14)	0.0207 (6)
C18 $0.8990 (2)$ $0.19243 (15)$ $0.56844 (15)$ $0.0208 (6)$ H18 0.944662 0.177669 0.533780 $0.025*$ C19 $0.8796 (2)$ $0.24854 (15)$ $0.67443 (15)$ $0.0215 (6)$ C20 $0.9232 (2)$ $0.29873 (15)$ $0.43770 (14)$ $0.0200 (5)$ H20 0.964477 0.312917 0.475781 $0.024*$ N5 $0.5568 (2)$ $0.39977 (14)$ $0.64470 (12)$ $0.0252 (5)$ H5A 0.484588 0.402420 0.643371 $0.30*$ H5B 0.590542 0.407535 0.684857 $0.030*$ C21 $0.7971 (2)$ $0.36382 (15)$ $0.54669 (14)$ $0.0192 (5)$ H21 0.874886 0.363064 0.552401 $0.022*$ C22 $0.7334 (2)$ $0.38185 (15)$ $0.59871 (14)$ $0.022 (6)$ H22 0.768009 0.393437 0.639774 $0.024*$ F13 $1.0447 (2)$ $0.55673 (12)$ $0.62469 (15)$ $0.6020 (8)$ C23 $0.7332 (2)$ $0.11406 (15)$ $0.39074 (15)$ $0.0226 (6)$ H23 0.737370 0.103488 0.352614 $0.027*$ C24 $0.6170 (2)$ $0.10799 (15)$ $0.38796 (14)$ $0.0212 (6)$ C25 $0.9149 (2)$ 0.232539 0.623817 $0.0223 (6)$ H26 1.022906 0.225139 0.623817 $0.027*$ N6 $0.5651 (2)$ $0.2506 (15)$ $0.33075 (13)$ $0.0296 (6)$ H68 0.603644 0.77263 0.295503 $0.035*$ </td <td>H17</td> <td>0.769895</td> <td>0.253550</td> <td>0.281587</td> <td>0.025*</td>	H17	0.769895	0.253550	0.281587	0.025*
H18 0.944662 0.177669 0.533780 0.025^* C19 0.8796 (2) 0.24854 (15) 0.67443 (15) 0.0215 (6)C20 0.9232 (2) 0.29873 (15) 0.43770 (14) 0.0200 (5)H20 0.964477 0.312917 0.475781 0.024^* N5 0.5568 (2) 0.39977 (14) 0.64670 (12) 0.0252 (5)H5A 0.484588 0.402420 0.643371 0.030^* C21 0.7971 (2) 0.36382 (15) 0.54669 (14) 0.0192 (5)H21 0.874886 0.363064 0.552401 0.022^* C22 0.7334 (2) 0.38185 (15) 0.59871 (14) 0.0202 (6)H22 0.768009 0.393437 0.639774 0.024^* F13 1.0447 (2) 0.55673 (12) 0.62469 (15) 0.0620 (8)C23 0.7332 (2) 0.11406 (15) 0.39074 (15) 0.0226 (6)H23 0.773730 0.103458 0.352614 0.027^* C24 0.6170 (2) 0.10799 (15) 0.38796 (14) 0.0212 (6)C25 0.9149 (2) 0.223525 (15) 0.33223 (14) 0.0205 (6)C26 0.9456 (2) 0.225539 0.623817 0.027^* (16)N6 0.5651 (2) 0.226090 (15) 0.3875 (13) 0.0276 (6)H6A 0.43923 0.079612 0.328379 0.035^* H6B 0.603644 0.077263 0.295503 0.035^* H6B 0.603644 0.077263 0.295503	C18	0.8990 (2)	0.19243 (15)	0.56844 (15)	0.0208 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H18	0.944662	0.177669	0.533780	0.025*
C200.9232 (2)0.29873 (15)0.43770 (14)0.0200 (5)H200.9644770.3129170.4757810.024*N50.5568 (2)0.39977 (14)0.64670 (12)0.0252 (5)H5A0.4845880.4024200.6433710.030*H5B0.5905420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.54669 (14)0.0192 (5)H210.8748860.3630640.5524010.023*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.23925 (15)0.33223 (14)0.0205 (6)C250.9149 (2)0.22516 (15)0.62169 (15)0.0226 (6)H261.0229060.2325390.6238170.027*N60.5651 (2)0.22516 (15)0.33975 (13)0.026 (6)H6A0.4932930.0796120.3293790.035*C270.9738 (2)0.26690 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14893 (15)0.56064 (14)0.0229 (6)H310.4318730.24998710.3839220.026*C320.3991 (2)0.36498 (19) <t< td=""><td>C19</td><td>0.8796 (2)</td><td>0.24854 (15)</td><td>0.67443 (15)</td><td>0.0215 (6)</td></t<>	C19	0.8796 (2)	0.24854 (15)	0.67443 (15)	0.0215 (6)
H200.9644770.3129170.4757810.024*NS0.5568 (2)0.39977 (14)0.64670 (12)0.0252 (5)H5A0.4845880.4024200.6433710.030*H5B0.5905420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.55669 (14)0.0192 (5)H210.8748860.3630640.5524010.0224*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.2325 (5)0.3223 (14)0.0205 (6)C260.9456 (2)0.22516 (15)0.6218170.0224 (6)H261.0229060.2325390.6238170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H6B0.6036440.0772630.2955030.035*H6B0.6036440.0772630.2955030.035*H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.2649870.3952200.026*C280.4343 (2)0.14853 (15)0.56664 (14)0.0205 (6)O230.23991 (17)0.66902 (16)0.0239 (6) <td>C20</td> <td>0.9232(2)</td> <td>0.29873 (15)</td> <td>0.43770 (14)</td> <td>0.0200 (5)</td>	C20	0.9232(2)	0.29873 (15)	0.43770 (14)	0.0200 (5)
N50.5568 (2)0.39977 (14)0.64670 (12)0.0252 (5)H5A0.4845880.4024200.6433710.030*H5B0.5905420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.54669 (14)0.0192 (5)H210.8748860.3630640.5524010.023*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.23925 (15)0.33223 (14)0.0205 (6)C260.9456 (2)0.22516 (15)0.62169 (15)0.0223 (6)H261.0229060.2325390.6238170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H680.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952000.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0209 (6)C300.4161 (2)0.41967 (16)0.48733 (15)0.0238 (2)C310.3991 (2)0.29412 (16)0.38733 (15)0.0239 (6)H310.46104 <td>H20</td> <td>0.964477</td> <td>0.312917</td> <td>0.475781</td> <td>0.024*</td>	H20	0.964477	0.312917	0.475781	0.024*
