Received 20 March 2017 Accepted 20 March 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; isatins; N— $H \cdots O$ hydrogen bonds.

CCDC reference: 1539183

Structural data: full structural data are available from iucrdata.iucr.org

5,7-Dimethyl-1H-indole-2,3-dione

Matthew F. Perez,^a Vasumathi Desikan,^a James A. Golen^b and David R. Manke^{b*}

data reports

^aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and ^bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. *Correspondence e-mail: dmanke@umassd.edu

The title compound, $C_{10}H_9NO_2$, crystallizes with four molecules in the asymmetric unit. The molecules are all near planar, with the non-H atoms possessing mean deviations from planarity of 0.017, 0.026, 0.020 and 0.007 Å. In the crystal, the molecules form two dimers, each linked by a pair of N-H···O hydrogen bonds.

Structure description

Herein we report the crystal structure of 5,7-dimethyl-1*H*-indole-2,3-dione: there are four of these 5,7-dimethylisatin molecules in the asymmetric unit (Fig. 1). The molecules are near planar, with the non-H atoms demonstrating r.m.s. deviations of 0.017, 0.026, 0.020 and 0.007 Å. The bond lengths and angles of the title compound are consistent with those observed in the other reported 5,7-substituted isatin structure (Golen & Manke, 2016).

In the crystal, the four molecules combine into pairs, each linked through two N— $H \cdot \cdot \cdot O$ hydrogen bonds (Table 1). This dimerization is also observed in 7-methylisatin (Lyncee *et al.*, 2017). The packing of the title compound, including hydrogen bonding, is shown in Fig. 2.

Synthesis and crystallization

A commercial sample (Acros) of 5,7-dimethyl-1*H*-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its methyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme of the four molecules present in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

Figure 2 The molecular packing of the title compound with hydrogen bonds drawn as dashed lines.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1429086); Massachusetts Clean Energy Center.

References

- Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Table 1	
Hydrogen-bond geometry (Å, °).	

$\overline{D - \mathbf{H} \cdot \cdot \cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H1···O3	0.86(1)	2.07 (1)	2.903 (3)	164 (3)
$N2-H2 \cdot \cdot \cdot O1$	0.86 (1)	2.04 (1)	2.890 (3)	169 (3)
$N3-H3\cdots O7$	0.86(1)	2.09(1)	2.922 (3)	163 (3)
$N4-H4A\cdots O5$	0.86 (1)	2.02 (1)	2.867 (3)	168 (3)

C₁₀H₉NO₂

Triclinic, $P\overline{1}$

1684.4 (4)

2014) 0.692, 0.745

0.060 0.603

Μο Κα

0.10

8.7148 (9), 13.5652 (17),

91.562 (5), 96.341 (4), 103.776 (4)

Multi-scan (SADABS; Bruker,

14.7832 (19)

 $0.4 \times 0.4 \times 0.04$

Bruker D8 Venture

56302, 6187, 4523

175.18

200

8

Table 2

Experimental details.

Crystal data Chemical formula $M_{\rm r}$ Crystal system, space group Temperature (K) a, b, c (Å) V (Å

Z Radiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections л

$(\sin \theta / \lambda)_{\rm max}$ ((\AA^{-1})
Refinement	

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.189, 1.10
No. of reflections	6187
No. of parameters	489
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.39, -0.27

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x161510.

Lyncee, M. A., Desikan, V., Golen, J. A. & Manke, D. R. (2017). IUCrData, 2, x170378.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). 2, x170444 [https://doi.org/10.1107/S2414314617004448]

5,7-Dimethyl-1H-indole-2,3-dione

Matthew F. Perez, Vasumathi Desikan, James A. Golen and David R. Manke

5,7-Dimethyl-1H-indole-2,3-dione

Crystal data $C_{10}H_9NO_2$ Z = 8 $M_r = 175.18$ F(000) = 736Triclinic, $P\overline{1}$ $D_{\rm x} = 1.382 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 8.7148 (9) Å*b* = 13.5652 (17) Å Cell parameters from 9884 reflections $\theta = 3.1 - 25.3^{\circ}$ c = 14.7832 (19) Å $\alpha = 91.562 (5)^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ $\beta = 96.341 \ (4)^{\circ}$ T = 200 K $\gamma = 103.776 \ (4)^{\circ}$ PLATE, orange V = 1684.4 (4) Å³ $0.4 \times 0.4 \times 0.04 \text{ mm}$ Data collection Bruker D8 Venture 6187 independent reflections diffractometer 4523 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.060$ Absorption correction: multi-scan $\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$ $h = -10 \rightarrow 10$ (SADABS; Bruker, 2014) $T_{\rm min} = 0.692, T_{\rm max} = 0.745$ $k = -16 \rightarrow 16$

Refinement

56302 measured reflections

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.063$ and constrained refinement $wR(F^2) = 0.189$ $w = 1/[\sigma^2(F_o^2) + (0.0802P)^2 + 1.7614P]$ S = 1.10where $P = (F_0^2 + 2F_c^2)/3$ 6187 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 489 parameters $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ 4 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $l = -17 \rightarrow 17$

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
N1	0.4016 (2)	0.11027 (16)	0.69510 (15)	0.0238 (5)	
H1	0.353 (3)	0.110 (2)	0.6412 (8)	0.029*	
01	0.6533 (2)	0.10964 (16)	0.66010 (14)	0.0363 (5)	
O2	0.7175 (2)	0.10836 (17)	0.86028 (14)	0.0384 (5)	
C1	0.5564 (3)	0.10994 (19)	0.71358 (19)	0.0251 (6)	
C2	0.5897 (3)	0.10911 (19)	0.81955 (19)	0.0252 (6)	
C3	0.4366 (3)	0.10900 (18)	0.85238 (18)	0.0232 (6)	
C4	0.3923 (3)	0.10889 (19)	0.93965 (18)	0.0260 (6)	
H4	0.4675	0.1094	0.9914	0.031*	
C5	0.2352 (3)	0.10795 (19)	0.94964 (19)	0.0270 (6)	
C6	0.1284 (3)	0.10665 (19)	0.87147 (19)	0.0271 (6)	
H6	0.0214	0.1059	0.8792	0.033*	
C7	0.1693 (3)	0.10639 (18)	0.78225 (18)	0.0237 (6)	
C8	0.3269 (3)	0.10886 (18)	0.77573 (17)	0.0204 (5)	
C9	0.1800 (4)	0.1088 (2)	1.0429 (2)	0.0368 (7)	
H9A	0.2189	0.0584	1.0792	0.055*	
H9B	0.0635	0.0921	1.0367	0.055*	
H9C	0.2220	0.1765	1.0734	0.055*	
C10	0.0509 (3)	0.1030 (2)	0.7002 (2)	0.0333 (7)	
H10A	0.0857	0.1629	0.6652	0.050*	
H10B	-0.0532	0.1026	0.7196	0.050*	
H10C	0.0425	0.0413	0.6620	0.050*	
N2	0.5531 (3)	0.12309 (17)	0.46883 (15)	0.0263 (5)	
H2	0.595 (3)	0.119 (2)	0.5236 (8)	0.032*	
03	0.3010 (2)	0.12231 (16)	0.50270 (13)	0.0366 (5)	
04	0.2490 (2)	0.14359 (17)	0.30327 (15)	0.0412 (5)	
C11	0.4008 (3)	0.1263 (2)	0.44925 (19)	0.0271 (6)	
C12	0.3738 (3)	0.1373 (2)	0.34425 (19)	0.0274 (6)	
C13	0.5289 (3)	0.14013 (19)	0.31343 (18)	0.0242 (6)	
C14	0.5803 (3)	0.1514 (2)	0.22828 (19)	0.0274 (6)	
H14	0.5083	0.1564	0.1764	0.033*	
C15	0.7394 (3)	0.15539 (19)	0.21970 (19)	0.0281 (6)	
C16	0.8409 (3)	0.14914 (19)	0.2986 (2)	0.0274 (6)	
H16	0.9495	0.1528	0.2926	0.033*	
C17	0.7926 (3)	0.13796 (19)	0.38523 (19)	0.0255 (6)	
C18	0.6332 (3)	0.13328 (18)	0.39022 (18)	0.0238 (6)	
C19	0.8017 (4)	0.1678 (2)	0.1285 (2)	0.0389 (7)	
H19A	0.7569	0.1056	0.0897	0.058*	
H19B	0.9180	0.1805	0.1372	0.058*	