H5A0.4845880.4024200.6433710.030*H5B0.5905420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.54669 (14)0.0192 (5)H210.8748860.3630640.5524010.023*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.23925 (15)0.33223 (14)0.0205 (6)C260.9456 (2)0.22516 (15)0.62169 (15)0.0223 (6)H261.0229060.2325390.6238170.027*N60.5651 (2)0.26090 (15)0.33075 (13)0.0296 (6)H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)C300.4161 (2)0.41967 (16)0.46651 (15)0.0230 (6)C310.3991 (2)0.2487510.3839220.028*C320.3920 (3)0.08559 (16)0.57879 (18)0.0290 (7)H300.4601040.46	N5	0.5568 (2)	0.39977 (14)	0.64670 (12)	0.0252(5)
HSB0.5005420.4075350.6848570.030*C210.7971 (2)0.36382 (15)0.54669 (14)0.0192 (5)H210.8748860.3630640.5524010.023*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.22516 (15)0.62169 (15)0.0223 (6)C260.9456 (2)0.22516 (15)0.6218170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H6B0.6036440.0772630.2955030.035*H6B0.6036440.0772630.2955030.035*H6B0.6036440.0772630.2955030.0218 (6)H271.0494000.2489870.33952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0254 (9)C300.4161 (2)0.41967 (16)0.46513 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.2487510.38333 (15)0.0230 (6)H300.4601440.205209<	H5A	0.484588	0.402420	0.643371	0.030*
AltDistrictDistrictDistrictC210.7971 (2)0.36382 (15)0.54669 (14)0.0192 (5)H210.8748860.3630640.5524010.023*C220.7334 (2)0.38185 (15)0.59871 (14)0.0202 (6)H220.7680090.3934370.6397740.024*F131.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0225 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.23925 (15)0.33075 (13)0.0226 (6)H261.0229060.2325390.6238170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H6A0.4932930.0796120.3293790.035*H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.5064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0218 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.0290 (7)H310.4318730.2447510.38332 (16)0.027*C330.5421 (2)0.19980 (16)0.5787	H5B	0.590542	0.407535	0.684857	0.030*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.7971(2)	0.36382 (15)	0 54669 (14)	0.0192(5)
Init0.01 (00)0.03185 (15)0.0201 (11)0.0202 (6)H220.7680090.3934370.6397740.0202 (6)H211.0447 (2)0.55673 (12)0.62469 (15)0.0620 (8)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.23925 (15)0.33223 (14)0.0205 (6)C260.9456 (2)0.22516 (15)0.33223 (14)0.0205 (6)C261.0229060.2325390.6238170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H6A0.4932930.0796120.3293790.035*H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0239 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.	H21	0.874886	0.363064	0.552401	0.023*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.071000 0.7334(2)	0.38185 (15)	0.59871 (14)	0.0202.(6)
1122 0.0447 (2) 0.55673 (12) 0.62449 (15) 0.021 (8) $C23$ 0.7332 (2) 0.11406 (15) 0.39074 (15) 0.0226 (6) $H23$ 0.773730 0.103458 0.352614 $0.027*$ $C24$ 0.6170 (2) 0.10799 (15) 0.38796 (14) 0.0212 (6) $C25$ 0.9149 (2) 0.23925 (15) 0.33223 (14) 0.0205 (6) $C26$ 0.9456 (2) 0.22516 (15) 0.62169 (15) 0.0223 (6) $H26$ 1.022906 0.232539 0.623817 $0.027*$ $N6$ 0.5651 (2) 0.08560 (15) 0.33075 (13) 0.0296 (6) $H6A$ 0.493293 0.079612 0.3293757 $0.035*$ $H6B$ 0.603644 0.077263 0.295503 $0.035*$ $C27$ 0.9738 (2) 0.26090 (16) 0.38982 (15) 0.0218 (6) $H27$ 1.049400 0.248987 0.395220 $0.026*$ $C28$ 0.4343 (2) 0.14853 (15) 0.56064 (14) 0.0205 (6) $O4$ 1.3299 (2) 0.36498 (19) 0.68042 (15) 0.0254 (9) $C29$ 1.2309 (2) 0.35991 (17) 0.66902 (16) 0.0230 (6) $H30$ 0.460104 0.460049 0.415984 0.0294 $C31$ 0.3991 (2) 0.248751 0.38333 (15) 0.0230 (6) $H31$ 0.453424 0.205209 0.661902 $0.027*$ $C32$ 0.3920 (3) 0.08359 (16) 0.57879 (18) 0.0229 (7) $H33$ 0.463424	H22	0.768009	0 393437	0.639774	0.024*
1131.61110.62000 (12)0.62000 (12)0.62000 (12)C230.7332 (2)0.11406 (15)0.39074 (15)0.0226 (6)H230.7737300.1034580.3526140.027*C240.6170 (2)0.10799 (15)0.38796 (14)0.0212 (6)C250.9149 (2)0.23925 (15)0.33223 (14)0.0205 (6)C260.9456 (2)0.22516 (15)0.62169 (15)0.0223 (6)H261.0229060.2323390.6238170.027*N60.5651 (2)0.08560 (15)0.33075 (13)0.0296 (6)H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0545 (9)C291.2309 (2)0.35991 (17)0.66902 (16)0.0226 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C320.3920 (3)0.08359 (16)0.57879 (18)0.0223 (6)H33 <t< td=""><td>F13</td><td>1.0447(2)</td><td>0.55673 (12)</td><td>0.62469 (15)</td><td>0.0620 (8)</td></t<>	F13	1.0447(2)	0.55673 (12)	0.62469 (15)	0.0620 (8)
123 0.773730 0.103458 0.352614 $0.027*$ 123 0.773730 0.103458 0.352614 $0.027*$ 124 $0.6170(2)$ $0.10799(15)$ $0.38796(14)$ $0.0212(6)$ 125 $0.9149(2)$ $0.23925(15)$ $0.33223(14)$ $0.0205(6)$ 126 1.022906 0.232539 0.623817 $0.027*$ 126 1.022906 0.232539 0.623817 $0.027*$ 126 1.022906 0.232539 0.623817 $0.027*$ 126 $0.05651(2)$ $0.08560(15)$ $0.33075(13)$ $0.0296(6)$ $146B$ 0.603644 0.077263 0.295503 $0.035*$ $146B$ 0.603644 0.077263 0.295503 $0.026*$ 127 1.049400 0.248987 0.395220 $0.026*$ 128 $0.4343(2)$ $0.14853(15)$ $0.56064(14)$ $0.0205(6)$ 04 $1.3299(2)$ $0.36498(19)$ $0.66042(15)$ $0.0256(6)$ 04 $1.3299(2)$ $0.36498(19)$ $0.66042(15)$ $0.0250(6)$ 029 $1.2309(2)$ $0.35991(17)$ $0.66092(16)$ $0.0220(6)$ $0.3991(2)$ $0.29412(16)$ $0.38733(15)$ $0.0239(6)$ 130 0.460104 0.460049 0.415984 $0.029*$ 0.311 0.431873 0.248751 0.383922 $0.028*$ 0.322 $0.3920(3)$ $0.08359(16)$ $0.57879(18)$ $0.0200(7)$ 133 0.463424 0.205209 0.661902 $0.027*$ 0.333 <	C23	0.7332(2)	0.11406 (15)	0.39074 (15)	0.0226 (6)
InternOn 10 100On 0000On 0000C24 $0.6170(2)$ $0.10799(15)$ $0.38796(14)$ $0.0212(6)$ C25 $0.9149(2)$ $0.23925(15)$ $0.33223(14)$ $0.0205(6)$ C26 $0.9456(2)$ $0.22516(15)$ $0.62169(15)$ $0.0223(6)$ H26 1.022906 0.232539 0.623817 $0.027*$ N6 $0.5651(2)$ $0.08560(15)$ $0.33075(13)$ $0.0296(6)$ H6A 0.493293 0.079612 0.329379 $0.035*$ H6B 0.603644 0.077263 0.295503 $0.035*$ C27 $0.9738(2)$ $0.26090(16)$ $0.38982(15)$ $0.0218(6)$ H27 1.049400 0.248987 0.395220 $0.026*$ C28 $0.4343(2)$ $0.14853(15)$ $0.56064(14)$ $0.0205(6)$ O4 $1.3299(2)$ $0.36498(19)$ $0.68042(15)$ $0.0545(9)$ C29 $1.2309(2)$ $0.35991(17)$ $0.66902(16)$ $0.0229(6)$ H30 0.460104 0.460049 0.415984 $0.029*$ C31 $0.3991(2)$ 0.248751 0.38322 $0.028*$ C32 $0.3920(3)$ $0.08359(16)$ $0.57879(18)$ $0.0220(7)$ H32 0.440069 0.046024 0.591124 $0.035*$ C33 $0.5421(2)$ $0.19980(16)$ $0.67456(14)$ $0.0223(6)$ H33 0.463424 0.205209 0.661902 $0.027*$ C34 $0.2383(2)$ $0.36769(18)$ $0.38333(16)$ $0.027*$ H34 0.160998 0.372794 <td>H23</td> <td>0.773730</td> <td>0 103458</td> <td>0.352614</td> <td>0.0228 (0)</td>	H23	0.773730	0 103458	0.352614	0.0228 (0)
C25 $0.9149(2)$ $0.23925(15)$ $0.33223(14)$ $0.0205(6)$ C26 $0.9456(2)$ $0.22516(15)$ $0.62169(15)$ $0.0223(6)$ H26 1.022906 0.232539 0.623817 $0.027*$ N6 $0.5651(2)$ $0.08560(15)$ $0.33075(13)$ $0.0296(6)$ H6A 0.493293 0.079612 0.329379 $0.035*$ H6B 0.603644 0.077263 0.295503 $0.035*$ C27 $0.9738(2)$ $0.26090(16)$ $0.38982(15)$ $0.0218(6)$ H27 1.049400 0.248987 0.395220 $0.026*$ C28 $0.4343(2)$ $0.14853(15)$ $0.56064(14)$ $0.0205(6)$ O4 $1.3299(2)$ $0.36498(19)$ $0.68042(15)$ $0.0248(6)$ C29 $1.2309(2)$ $0.35991(17)$ $0.66902(16)$ $0.0223(6)$ C30 $0.4161(2)$ $0.41967(16)$ $0.40651(15)$ $0.0239(6)$ H30 0.460104 0.460049 0.415984 $0.029*$ C31 $0.3991(2)$ 0.248751 0.383922 $0.028*$ C32 $0.3920(3)$ $0.08359(16)$ $0.57879(18)$ $0.0200(7)$ H32 0.440069 0.046024 0.591124 $0.035*$ C33 $0.5421(2)$ $0.19980(16)$ $0.67456(14)$ $0.0223(6)$ H33 0.463424 0.205209 0.661902 $0.027*$ C34 $0.2383(2)$ $0.36769(18)$ $0.38333(16)$ $0.027*(7)$ H34 0.160998 0.372794 0.377353 $0.033*$ C35 $0.7493($	C24	0.6170(2)	0 10799 (15)	0 38796 (14)	0.0212(6)
C26 0.9456 (2) 0.22516 (15) 0.62169 (15) 0.0223 (6)H26 1.022906 0.232539 0.623817 $0.027*$ N6 0.5651 (2) 0.08560 (15) 0.33075 (13) 0.0296 (6)H6A 0.493293 0.079612 0.329379 $0.035*$ H6B 0.603644 0.077263 0.295503 $0.035*$ C27 0.9738 (2) 0.26090 (16) 0.38982 (15) 0.0218 (6)H27 1.049400 0.248987 0.395220 $0.026*$ C28 0.4343 (2) 0.14853 (15) 0.56064 (14) 0.0205 (6)O4 1.3299 (2) 0.36498 (19) 0.68042 (15) 0.0254 (9)C29 1.2309 (2) 0.35991 (17) 0.66902 (16) 0.0260 (6)C30 0.4161 (2) 0.41967 (16) 0.40651 (15) 0.0239 (6)H30 0.460104 0.460049 0.415984 $0.029*$ C31 0.3991 (2) 0.29412 (16) 0.38733 (15) 0.0230 (6)H31 0.431873 0.248751 0.383922 $0.028*$ C32 0.3920 (3) 0.08359 (16) 0.57879 (18) 0.0290 (7)H32 0.440069 0.046024 0.591124 $0.032*$ C33 0.5421 (2) 0.19980 (16) 0.67456 (14) 0.0223 (6)H33 0.463424 0.205209 0.661902 $0.027*$ C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7)H34 0.160998 0.372794 0.377353 $0.$	C25	0.0170(2) 0.9149(2)	0.23925 (15)	0.33223(14)	0.0212(0)
$H26$ 1.022906 0.232539 0.623817 0.027^* $N6$ $0.5651(2)$ $0.08560(15)$ $0.33075(13)$ $0.0296(6)$ $H6A$ 0.493293 0.079612 0.329379 0.035^* $H6B$ 0.603644 0.077263 0.295503 0.035^* $C27$ $0.9738(2)$ $0.26090(16)$ $0.38982(15)$ $0.0218(6)$ $H27$ 1.049400 0.248987 0.395220 0.026^* $C28$ $0.4343(2)$ $0.14853(15)$ $0.56064(14)$ $0.0205(6)$ $O4$ $1.3299(2)$ $0.36498(19)$ $0.68042(15)$ $0.0239(6)$ $C29$ $1.2309(2)$ $0.35991(17)$ $0.66902(16)$ $0.0206(6)$ $C30$ $0.4161(2)$ $0.41967(16)$ $0.40651(15)$ $0.0239(6)$ $H30$ 0.460104 0.460049 0.415984 0.029^* $C31$ $0.3991(2)$ $0.29412(16)$ $0.38733(15)$ $0.0230(6)$ $H31$ 0.431873 0.248751 0.383922 0.028^* $C32$ $0.3920(3)$ $0.08359(16)$ $0.57879(18)$ $0.0220(7)$ $H32$ 0.440069 0.046024 0.591124 0.035^* $C33$ $0.5421(2)$ $0.19980(16)$ $0.67456(14)$ $0.0223(6)$ $H33$ 0.657472 0.244567 0.695105 0.027^* $C34$ $0.2383(2)$ $0.36769(18)$ $0.38333(16)$ $0.0278(7)$ $H34$ 0.160998 0.372794 0.377353 0.033^* $C35$ $0.7493(2)$ $-0.10657(17)$ $0.69107(15)$	C26	0.9119(2) 0.9456(2)	0.22516 (15)	0.62169 (15)	0.0203(0) 0.0223(6)