H19C	0.7707	0.2253	0.0994	0.058*	
C20	0.9053 (3)	0.1327 (2)	0.4685 (2)	0.0354 (7)	
H20A	0.9159	0.1924	0.5097	0.053*	
H20B	1.0097	0.1314	0.4504	0.053*	
H20C	0.8638	0.0708	0.4996	0.053*	
N3	0.3688 (2)	0.35893 (17)	0.85114 (15)	0.0238 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H3	0.318 (3)	0.344 (2)	0.7975 (9)	0.029*
O5	0.6154 (2)	0.34703 (15)	0.81535 (13)	0.0318 (5)
O6	0.6912 (2)	0.37267 (16)	1.01601 (14)	0.0358 (5)
C21	0.5233 (3)	0.35717 (19)	0.86965 (18)	0.0243 (6)
C22	0.5623 (3)	0.36974 (19)	0.97550 (18)	0.0248 (6)
C23	0.4129 (3)	0.37657 (18)	1.00930 (17)	0.0225 (5)
C24	0.3723 (3)	0.3857 (2)	1.09591 (18)	0.0270 (6)
H24	0.4497	0.3905	1.1475	0.032*
C25	0.2169 (3)	0.3880 (2)	1.10712 (19)	0.0286 (6)
C26	0.1068 (3)	0.3803 (2)	1.02911 (19)	0.0278 (6)
H26	0.0009	0.3825	1.0371	0.033*
C27	0.1434 (3)	0.36965 (19)	0.94057 (18)	0.0245 (6)
C28	0.3001 (3)	0.36819 (18)	0.93224 (17)	0.0216 (5)
C29	0.1678 (4)	0.3968 (3)	1.2013 (2)	0.0401 (7)
H29A	0.1848	0.3388	1.2356	0.060*
H29B	0.0549	0.3974	1.1962	0.060*
H29C	0.2318	0.4600	1.2331	0.060*
C30	0.0199 (3)	0.3593 (2)	0.8587 (2)	0.0361 (7)
H30A	0.0486	0.4179	0.8213	0.054*
H30B	-0.0843	0.3565	0.8791	0.054*
H30C	0.0151	0.2967	0.8226	0.054*
N4	0.5103 (2)	0.35401 (17)	0.62544 (15)	0.0252 (5)
H4A	0.554 (3)	0.350 (2)	0.6800 (8)	0.030*
07	0.2527 (2)	0.34008 (15)	0.65678 (13)	0.0339 (5)
08	0.2033 (2)	0.37014 (16)	0.45880 (14)	0.0369 (5)
C31	0.3544 (3)	0.35165 (19)	0.60458 (18)	0.0256 (6)
C32	0.3291 (3)	0.36678 (19)	0.50041 (18)	0.0255 (6)
C33	0.4871 (3)	0.37722 (18)	0.47077 (17)	0.0221 (5)
C34	0.5404 (3)	0.39321 (19)	0.38603 (18)	0.0255 (6)
H34	0.4687	0.3990	0.3342	0.031*
C35	0.7010 (3)	0.40072 (19)	0.37810 (18)	0.0260 (6)
C36	0.8016 (3)	0.39118 (19)	0.45634 (19)	0.0280 (6)
H36	0.9104	0.3955	0.4506	0.034*
C37	0.7510(3)	0.37566 (19)	0.54253 (18)	0.0240 (6)
C38	0.5905 (3)	0.36892 (18)	0.54667 (17)	0.0219 (5)
C39	0.7648 (4)	0.4188 (2)	0.2880 (2)	0.0372 (7)
H39A	0.7093	0.3631	0.2438	0.056*
H39B	0.8789	0.4217	0.2956	0.056*
H39C	0.7476	0.4832	0.2659	0.056*
C40	0.8614 (3)	0.3659 (2)	0.6257 (2)	0.0349 (7)
H40A	0.8644	0.4202	0.6714	0.052*
H40B	0.9686	0.3713	0.6088	0.052*
H40C	0.8232	0.2997	0.6511	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0199 (11)	0.0291 (12)	0.0230 (12)	0.0071 (9)	0.0016 (9)	0.0024 (9)

01	0.0239 (10)	0.0527 (13)	0.0358 (12)	0.0127 (9)	0.0098 (9)	0.0065 (9)
O2	0.0222 (11)	0.0554 (13)	0.0399 (12)	0.0146 (9)	0.0006 (9)	0.0065 (10)
C1	0.0161 (13)	0.0262 (13)	0.0350 (15)	0.0072 (10)	0.0069 (11)	0.0036 (11)
C2	0.0190 (13)	0.0238 (13)	0.0333 (15)	0.0062 (10)	0.0025 (11)	0.0033 (11)
C3	0.0191 (13)	0.0195 (12)	0.0311 (15)	0.0053 (9)	0.0019 (10)	0.0020 (10)
C4	0.0229 (14)	0.0271 (14)	0.0283 (15)	0.0065 (10)	0.0026 (11)	0.0047 (11)
C5	0.0260 (14)	0.0231 (13)	0.0329 (15)	0.0052 (10)	0.0092 (11)	0.0031 (11)
C6	0.0197 (13)	0.0251 (13)	0.0384 (16)	0.0058 (10)	0.0101 (11)	0.0043 (11)
C7	0.0172 (12)	0.0196 (12)	0.0341 (15)	0.0036 (9)	0.0042 (10)	0.0020 (10)
C8	0.0185 (12)	0.0182 (12)	0.0245 (13)	0.0038 (9)	0.0046 (10)	0.0027 (10)
C9	0.0326 (16)	0.0420 (17)	0.0375 (17)	0.0072 (13)	0.0150 (13)	0.0051 (13)
C10	0.0191 (14)	0.0399 (16)	0.0407 (17)	0.0080 (11)	0.0005 (12)	0.0041 (13)
N2	0.0188 (11)	0.0338(12)	0.0268(12)	0.0075 (9)	0.0019 (9)	0.0012 (10)
03	0.0230(10)	0.0578(14)	0.0319(11)	0.0126(9)	0.0094 (9)	0.0029(10)
04	0.0188(10)	0.0629(15)	0.0436(13)	0.0120(9)	-0.0017(9)	0.0023(10)
C11	0.0201 (13)	0.0289(14)	0.0321(15)	0.0060(10)	0.0033(11)	-0.0015(11)
C12	0.0193(14)	0.0300(14)	0.0333(15)	0.0072(10)	0.0028 (11)	0.0001 (11)
C13	0.0193(11) 0.0187(13)	0.0200(11) 0.0225(13)	0.0311(15)	0.0072(10)	0.0020(11) 0.0007(11)	-0.0017(11)
C14	0.0137(13) 0.0236(14)	0.0229(13) 0.0279(14)	0.0311(15) 0.0305(15)	0.0057(10) 0.0067(10)	0.0007(11) 0.0027(11)	0.0013(11)
C15	0.0230(11) 0.0274(14)	0.0279(11) 0.0204(13)	0.0372(16)	0.0007(10)	0.0027(11) 0.0088(12)	0.0002(11)
C16	0.0271(11) 0.0187(13)	0.0207(13) 0.0245(13)	0.0372 (10)	0.0051(10) 0.0061(10)	0.0000(12) 0.0085(11)	0.0002(11) 0.0013(11)
C17	0.0184(13)	0.0219(13) 0.0204(13)	0.0376(16)	0.0001(10) 0.0051(10)	0.0000(11) 0.0031(11)	-0.0015(11)
C18	0.0185(13)	0.0200(12)	0.0376(10)	0.0059(9)	0.0031(11) 0.0030(11)	-0.0002(10)
C19	0.0359(17)	0.0427(17)	0.0395(18)	0.0075(13)	0.0145(14)	0.0002(10)
C20	0.0220(14)	0.0430(17)	0.0413 (18)	0.0106(12)	-0.0015(12)	-0.0007(13)
N3	0.0190(11)	0.0321(12)	0.0207(11)	0.0063(9)	0.0044 (9)	0.0020 (9)
05	0.0221(10)	0.0433(12)	0.0323(11)	0.0099 (8)	0.0086 (8)	0.0020(9)
06	0.0199(10)	0.0514(13)	0.0364(12)	0.0112(9)	-0.0012(8)	0.0056 (9)
C21	0.0212 (13)	0.0256 (13)	0.0267 (14)	0.0056 (10)	0.0042 (11)	0.0042 (10)
C22	0.0209(14)	0.0249 (13)	0.0287(14)	0.0057 (10)	0.0028(11)	0.0056(11)
C23	0.0178 (12)	0.0231 (13)	0.0256 (14)	0.0039 (10)	0.0013 (10)	-0.0002(10)
C24	0.0235 (14)	0.0312 (14)	0.0258 (14)	0.0057 (11)	0.0031 (11)	-0.0007(11)
C25	0.0264 (14)	0.0322(15)	0.0293(15)	0.0085 (11)	0.0088 (11)	0.0016 (11)
C26	0.0211 (13)	0.0303 (14)	0.0337 (15)	0.0074 (10)	0.0078 (11)	0.0042 (11)
C27	0.0166 (13)	0.0274 (14)	0.0306 (15)	0.0067 (10)	0.0032 (10)	0.0042 (11)
C28	0.0196 (12)	0.0213 (12)	0.0246 (13)	0.0051 (9)	0.0046 (10)	0.0024 (10)
C29	0.0326 (16)	0.058 (2)	0.0316 (17)	0.0118 (14)	0.0108 (13)	-0.0025(14)
C30	0.0191 (14)	0.0547 (19)	0.0364 (17)	0.0132 (12)	0.0008 (12)	0.0108 (14)
N4	0.0198 (11)	0.0353 (12)	0.0233 (12)	0.0101 (9)	0.0056 (9)	0.0059 (10)
07	0.0240 (10)	0.0474 (12)	0.0331 (11)	0.0106 (8)	0.0112 (8)	0.0061 (9)
08	0.0200 (10)	0.0542 (13)	0.0386 (12)	0.0135 (9)	0.0015 (9)	0.0056 (10)
C31	0.0205 (13)	0.0285 (14)	0.0300 (15)	0.0090 (10)	0.0055 (11)	0.0050 (11)
C32	0.0191 (13)	0.0273 (14)	0.0306 (15)	0.0063 (10)	0.0035 (11)	0.0035 (11)
C33	0.0178 (13)	0.0239 (13)	0.0257 (14)	0.0068 (10)	0.0033 (10)	0.0016 (10)
C34	0.0244 (14)	0.0293 (14)	0.0221 (13)	0.0061 (10)	0.0009 (10)	-0.0013 (10)
C35	0.0238 (14)	0.0250 (13)	0.0299 (15)	0.0047 (10)	0.0088 (11)	0.0007 (11)
C36	0.0195 (13)	0.0260 (14)	0.0387 (16)	0.0050 (10)	0.0062 (11)	-0.0021 (11)
C37	0.0171 (12)	0.0234 (13)	0.0319 (15)	0.0065 (10)	0.0015 (10)	-0.0010 (11)
	· · ·	· /	· · ·	· /	. /	· /