Nice 1.022300 0.022601 0.022611 N6 $0.5651(2)$ $0.08560(15)$ $0.33075(13)$ $0.0296(6)$ H6A 0.493293 0.079612 0.329379 $0.035*$ H6B 0.603644 0.077263 0.295503 $0.035*$ C27 $0.9738(2)$ $0.26090(16)$ $0.38982(15)$ $0.0218(6)$ H27 1.049400 0.248987 0.395220 $0.026*$ C28 $0.4343(2)$ $0.14853(15)$ $0.56064(14)$ $0.0205(6)$ O4 $1.3299(2)$ $0.36498(19)$ $0.68042(15)$ $0.0545(9)$ C29 $1.2309(2)$ $0.35991(17)$ $0.66902(16)$ $0.0229(6)$ C30 $0.4161(2)$ $0.41967(16)$ $0.40651(15)$ $0.0229(6)$ H30 0.460104 0.460049 0.415984 $0.029*$ C31 $0.3991(2)$ $0.29412(16)$ $0.38733(15)$ $0.0239(6)$ H31 0.431873 0.248751 0.383922 $0.028*$ C32 $0.3920(3)$ $0.08359(16)$ $0.57879(18)$ $0.0290(7)$ H32 0.440069 0.046024 0.591124 $0.035*$ C33 $0.5421(2)$ $0.19980(16)$ $0.67456(14)$ $0.0223(6)$ H33 0.463424 0.205209 0.661902 $0.027*$ H34 0.160998 0.372794 0.377353 $0.033*$ C35 $0.7493(2)$ $-0.10657(17)$ $0.69107(15)$ $0.0244(6)$	H26	1 022906	0.232539	0.623817	0.022*
H6A0.4932930.0796120.3293790.035*H6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0260 (6)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	N6	0.5651(2)	0.08560 (15)	0.33075(13)	0.0296 (6)
HomOrderOrderOrderH6B0.6036440.0772630.2955030.035*C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.668042 (15)0.0545 (9)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	H6A	0.493293	0.079612	0.329379	0.035*
C270.9738 (2)0.26090 (16)0.38982 (15)0.0218 (6)H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0545 (9)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	H6B	0.603644	0.077263	0.295503	0.035*
H271.0494000.2489870.3952200.026*C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0545 (9)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C27	0.9738 (2)	0.26090 (16)	0.38982(15)	0.0218 (6)
C280.4343 (2)0.14853 (15)0.56064 (14)0.0205 (6)O41.3299 (2)0.36498 (19)0.68042 (15)0.0545 (9)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	H27	1.049400	0.248987	0.395220	0.026*
O41.3299 (2)0.36498 (19)0.68042 (15)0.0200 (0)C291.2309 (2)0.35991 (17)0.66902 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C28	0.4343(2)	0.14853(15)	0.56064 (14)	0.0205 (6)
C1C291.2309 (2)0.35991 (17)0.66002 (16)0.0260 (6)C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	04	1.3299 (2)	0.36498 (19)	0.68042 (15)	0.0545(9)
C300.4161 (2)0.41967 (16)0.40651 (15)0.0239 (6)H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C29	1.2309 (2)	0.35991 (17)	0.66902 (16)	0.0260 (6)
H300.4601040.4600490.4159840.029*C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C30	0.4161 (2)	0.41967 (16)	0.40651 (15)	0.0239 (6)
C310.3991 (2)0.29412 (16)0.38733 (15)0.0230 (6)H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	H30	0.460104	0.460049	0.415984	0.029*
H310.4318730.2487510.3839220.028*C320.3920 (3)0.08359 (16)0.57879 (18)0.0290 (7)H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C31	0.3991 (2)	0.29412 (16)	0.38733 (15)	0.0230 (6)
C32 0.3920 (3) 0.08359 (16) 0.57879 (18) 0.0290 (7) H32 0.440069 0.046024 0.591124 0.035* C33 0.5421 (2) 0.19980 (16) 0.67456 (14) 0.0223 (6) H33 0.463424 0.205209 0.661902 0.027* H33A 0.567472 0.244567 0.695105 0.027* C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7) H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6)	H31	0.431873	0.248751	0.383922	0.028*
H320.4400690.0460240.5911240.035*C330.5421 (2)0.19980 (16)0.67456 (14)0.0223 (6)H330.4634240.2052090.6619020.027*H33A0.5674720.2445670.6951050.027*C340.2383 (2)0.36769 (18)0.38333 (16)0.0278 (7)H340.1609980.3727940.3773530.033*C350.7493 (2)-0.10657 (17)0.69107 (15)0.0244 (6)	C32	0.3920 (3)	0.08359 (16)	0.57879 (18)	0.0290 (7)
C33 0.5421 (2) 0.19980 (16) 0.67456 (14) 0.0223 (6) H33 0.463424 0.205209 0.661902 0.027* H33A 0.567472 0.244567 0.695105 0.027* C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7) H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6)	H32	0.440069	0.046024	0.591124	0.035*
H33 0.463424 0.205209 0.661902 0.027* H33A 0.567472 0.244567 0.695105 0.027* C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7) H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6)	C33	0.5421 (2)	0.19980 (16)	0.67456 (14)	0.0223 (6)
H33A 0.567472 0.244567 0.695105 0.027* C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7) H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6) C36 0.2966 (2) 0.20157 (17) 0.27006 (16) 0.0244 (6)	H33	0.463424	0.205209	0.661902	0.027*
C34 0.2383 (2) 0.36769 (18) 0.38333 (16) 0.0278 (7) H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6) C36 0.2966 (2) 0.20157 (17) 0.27806 (16) 0.0244 (6)	H33A	0.567472	0.244567	0.695105	0.027*
H34 0.160998 0.372794 0.377353 0.033* C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6) C36 0.2966 (2) 0.20157 (17) 0.27006 (16) 0.0246 (6)	C34	0.2383 (2)	0.36769 (18)	0.38333 (16)	0.0278 (7)
C35 0.7493 (2) -0.10657 (17) 0.69107 (15) 0.0244 (6) 0.20157 (17) 0.27005 (16) 0.0255 (17)	H34	0.160998	0.372794	0.377353	0.033*