data reports

C38	0.0199 (13)	0.0204 (12)	0.0263 (14)	0.0056 (9)	0.0045 (10)	0.0016 (10)
C39	0.0380 (17)	0.0395 (17)	0.0359 (17)	0.0082 (13)	0.0155 (13)	0.0006 (13)
C40	0.0199 (14)	0.0480 (18)	0.0370 (17)	0.0113 (12)	-0.0006 (12)	-0.0044 (13)

Geometric parameters (Å, °)

N1—H1	0.860 (5)	N3—H3	0.860 (5)
N1—C1	1.348 (3)	N3—C21	1.350 (3)
N1—C8	1.418 (3)	N3—C28	1.413 (3)
01—C1	1.219 (3)	O5—C21	1.223 (3)
O2—C2	1.209 (3)	O6—C22	1.204 (3)
C1—C2	1.562 (4)	C21—C22	1.560 (4)
С2—С3	1.469 (3)	C22—C23	1.467 (3)
C3—C4	1.387 (4)	C23—C24	1.375 (4)
С3—С8	1.399 (4)	C23—C28	1.403 (3)
C4—H4	0.9500	C24—H24	0.9500
C4—C5	1.390 (4)	C24—C25	1.390 (4)
C5—C6	1.398 (4)	C25—C26	1.401 (4)
С5—С9	1.510 (4)	C25—C29	1.511 (4)
С6—Н6	0.9500	C26—H26	0.9500
С6—С7	1.404 (4)	C26—C27	1.393 (4)
С7—С8	1.380 (3)	C27—C28	1.389 (3)
C7—C10	1.496 (4)	C27—C30	1.508 (4)
С9—Н9А	0.9800	C29—H29A	0.9800
С9—Н9В	0.9800	C29—H29B	0.9800
С9—Н9С	0.9800	C29—H29C	0.9800
C10—H10A	0.9800	C30—H30A	0.9800
C10—H10B	0.9800	C30—H30B	0.9800
C10—H10C	0.9800	С30—Н30С	0.9800
N2—H2	0.860 (5)	N4—H4A	0.862 (5)
N2-C11	1.338 (3)	N4—C31	1.352 (3)
N2-C18	1.414 (3)	N4—C38	1.418 (3)
O3—C11	1.231 (3)	O7—C31	1.223 (3)
O4—C12	1.208 (3)	O8—C32	1.207 (3)
C11—C12	1.561 (4)	C31—C32	1.558 (4)
C12—C13	1.465 (4)	C32—C33	1.467 (3)
C13—C14	1.382 (4)	C33—C34	1.388 (4)
C13—C18	1.394 (4)	C33—C38	1.384 (4)
C14—H14	0.9500	C34—H34	0.9500
C14—C15	1.395 (4)	C34—C35	1.398 (4)
C15—C16	1.401 (4)	C35—C36	1.401 (4)
C15—C19	1.507 (4)	C35—C39	1.503 (4)
C16—H16	0.9500	С36—Н36	0.9500
C16—C17	1.393 (4)	C36—C37	1.399 (4)
C17—C18	1.386 (3)	C37—C38	1.388 (3)
C17—C20	1.502 (4)	C37—C40	1.505 (4)
C19—H19A	0.9800	С39—Н39А	0.9800
С19—Н19В	0.9800	C39—H39B	0.9800