	C35	0.7493 (2)	-0.10657 (17)	0.69107 (15)	0.0244 (6)
0.2800(2) $0.3015/(1/)$ $0.3/800(10)$ $0.0200(0)$	C36	0.2866 (2)	0.30157 (17)	0.37806 (16)	0.0266 (6)

H36	0.242373	0.261402	0.368075	0.032*
C37	0.6013 (2)	0.32601 (18)	0.29317 (15)	0.0259 (6)
H37	0.520477	0.332442	0.293546	0.031*
H37A	0.616777	0.281270	0.269924	0.031*
C38	0.8860 (3)	-0.00120 (17)	0.66979 (17)	0.0303 (7)
C39	0.3034 (3)	0.42642 (17)	0.39738 (16)	0.0284 (7)
H39	0.270132	0.471666	0.400746	0.034*
C40	0.2508 (3)	0.19222 (18)	0.54011 (17)	0.0299 (7)
H40	0.202339	0.229124	0.526610	0.036*
C41	1.1930 (2)	0.38599 (17)	0.59907 (16)	0.0262 (6)
C42	0.5551 (3)	0.14010 (18)	0.72407 (16)	0.0303 (7)
H42	0.525777	0.096331	0.704727	0.046*
H42A	0.514629	0.151654	0.763772	0.046*
H42B	0.633197	0.133786	0.735664	0.046*
C43	1.1618 (3)	0.46488 (18)	0.59370 (17)	0.0303 (7)
C44	0.3635 (2)	0.20300 (16)	0.54076 (16)	0.0254 (6)
H44	0.392532	0.247307	0.527726	0.030*
C45	0.7712 (3)	-0.02542 (17)	0.69042 (16)	0.0270 (6)
F14	1.0221 (2)	-0.00067 (16)	0.59017 (17)	0.0744 (9)
C46	0.2090 (3)	0.12757 (19)	0.55915 (19)	0.0349 (8)
H46	0.131748	0.120142	0.558691	0.042*
C47	0.2793 (3)	0.07386 (18)	0.5788 (2)	0.0378 (8)
H47	0.249992	0.029861	0.592485	0.045*
C48	0.6529 (3)	0.3871 (2)	0.25683 (17)	0.0380 (8)
H48	0.636602	0.431470	0.279466	0.057*
H48A	0.622816	0.388958	0.211641	0.057*
H48B	0.732801	0.380377	0.255904	0.057*
C49	1.0752 (3)	0.49156 (19)	0.6410(2)	0.0380 (8)
C50	0.9189 (3)	-0.0216 (2)	0.6003 (2)	0.0398 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0375 (11)	0.0321 (10)	0.0343 (11)	-0.0072 (8)	-0.0076 (8)	-0.0019 (8)
01	0.0229 (10)	0.0265 (11)	0.0321 (12)	-0.0015 (8)	0.0014 (9)	0.0064 (9)
F2	0.0363 (11)	0.0372 (12)	0.0511 (13)	0.0142 (9)	-0.0055 (9)	0.0075 (10)
N1	0.0186 (11)	0.0224 (12)	0.0172 (12)	-0.0015 (9)	0.0004 (9)	-0.0017 (9)
N2	0.0182 (11)	0.0184 (11)	0.0208 (12)	0.0014 (9)	0.0052 (9)	-0.0012 (9)
F3	0.0340 (11)	0.0366 (12)	0.0578 (14)	-0.0118 (9)	-0.0205 (10)	0.0162 (10)
F4	0.0418 (11)	0.0466 (12)	0.0312 (11)	0.0077 (9)	0.0151 (9)	0.0037 (9)
F5	0.0514 (13)	0.0348 (11)	0.0401 (12)	0.0074 (9)	0.0159 (10)	0.0062 (9)
F6	0.0427 (12)	0.0328 (11)	0.0590 (15)	-0.0151 (9)	0.0084 (10)	0.0105 (10)
F7	0.0676 (15)	0.0212 (10)	0.0555 (15)	-0.0098 (10)	-0.0093 (12)	0.0071 (9)
C1	0.0197 (13)	0.0133 (12)	0.0207 (14)	-0.0029 (9)	0.0005 (10)	0.0000 (10)
F8	0.0762 (16)	0.0325 (11)	0.0308 (11)	0.0037 (10)	0.0115 (10)	-0.0092 (9)
N3	0.0231 (12)	0.0319 (14)	0.0239 (13)	0.0063 (10)	0.0040 (10)	-0.0028 (11)
02	0.0248 (11)	0.0415 (14)	0.0310 (12)	-0.0027 (10)	0.0021 (9)	0.0082 (10)
F9	0.0575 (14)	0.0498 (14)	0.0365 (12)	0.0109 (11)	-0.0017 (10)	0.0192 (10)

03	0.0241 (11)	0.0366 (13)	0.0427 (14)	-0.0017 (9)	-0.0050 (10)	-0.0055 (11)
C2	0.0181 (12)	0.0151 (12)	0.0204 (14)	-0.0012 (10)	0.0007 (10)	0.0008 (10)
F10	0.0867 (19)	0.0517 (15)	0.0334 (12)	0.0229 (13)	0.0070 (12)	0.0139 (11)
F11	0.0338 (11)	0.0446 (14)	0.0832 (19)	-0.0017 (10)	0.0185 (11)	0.0006 (12)
C3	0.0190 (12)	0.0128 (12)	0.0189 (13)	-0.0022 (9)	0.0002 (10)	0.0020 (10)
C4	0.0179 (12)	0.0145 (12)	0.0205 (14)	-0.0038 (9)	-0.0004 (10)	0.0021 (10)
C5	0.0194 (13)	0.0152 (13)	0.0265 (15)	-0.0003 (10)	0.0046 (11)	0.0019 (11)
N4	0.0213 (12)	0.0302 (14)	0.0297 (14)	0.0004 (10)	-0.0042 (10)	-0.0048 (11)
C6	0.0169 (12)	0.0176 (13)	0.0203 (14)	-0.0014 (10)	0.0001 (10)	0.0003 (10)
C7	0.0170 (12)	0.0172 (13)	0.0212 (14)	0.0006 (10)	0.0018 (10)	0.0036 (10)
C8	0.0173 (12)	0.0178 (13)	0.0185 (13)	-0.0012 (10)	0.0014 (10)	0.0012 (10)
C9	0.0190 (13)	0.0160 (13)	0.0218 (14)	0.0017 (10)	0.0020 (10)	0.0026 (10)
C10	0.0218 (13)	0.0150 (12)	0.0196 (14)	0.0014 (10)	0.0033 (10)	0.0028 (10)
C11	0.0204 (13)	0.0150 (12)	0.0192 (13)	0.0021 (10)	0.0040 (10)	0.0039 (10)
C12	0.0217 (13)	0.0150 (12)	0.0211 (14)	-0.0017 (10)	0.0025 (11)	0.0013 (10)
C13	0.0190 (13)	0.0205 (14)	0.0229 (14)	0.0020 (10)	0.0010 (11)	0.0026 (11)
C14	0.0189 (12)	0.0145 (12)	0.0202 (14)	0.0016 (9)	0.0046 (10)	0.0041 (10)
C15	0.0215 (13)	0.0199 (13)	0.0208 (14)	0.0033 (10)	0.0029 (11)	0.0016 (11)
F12	0.0798 (18)	0.0401 (13)	0.0397 (13)	-0.0022 (12)	0.0134 (12)	-0.0063 (10)
C16	0.0185 (13)	0.0216 (14)	0.0180 (13)	-0.0005 (10)	0.0001 (10)	0.0002 (10)
C17	0.0202 (13)	0.0231 (14)	0.0188 (14)	-0.0022 (11)	0.0016 (10)	0.0000 (11)
C18	0.0177 (13)	0.0196 (13)	0.0254 (15)	0.0031 (10)	0.0051 (11)	0.0037 (11)
C19	0.0243 (14)	0.0172 (13)	0.0230 (14)	0.0008 (10)	-0.0021 (11)	0.0023 (11)
C20	0.0167 (12)	0.0210 (13)	0.0223 (14)	-0.0028 (10)	0.0008 (10)	0.0022 (11)
N5	0.0215 (12)	0.0357 (15)	0.0184 (12)	-0.0032 (10)	0.0023 (9)	-0.0032 (10)
C21	0.0189 (13)	0.0186 (13)	0.0199 (14)	0.0004 (10)	-0.0029 (10)	0.0020 (10)
C22	0.0227 (13)	0.0172 (13)	0.0204 (14)	-0.0020 (10)	-0.0022 (11)	-0.0003 (10)
F13	0.0771 (18)	0.0307 (12)	0.0795 (19)	0.0179 (11)	0.0275 (15)	0.0170 (12)