C19—H19C	0.9800	С39—Н39С	0.9800
C20—H20A	0.9800	C40—H40A	0.9800
C20—H20B	0.9800	C40—H40B	0.9800
C20—H20C	0.9800	C40—H40C	0.9800
C1—N1—H1	125 (2)	C21—N3—H3	122.3 (19)
C1—N1—C8	111.6 (2)	C21—N3—C28	111.0 (2)
C8—N1—H1	124 (2)	C28—N3—H3	126 (2)
N1—C1—C2	106.0 (2)	N3—C21—C22	106.2 (2)
01—C1—N1	128.3 (3)	O5—C21—N3	127.6 (2)
O1—C1—C2	125.7 (2)	O5—C21—C22	126.2 (2)
O2—C2—C1	124.1 (2)	O6—C22—C21	124.2 (2)
O2—C2—C3	131.1 (3)	O6—C22—C23	130.6 (3)
C3—C2—C1	104.8 (2)	C23—C22—C21	105.2 (2)
C4—C3—C2	131.6 (2)	C24—C23—C22	132.2 (2)
C4—C3—C8	121.2 (2)	C24—C23—C28	121.3 (2)
C8—C3—C2	107.2 (2)	C28—C23—C22	106.4 (2)
C3—C4—H4	120.8	C23—C24—H24	120.4
C3—C4—C5	118.5 (2)	C23—C24—C25	119.2 (2)
C5—C4—H4	120.8	C25—C24—H24	120.4
C4—C5—C6	118.7 (2)	C24—C25—C26	118.4 (2)
C4—C5—C9	121.0 (3)	C_{24} C_{25} C_{29}	120.6(3)
C6-C5-C9	120.3(2)	$C_{26} - C_{25} - C_{29}$	120.0(2)
C5-C6-H6	117.9	C25—C26—H26	118.1
C_{5} C_{6} C_{7}	1242(2)	$C_{27} - C_{26} - C_{25}$	123.8(2)
C7-C6-H6	117.9	C27—C26—H26	118.1
C6-C7-C10	122.6 (2)	$C_{26} - C_{27} - C_{30}$	122.0(2)
C8 - C7 - C6	122.0(2) 115.0(2)	$C_{28} = C_{27} = C_{26}$	122.0(2) 116.0(2)
C8 - C7 - C10	113.0(2) 122.4(2)	$C_{28} = C_{27} = C_{20}$	122 0 (2)
C_{3} C_{8} N_{1}	122.1(2) 110.3(2)	C_{23} C_{28} N_{3}	122.0(2) 111 1(2)
C7 - C8 - N1	127.3(2)	C25 = C20 = N3	127.7(2)
C7 - C8 - C3	127.3(2) 122.3(2)	C27 - C28 - C23	127.7(2) 121.2(2)
C_{5} C_{9} H_{9A}	109 5	$C_{25} = C_{29} = H_{29A}$	109 5
$C_5 - C_9 - H_{9B}$	109.5	$C_{25} = C_{29} = H_{29R}$	109.5
$C_5 - C_9 - H_9C$	109.5	$C_{25} = C_{29} = H_{29}C_{25}$	109.5
H9A - C9 - H9B	109.5	H29A—C29—H29B	109.5
H9A - C9 - H9C	109.5	H29A - C29 - H29D	109.5
H9B-C9-H9C	109.5	H29B-C29-H29C	109.5
C7-C10-H10A	109.5	C27 - C30 - H30A	109.5
C7 - C10 - H10R	109.5	$C_{27} = C_{30} = H_{30R}$	109.5
C7 - C10 - H10C	109.5	$C_{27} = C_{30} = H_{30C}$	109.5
$H_{10A} - C_{10} - H_{10B}$	109.5	$H_{30A} - C_{30} - H_{30B}$	109.5
H10A - C10 - H10C	109.5	H30AC30H30D	109.5
H10B_C10_H10C	109.5	H30B-C30-H30C	109.5
C11_N2_H2	109.5	C31_N4_ H4A	102.5
$C_{11} = N_2 = M_2$ $C_{11} = N_2 = C_{18}$	122(2) 111 5 (2)	C31 - N4 - C38	123(2) 1107(2)
$C18_N2_H2$	111.3(2) 126(2)	C38 NA HAA	110.7(2) 126(2)
$N_{10} - N_{2} - M_{2}$	120(2) 106.2(2)	NA C21 C22	120(2) 1064(2)
112-011-012	100.3 (2)	114-031-032	100.4 (2)