C23	0.0274 (14)	0.0182 (13)	0.0225 (15)	0.0031 (11)	0.0100 (11)	0.0024 (11)
C24	0.0254 (14)	0.0169 (13)	0.0211 (14)	0.0037 (10)	0.0008 (11)	0.0021 (11)
C25	0.0202 (13)	0.0204 (13)	0.0212 (14)	-0.0032 (10)	0.0060 (11)	0.0017 (11)
C26	0.0184 (13)	0.0193 (14)	0.0293 (16)	-0.0004 (10)	0.0024 (11)	0.0052 (11)
N6	0.0261 (13)	0.0400 (16)	0.0225 (13)	0.0026 (11)	0.0012 (10)	-0.0031 (11)
C27	0.0162 (12)	0.0235 (14)	0.0259 (15)	-0.0008 (10)	0.0021 (11)	0.0051 (11)
C28	0.0218 (13)	0.0202 (13)	0.0199 (14)	-0.0012 (10)	0.0047 (11)	-0.0007 (11)
O4	0.0221 (12)	0.093 (2)	0.0479 (17)	-0.0125 (13)	-0.0055 (11)	0.0342 (16)
C29	0.0220 (14)	0.0268 (15)	0.0293 (16)	-0.0008 (11)	-0.0006 (12)	0.0077 (12)
C30	0.0271 (15)	0.0204 (14)	0.0240 (15)	0.0000 (11)	-0.0030 (12)	0.0018 (11)
C31	0.0214 (13)	0.0216 (14)	0.0259 (15)	-0.0011 (11)	0.0003 (11)	-0.0020 (11)
C32	0.0234 (15)	0.0194 (14)	0.045 (2)	0.0017 (11)	0.0037 (13)	0.0027 (13)
C33	0.0196 (13)	0.0270 (15)	0.0207 (14)	0.0022 (11)	0.0077 (11)	-0.0030 (11)
C34	0.0168 (13)	0.0363 (17)	0.0302 (17)	0.0034 (12)	-0.0005 (12)	0.0008 (13)
C35	0.0202 (14)	0.0287 (16)	0.0244 (15)	0.0024 (11)	0.0045 (11)	0.0002 (12)
C36	0.0193 (14)	0.0304 (16)	0.0300 (16)	-0.0032 (12)	0.0007 (12)	-0.0028 (13)
C37	0.0199 (13)	0.0395 (18)	0.0182 (14)	0.0009 (12)	-0.0030 (11)	-0.0041 (12)
C38	0.0333 (17)	0.0211 (15)	0.0361 (18)	-0.0038 (12)	-0.0069 (14)	0.0067 (13)
C39	0.0305 (16)	0.0220 (15)	0.0324 (17)	0.0082 (12)	-0.0027 (13)	0.0024 (12)
C40	0.0223 (14)	0.0293 (16)	0.0381 (18)	0.0070 (12)	0.0024 (13)	0.0008 (14)

C41	0.0236 (14)	0.0300 (16)	0.0252 (16)	-0.0015 (12)	0.0030 (12)	0.0020 (12)
C42	0.0347 (17)	0.0319 (17)	0.0249 (16)	0.0002 (13)	0.0108 (13)	-0.0008 (13)
C43	0.0310 (16)	0.0307 (17)	0.0292 (17)	-0.0023 (13)	0.0011 (13)	0.0073 (13)
C44	0.0230 (14)	0.0221 (14)	0.0312 (16)	0.0007 (11)	0.0031 (12)	0.0042 (12)
C45	0.0307 (16)	0.0248 (15)	0.0254 (16)	0.0078 (12)	-0.0009 (12)	-0.0005 (12)
F14	0.0552 (16)	0.0700 (19)	0.100(2)	-0.0157 (14)	0.0377 (16)	0.0174 (17)
C46	0.0200 (14)	0.0347 (18)	0.050(2)	-0.0007 (13)	0.0045 (14)	-0.0023 (16)
C47	0.0261 (16)	0.0257 (17)	0.062 (2)	-0.0063 (13)	0.0062 (16)	0.0044 (16)
C48	0.0379 (19)	0.051 (2)	0.0247 (17)	0.0022 (16)	-0.0039 (14)	0.0114 (15)
C49	0.043 (2)	0.0252 (17)	0.047 (2)	0.0019 (14)	0.0104 (16)	0.0055 (15)
C50	0.0394 (19)	0.036 (2)	0.045 (2)	0.0013 (15)	0.0103 (16)	0.0153 (16)

Geometric parameters (Å, °)

F1—C41	1.361 (4)	C18—C26	1.358 (4)
O1—C35	1.252 (4)	C18—H18	0.9500
F2—C45	1.356 (4)	C19—C26	1.426 (4)
N1-C2	1.344 (4)	C20—C27	1.367 (4)
N1-C8	1.403 (3)	C20—H20	0.9500
N1—C37	1.497 (4)	N5—H5A	0.8800
N2—C9	1.337 (4)	N5—H5B	0.8800
N2—C7	1.405 (3)	C21—C22	1.369 (4)
N2-C33	1.494 (3)	C21—H21	0.9500
F3—C38	1.344 (4)	C22—H22	0.9500
F4—C41	1.354 (4)	F13—C49	1.328 (4)
F5—C50	1.338 (4)	C23—C24	1.417 (4)
F6—C43	1.349 (4)	С23—Н23	0.9500
F7—C38	1.356 (4)	C24—N6	1.375 (4)
C1—C6	1.417 (4)	C25—C27	1.416 (4)
C1—C3	1.419 (4)	C26—H26	0.9500
C1—C2	1.427 (4)	N6—H6A	0.8800
F8—C45	1.356 (4)	N6—H6B	0.8800
N3—C25	1.359 (4)	C27—H27	0.9500
N3—H3	0.8800	C28—C32	1.386 (4)
N3—H3A	0.8800	C28—C44	1.396 (4)
O2—C29	1.237 (4)	O4—C29	1.223 (4)
F9—C43	1.340 (4)	C29—C41	1.562 (4)
O3—C35	1.227 (4)	C30—C39	1.384 (4)
C2-C16	1.482 (4)	C30—H30	0.9500
F10—C50	1.313 (4)	C31—C36	1.383 (4)
F11—C49	1.312 (4)	C31—H31	0.9500
C3—C21	1.414 (4)	C32—C47	1.382 (4)
C3—C4	1.432 (4)	C32—H32	0.9500
C4—C8	1.413 (4)	C33—C42	1.518 (4)
C4—C20	1.414 (4)	С33—Н33	0.9900
C5—C23	1.365 (4)	С33—Н33А	0.9900
C5—C14	1.421 (4)	C34—C36	1.388 (5)
С5—Н5	0.9500	C34—C39	1.389 (5)

N4—C19	1.362 (4)	C34—H34	0.9500
N4—H4	0.8800	C35—C45	1.559 (4)
N4—H4A	0.8800	С36—Н36	0.9500
C6—C12	1.383 (4)	C37—C48	1.517 (5)
С6—Н6	0.9500	С37—Н37	0.9900
C7—C15	1.403 (4)	С37—Н37А	0.9900
C7—C11	1.416 (4)	C38—C50	1.526 (5)
C8—C17	1.399 (4)	C38—C45	1.538 (5)
C9—C10	1.425 (4)	С39—Н39	0.9500
C9—C28	1.496 (4)	C40—C46	1.384 (5)
C10—C13	1.411 (4)	C40—C44	1.385 (4)
C10—C14	1.416 (4)	C40—H40	0.9500
C11—C14	1.420 (4)	C41—C43	1.544 (5)
C11—C18	1.424 (4)	C42—H42	0.9800
C12—N5	1.366 (4)	C42—H42A	0.9800
C12—C22	1.425 (4)	C42—H42B	0.9800
C13—C24	1.387 (4)	C43—C49	1.529 (5)
С13—Н13	0.9500	C44—H44	0.9500
C15—C19	1.381 (4)	F14—C50	1.337 (4)
С15—Н15	0.9500	C46—C47	1.380 (5)
F12—C49	1.330 (5)	C46—H46	0.9500
C16—C31	1.397 (4)	C47—H47	0.9500
C16—C30	1.397 (4)	C48—H48	0.9800
C17—C25	1.387 (4)	C48—H48A	0.9800
С17—Н17	0.9500	C48—H48B	0.9800
C2—N1—C8	122.0 (2)	C32—C28—C44	120.1 (3)
C2—N1—C37	120.5 (2)	С32—С28—С9	120.3 (3)
C8—N1—C37	117.2 (2)	C44—C28—C9	119.6 (3)
C9—N2—C7	122.5 (2)	O4—C29—O2	130.4 (3)
C9—N2—C33	119.6 (2)	O4—C29—C41	114.4 (3)
C7—N2—C33	117.9 (2)	O2—C29—C41	115.2 (3)
C6—C1—C3	120.5 (3)	C39—C30—C16	119.5 (3)
C6—C1—C2	120.9 (2)	С39—С30—Н30	120.2
C3—C1—C2	118.6 (2)	C16—C30—H30	120.2
C25—N3—H3	120.0	C36—C31—C16	120.3 (3)
C25—N3—H3A	120.0	С36—С31—Н31	119.9
H3—N3—H3A	120.0	С16—С31—Н31	119.9
N1—C2—C1	120.5 (2)	C47—C32—C28	119.5 (3)
N1—C2—C16	118.8 (2)	С47—С32—Н32	120.2
C1—C2—C16	120.6 (2)	С28—С32—Н32	120.2
C21—C3—C1	117.5 (2)	N2—C33—C42	111.2 (2)
C21—C3—C4	123.2 (2)	N2—C33—H33	109.4
C1—C3—C4	119.1 (2)	C42—C33—H33	109.4
C8—C4—C20	117.0 (3)	N2—C33—H33A	109.4
C8—C4—C3	119.3 (2)	C42—C33—H33A	109.4
C20—C4—C3	123.6 (3)	H33—C33—H33A	108.0
~~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	101 4 (2)	$C_{2}$ $C_{2}$ $C_{2}$ $C_{2}$	1100(2)

С23—С5—Н5	119.3	C36—C34—H34	120.1
С14—С5—Н5	119.3	С39—С34—Н34	120.1
C19—N4—H4	120.0	O3—C35—O1	129.3 (3)
C19—N4—H4A	120.0	O3—C35—C45	116.7 (3)
H4—N4—H4A	120.0	O1—C35—C45	113.9 (3)
C12—C6—C1	120.8 (2)	C31—C36—C34	120.0 (3)
С12—С6—Н6	119.6	С31—С36—Н36	120.0
С1—С6—Н6	119.6	С34—С36—Н36	120.0
C15—C7—N2	120.6 (2)	N1-C37-C48	110.8 (3)
C15—C7—C11	121.4 (2)	N1—C37—H37	109.5
N2—C7—C11	118.0 (3)	С48—С37—Н37	109.5
C17—C8—N1	119.8 (2)	N1—C37—H37A	109.5
C17—C8—C4	121.4 (2)	С48—С37—Н37А	109.5
N1—C8—C4	118.7 (2)	Н37—С37—Н37А	108.1
N2—C9—C10	121.1 (2)	F3—C38—F7	107.0 (3)
N2—C9—C28	119.1 (2)	F3—C38—C50	107.4 (3)
C10—C9—C28	119.7 (3)	F7—C38—C50	107.0 (3)
C13—C10—C14	121.1 (2)	F3-C38-C45	110.2 (3)
C13—C10—C9	120.3 (2)	F7-C38-C45	108.8 (3)
C14—C10—C9	118.5 (3)	C50-C38-C45	116.0 (3)
C7—C11—C14	120.4 (2)	C30—C39—C34	120.7(3)
C7—C11—C18	116.4 (3)	С30—С39—Н39	119.7
C14—C11—C18	123.1 (3)	C34—C39—H39	119.7
N5—C12—C6	122.8 (3)	C46—C40—C44	119.9 (3)
N5-C12-C22	119.0 (3)	C46—C40—H40	120.1
C6—C12—C22	118.2 (3)	C44—C40—H40	120.1
C24—C13—C10	120.5 (3)	F4—C41—F1	106.2 (3)
C24—C13—H13	119.7	F4—C41—C43	105.7 (3)
C10-C13-H13	119.7	F1-C41-C43	106.5 (2)
C10-C14-C11	119.2 (2)	F4—C41—C29	110.9 (2)
C10—C14—C5	116.9 (3)	F1-C41-C29	111.1 (2)
C11—C14—C5	123.8 (2)	C43—C41—C29	115.9 (3)
C19—C15—C7	120.3 (3)	C33—C42—H42	109.5
C19—C15—H15	119.8	C33—C42—H42A	109.5
C7—C15—H15	119.8	H42—C42—H42A	109.5
C31—C16—C30	119.7 (3)	C33—C42—H42B	109.5
C31—C16—C2	119.0 (3)	H42—C42—H42B	109.5
C30—C16—C2	121.3 (3)	H42A - C42 - H42B	109.5
$C_{25}$ $C_{17}$ $C_{8}$	120.0 (3)	F9—C43—F6	107.8 (3)
C25—C17—H17	120.0	F9—C43—C49	106.7 (3)
С8—С17—Н17	120.0	F6-C43-C49	107.7 (3)
C26—C18—C11	122.1 (3)	F9—C43—C41	109.0 (3)
C26—C18—H18	118.9	F6—C43—C41	108.7 (3)
C11—C18—H18	118.9	C49—C43—C41	116.6 (3)
N4—C19—C15	122.1 (3)	C40—C44—C28	119.8 (3)
N4—C19—C26	119.2 (3)	C40—C44—H44	120.1
C15—C19—C26	118.8 (3)	C28—C44—H44	120.1
C27—C20—C4	121.5 (3)	F2—C45—F8	107.0 (3)
	··· 、 ·· /		

С27—С20—Н20	119.3	F2	105.9 (3)
C4—C20—H20	119.3	F8—C45—C38	106.0 (3)
C12—N5—H5A	120.0	F2—C45—C35	112.1 (3)
C12—N5—H5B	120.0	F8—C45—C35	108.4 (3)
H5A—N5—H5B	120.0	C38—C45—C35	116.9 (2)
C22—C21—C3	121.2 (3)	C47—C46—C40	120.2 (3)
C22—C21—H21	119.4	C47—C46—H46	119.9
C3—C21—H21	119.4	C40—C46—H46	119.9
C21—C22—C12	121.5 (3)	C46—C47—C32	120.5 (3)
C21—C22—H22	119.3	С46—С47—Н47	119.7
C12—C22—H22	119.3	C32—C47—H47	119.7
C5-C23-C24	121.6 (3)	C37—C48—H48	109.5
C5-C23-H23	119.2	C37—C48—H48A	109.5
$C_{24}$ $C_{23}$ $H_{23}$	119.2	H48-C48-H48A	109.5
N6-C24-C13	122.0(3)	C37 - C48 - H48B	109.5
N6-C24-C23	1122.0(3)	H48 - C48 - H48B	109.5
$C_{13}$ $C_{24}$ $C_{23}$	118.3 (3)	H48A - C48 - H48B	109.5
N3_C25_C17	120.6(3)	F11_C49_F13	109.5
N3_C25_C27	120.0(3) 120.7(3)	F11 - C49 - F12	108.8(3)
$C_{17} C_{25} C_{27}$	120.7(3) 118.8(3)	$F_{11} = C_{49} = F_{12}$	107.2(3)
C17 - C25 - C27	110.0(3) 120.5(3)	$F_{13} = C_{49} = F_{12}$	107.2(3)
$C_{18} = C_{20} = C_{19}$	110.7	F13  C49  C43	112.1(3)
$C_{10} = C_{20} = H_{20}$	119.7	$F_{13} = C_{49} = C_{43}$	110.1(3)
$C_{13} = C_{20} = H_{20}$	120.0	$F_{12} = C_{49} = C_{43}$	110.5(3) 108.6(3)
$C_{24} = 100 = 110 \text{A}$	120.0	$F_{10} = C_{50} = F_{14}$	108.0(3)
H6A N6 H6B	120.0	F10 - C50 - F5	108.0(3) 107.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0	$F_{14} = C_{50} = F_{5}$	107.1(3)
$C_{20} = C_{27} = C_{23}$	120.8 (3)	F10 - C50 - C38	112.0(3)
$C_{20} = C_{27} = H_{27}$	119.0	$F_{14} = C_{50} = C_{58}$	109.7(3) 110.7(3)
C25-C27-II27	119.0	15-050-058	110.7 (3)
C8—N1—C2—C1	7.0 (4)	C8—C17—C25—N3	171.8 (3)
C37—N1—C2—C1	-166.9 (3)	C8—C17—C25—C27	-7.0 (4)
C8—N1—C2—C16	-170.5 (2)	C11—C18—C26—C19	-0.5 (4)
C37—N1—C2—C16	15.6 (4)	N4—C19—C26—C18	-174.4(3)
C6-C1-C2-N1	-175.8 (3)	C15—C19—C26—C18	5.7 (4)
C3—C1—C2—N1	5.7 (4)	C4—C20—C27—C25	0.4 (4)
C6-C1-C2-C16	1.7 (4)	N3—C25—C27—C20	-172.4(3)
C3—C1—C2—C16	-176.8(2)	C17—C25—C27—C20	6.4 (4)
C6-C1-C3-C21	-5.1 (4)	N2-C9-C28-C32	-91.9 (4)
C2-C1-C3-C21	173.4 (2)	C10—C9—C28—C32	88.8 (4)
C6-C1-C3-C4	170.0 (2)	N2—C9—C28—C44	89.8 (3)
C2-C1-C3-C4	-11.5 (4)	C10—C9—C28—C44	-89.5 (3)
C21—C3—C4—C8	180.0 (3)	C31—C16—C30—C39	0.4 (4)
C1—C3—C4—C8	5.1 (4)	C2-C16-C30-C39	-178.2(3)
C21—C3—C4—C20	4.4 (4)	C30-C16-C31-C36	-0.1 (4)
C1—C3—C4—C20	-170.4 (3)	C2-C16-C31-C36	178.5 (3)
C3—C1—C6—C12	1.4 (4)	C44—C28—C32—C47	-1.8 (5)
C2-C1-C6-C12	-177.1 (3)	C9—C28—C32—C47	179.9 (3)