O2 C11 N2	127.5(2)	07 C21 N4	1271(2)
O_{3} C_{11} C_{12}	127.3(3)	07 - C31 - N4	127.1(3) 1265(2)
	120.2(2)	0/-C31-C32	120.3(2)
04	124.1 (2)	08 - C32 - C31	124.3 (2)
04	131.4 (3)	08-032-033	131.2 (3)
C13—C12—C11	104.5 (2)	C33—C32—C31	104.5 (2)
C14—C13—C12	131.6 (2)	C34—C33—C32	131.6 (2)
C14—C13—C18	121.1 (2)	C38—C33—C32	107.4 (2)
C18—C13—C12	107.2 (2)	C38—C33—C34	121.0 (2)
C13—C14—H14	120.5	C33—C34—H34	120.5
C13—C14—C15	119.0 (3)	C33—C34—C35	119.0 (2)
C15—C14—H14	120.5	С35—С34—Н34	120.5
C14—C15—C16	118.2 (3)	C34—C35—C36	118.3 (2)
C14—C15—C19	121.1 (3)	C34—C35—C39	121.0 (3)
C16—C15—C19	120.7 (2)	C36—C35—C39	120.7 (2)
C15—C16—H16	117.9	С35—С36—Н36	118.1
C17—C16—C15	124.1 (2)	C37—C36—C35	123.8 (2)
С17—С16—Н16	117.9	С37—С36—Н36	118.1
C16—C17—C20	122.7 (2)	C36—C37—C40	122.8 (2)
C18 - C17 - C16	1156(2)	$C_{38} - C_{37} - C_{36}$	115.6(2)
$C_{18} - C_{17} - C_{20}$	121.7(3)	$C_{38} - C_{37} - C_{40}$	121.6(2)
C13 - C18 - N2	121.7(3) 1105(2)	C_{33} C_{38} N4	121.0(2)
$C_{17} C_{18} N_2$	110.5(2) 127.6(2)	C_{33} C_{38} C_{37}	111.0(2) 122.4(2)
C17 C18 C13	127.0(2) 121.0(2)	$C_{33} = C_{38} = C_{37}$	122.4(2)
$C_{17} = C_{10} = C_{13}$	121.9 (2)	$C_{3}^{2} = C_{3}^{2} = 104$	120.0 (2)
C15_C19_H19A	109.5	C35—C39—H39A	109.5
C15—C19—H19B	109.5	C35—C39—H39B	109.5
C15—C19—H19C	109.5	C35—C39—H39C	109.5
H19A—C19—H19B	109.5	H39A—C39—H39B	109.5
Н19А—С19—Н19С	109.5	Н39А—С39—Н39С	109.5
H19B—C19—H19C	109.5	H39B—C39—H39C	109.5
C17—C20—H20A	109.5	C37—C40—H40A	109.5
C17—C20—H20B	109.5	C37—C40—H40B	109.5
C17—C20—H20C	109.5	C37—C40—H40C	109.5
H20A—C20—H20B	109.5	H40A—C40—H40B	109.5
H20A-C20-H20C	109.5	H40A—C40—H40C	109.5
H20B—C20—H20C	109.5	H40B—C40—H40C	109.5
N1-C1-C2-O2	179.8 (2)	N3-C21-C22-O6	-179.1 (2)
N1—C1—C2—C3	0.0 (3)	N3—C21—C22—C23	0.8 (3)
O1—C1—C2—O2	0.2 (4)	O5—C21—C22—O6	1.4 (4)
O1—C1—C2—C3	-179.5 (3)	O5—C21—C22—C23	-178.7(2)
02 - C2 - C3 - C4	0.6 (5)	O6—C22—C23—C24	-1.8(5)
02-02-03-08	-179.3(3)	06-C22-C23-C28	-179.7(3)
C1 - N1 - C8 - C3	08(3)	$C_{21} = N_{3} = C_{28} = C_{23}$	2.1 (3)
C1 - N1 - C8 - C7	-1784(2)	$C_{21} = N_{3} = C_{28} = C_{27}$	-1780(2)
C1 - C2 - C3 - C4	-1796(3)	C_{21} C_{22} C_{23} C_{24}	178.2(3)
C1 - C2 - C3 - C4	0.5(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	0.4(3)
$C_1 = C_2 = C_3 = C_0$	-1705(2)	$C_{21} = C_{22} = C_{23} = C_{20} = C_{20}$	-178 4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/3.3(2)	$C_{22} = C_{23} = C_{24} = C_{23}$	1/0.4(3)
U2-U3-U3-NI	-0.8 (3)	U22-U23-U28-N3	-1.4 (3)