C9—N2—C7—C15	173.7 (3)	C9—N2—C33—C42	99.4 (3)
C33—N2—C7—C15	-8.1 (4)	C7—N2—C33—C42	-78.8 (3)
C9—N2—C7—C11	-3.4 (4)	C16—C31—C36—C34	-0.3 (5)
C33—N2—C7—C11	174.7 (2)	C39—C34—C36—C31	0.6 (5)
C2—N1—C8—C17	163.8 (3)	C2—N1—C37—C48	105.0 (3)
C37—N1—C8—C17	-22.1 (4)	C8—N1—C37—C48	-69.2(3)
C2—N1—C8—C4	-13.5 (4)	C16—C30—C39—C34	-0.2(5)
C37—N1—C8—C4	160.6 (3)	C36—C34—C39—C30	-0.3(5)
C20—C4—C8—C17	5.7 (4)	O4—C29—C41—F4	30.7 (4)
C3—C4—C8—C17	-170.1(3)	O2—C29—C41—F4	-149.4(3)
C20—C4—C8—N1	-177.0(2)	O4-C29-C41-F1	148.5 (3)
C3-C4-C8-N1	7.1 (4)	O2-C29-C41-F1	-31.6(4)
C7-N2-C9-C10	-0.3(4)	04-C29-C41-C43	-89.8(4)
$C_{33}$ N2 $C_{9}$ $C_{10}$	-178.4(2)	02-C29-C41-C43	90.2 (4)
C7-N2-C9-C28	-179.6(2)	F4-C41-C43-F9	61.8 (3)
$C_{33} = N_2 = C_2 = C$	2.3 (4)	F1-C41-C43-F9	-50.9(3)
$N_{2}$ $C_{2}$ $C_{10}$ $C_{13}$	-1758(3)	$C_{29}$ $C_{41}$ $C_{43}$ $F_{9}$	-1750(2)
$C_{28}$ $C_{9}$ $C_{10}$ $C_{13}$	3 5 (4)	F4-C41-C43-F6	-555(3)
$N_{2}$ $C_{9}$ $C_{10}$ $C_{14}$	40(4)	F1-C41-C43-F6	-1681(2)
$C_{28}$ $C_{9}$ $C_{10}$ $C_{14}$	-1767(2)	$C_{29}$ $C_{41}$ $C_{43}$ $F_{6}$	67.7(3)
$C_{15} - C_{7} - C_{11} - C_{14}$	-173.7(3)	F4-C41-C43-C49	-1774(3)
$N_{2}$ $C_{7}$ $C_{11}$ $C_{14}$	34(4)	F1-C41-C43-C49	69 9 (4)
$C_{15} - C_{7} - C_{11} - C_{18}$	3.1(1) 3.5(4)	$C_{29}$ $C_{41}$ $C_{43}$ $C_{49}$	-542(4)
$N_{2}$ $C_{7}$ $C_{11}$ $C_{18}$	-1794(2)	$C_{46} - C_{40} - C_{44} - C_{28}$	0.0(5)
C1 - C6 - C12 - N5	-178.8(3)	$C_{10} = C_{10} = C_{10} = C_{20}$	0.0(5)
C1 - C6 - C12 - C22	3 2 (4)	C9-C28-C44-C40	179.2(3)
C14 - C10 - C13 - C24	-13(4)	$F_{3}$ $C_{38}$ $C_{45}$ $F_{7}$	172.9(3)
C9-C10-C13-C24	178 5 (3)	$F_{7}$ $C_{38}$ $C_{45}$ $F_{7}$	558(3)
$C_{13}$ $C_{10}$ $C_{14}$ $C_{11}$	175.9(3)	$C_{50}$ $C_{38}$ $C_{45}$ $F_{2}$	-64.8(3)
$C_{10} - C_{10} - C_{14} - C_{11}$	-39(4)	$F_{3}$ $C_{38}$ $C_{45}$ $F_{12}$	59 4 (3)
$C_{13}$ $C_{10}$ $C_{14}$ $C_{5}$	-14(4)	$F_{7}$ $C_{38}$ $C_{45}$ $F_{8}$	-57.6(3)
$C_{10}^{-} - C_{10}^{-} - C_{14}^{-} - C_{5}^{-}$	178 8 (2)	17 - 038 - 045 - F8	-1782(3)
$C_{7}$ $C_{11}$ $C_{14}$ $C_{10}$	170.0(2)	$F_{3}$ $C_{38}$ $C_{45}$ $C_{35}$	-615(4)
$C_1 = C_1 = C_1 + C_1 $	-176.8(2)	$F_7 = C_{38} = C_{45} = C_{35}$	-1786(3)
C7 - C11 - C14 - C5	170.8(2)	17 - 038 - 045 - 035	170.0(3)
$C_1^{12}$ $C_1^{11}$ $C_1^{14}$ $C_5^{12}$	177.4(5)	$C_{30} = C_{30} = C_{43} = C_{33}$	-5.6(4)
$C_{13} = C_{14} = C_{14} = C_{10}$	25(4)	01 - C35 - C45 - F2	177.6(3)
$C_{23} = C_{5} = C_{14} = C_{10}$	-1747(3)	$O_1 = C_{33} = C_{43} = 12$ $O_3 = C_{35} = C_{45} = F_8$	177.0(3)
$N_2 = C_7 = C_{15} = C_{19}$	-1755(3)	01  C35  C45  F8	-64.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.5(5)	01 - 035 - 045 - 18	-1281(3)
$\frac{1}{1} \frac{1}{1} \frac{1}$	66.4(4)	01  C35  C45  C38	551(4)
$C_1 = C_2 = C_16 = C_{31}$	-11111(3)	$C_{1} = C_{3} = C_{4} = C_{3} = C_{3$	0.0(6)
C1 - C2 - C16 - C31	-115.0(3)	$C_{44} = C_{40} = C_{40} = C_{47}$	-1.0(6)
$C_1 = C_2 = C_{10} = C_{30}$	115.0(5)	$C_{40} = C_{40} = C_{47} = C_{32}$	1.0(0)
N1 = C8 = C17 = C25	-1763(3)	$C_{20} = C_{32} = C_{47} = C_{40}$ F0 C/3 C/0 F11	72 A (4)
$C_{4} = C_{8} = C_{17} = C_{25}$	1/0.5(3)	$F_{43} = C_{43} = C_{43} = F_{11}$	-172 + (4)
$C_{7} = C_{11} = C_{12}$	-41(4)	$C_{43} = C_{43} = C$	-40.6(4)
$C_1 = C_1 = C_1 = C_2 $	+.1(+)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-49.0 (4)
U14-U11-U18-U20	1/3.2 (3)	гу—U43—U49—F13	-48.9 (4)

C7—C15—C19—N4	174.0 (3)	F6-C43-C49-F13	66.7 (4)
C7—C15—C19—C26	-6.1 (4)	C41—C43—C49—F13	-170.9 (3)
C8—C4—C20—C27	-6.3 (4)	F9—C43—C49—F12	-166.9 (3)
C3—C4—C20—C27	169.3 (3)	F6-C43-C49-F12	-51.4 (4)
C1—C3—C21—C22	4.4 (4)	C41—C43—C49—F12	71.1 (4)
C4—C3—C21—C22	-170.5 (3)	F3-C38-C50-F10	-173.6 (3)
C3—C21—C22—C12	0.1 (4)	F7-C38-C50-F10	-59.0 (4)
N5-C12-C22-C21	177.9 (3)	C45-C38-C50-F10	62.6 (4)
C6—C12—C22—C21	-4.0 (4)	F3-C38-C50-F14	-52.9 (4)
C14—C5—C23—C24	-0.9 (4)	F7-C38-C50-F14	61.7 (4)
C10-C13-C24-N6	179.7 (3)	C45—C38—C50—F14	-176.7 (3)
C10-C13-C24-C23	2.9 (4)	F3-C38-C50-F5	65.1 (4)
C5-C23-C24-N6	-178.7 (3)	F7—C38—C50—F5	179.7 (3)
C5—C23—C24—C13	-1.8 (4)	C45—C38—C50—F5	-58.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O4 ⁱ	0.88	2.04	2.909 (4)	171
N3—H3A····O1 ⁱⁱ	0.88	2.06	2.899 (3)	159
N4—H4···O3 ⁱⁱⁱ	0.88	2.26	3.088 (4)	158
N4—H4 <i>A</i> …O2	0.88	2.13	2.991 (3)	166
C15—H15…O1 ⁱⁱⁱ	0.95	2.62	3.353 (4)	135
N5—H5A····O4 ^{iv}	0.88	2.16	2.934 (3)	146
N5—H5 <i>B</i> ···O1 ⁱⁱⁱ	0.88	2.30	3.076 (3)	147
N5—H5 <i>B</i> …F3 ⁱⁱⁱ	0.88	2.54	3.208 (3)	133
C26—H26…F1	0.95	2.61	3.184 (3)	119
N6—H6A···O3 ^v	0.88	2.16	2.938 (3)	147
N6—H6 $B$ ···O2 ⁱ	0.88	2.56	3.184 (4)	129
N6—H6 $B$ ···F12 ⁱ	0.88	2.34	3.097 (4)	144
C33—H33A····N3 ^{vi}	0.99	2.59	3.223 (4)	122

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x+2, -y, -z+1; (iii) -x+3/2, y+1/2, -z+3/2; (iv) x-1, y, z; (v) -x+1, -y, -z+1; (vi) x-1/2, -y+1/2, z+1/2.