C2—C3—C8—C7	178.5 (2)	C22—C23—C28—C27	178.7 (2)
C3—C4—C5—C6	0.3 (4)	C23—C24—C25—C26	0.2 (4)
C3—C4—C5—C9	-179.4 (2)	C23—C24—C25—C29	179.4 (3)
C4—C3—C8—N1	179.3 (2)	C24—C23—C28—N3	-179.6 (2)
C4—C3—C8—C7	-1.4 (4)	C24—C23—C28—C27	0.5 (4)
C4—C5—C6—C7	-0.1 (4)	C24—C25—C26—C27	0.6 (4)
C5—C6—C7—C8	-0.8 (4)	C25—C26—C27—C28	-0.9 (4)
C5-C6-C7-C10	178.8 (2)	C25—C26—C27—C30	178.6 (3)
C6—C7—C8—N1	-179.3 (2)	C26—C27—C28—N3	-179.6 (2)
C6—C7—C8—C3	1.6 (3)	C26—C27—C28—C23	0.3 (4)
C8—N1—C1—O1	179.0 (3)	C28—N3—C21—O5	177.8 (3)
C8—N1—C1—C2	-0.5 (3)	C28—N3—C21—C22	-1.7 (3)
C8—C3—C4—C5	0.4 (4)	C28—C23—C24—C25	-0.8 (4)
C9—C5—C6—C7	179.6 (2)	C29—C25—C26—C27	-178.5 (3)
C10—C7—C8—N1	1.1 (4)	C30-C27-C28-N3	1.0 (4)
C10—C7—C8—C3	-178.1 (2)	C30—C27—C28—C23	-179.1 (2)
N2-C11-C12-O4	-179.2 (3)	N4-C31-C32-O8	-178.9 (3)
N2-C11-C12-C13	-0.4 (3)	N4-C31-C32-C33	-0.1 (3)
O3—C11—C12—O4	0.2 (4)	O7—C31—C32—O8	1.0 (4)
O3—C11—C12—C13	179.0 (3)	O7—C31—C32—C33	179.8 (3)
O4—C12—C13—C14	0.5 (5)	O8—C32—C33—C34	-0.7 (5)
O4—C12—C13—C18	177.8 (3)	O8—C32—C33—C38	178.9 (3)
C11—N2—C18—C13	-2.1 (3)	C31—N4—C38—C33	0.2 (3)
C11—N2—C18—C17	176.9 (2)	C31—N4—C38—C37	179.7 (2)
C11—C12—C13—C14	-178.2 (3)	C31—C32—C33—C34	-179.3 (3)
C11—C12—C13—C18	-0.8 (3)	C31—C32—C33—C38	0.2 (3)
C12—C13—C14—C15	177.4 (3)	C32—C33—C34—C35	179.6 (2)
C12—C13—C18—N2	1.8 (3)	C32—C33—C38—N4	-0.3 (3)
C12—C13—C18—C17	-177.3 (2)	C32—C33—C38—C37	-179.8 (2)
C13—C14—C15—C16	-0.9 (4)	C33—C34—C35—C36	0.3 (4)
C13—C14—C15—C19	-179.9 (2)	C33—C34—C35—C39	-179.6 (2)
C14—C13—C18—N2	179.5 (2)	C34—C33—C38—N4	179.3 (2)
C14—C13—C18—C17	0.4 (4)	C34—C33—C38—C37	-0.2 (4)
C14—C15—C16—C17	0.8 (4)	C34—C35—C36—C37	-0.8 (4)
C15—C16—C17—C18	-0.1 (4)	C35—C36—C37—C38	0.7 (4)
C15—C16—C17—C20	-179.3 (2)	C35—C36—C37—C40	-179.9 (2)
C16—C17—C18—N2	-179.4 (2)	C36—C37—C38—N4	-179.6 (2)
C16—C17—C18—C13	-0.5 (4)	C36—C37—C38—C33	-0.2 (4)
C18—N2—C11—O3	-177.9 (3)	C38—N4—C31—O7	-180.0 (3)
C18—N2—C11—C12	1.5 (3)	C38—N4—C31—C32	0.0 (3)
C18—C13—C14—C15	0.3 (4)	C38—C33—C34—C35	0.1 (4)
C19—C15—C16—C17	179.8 (2)	C39—C35—C36—C37	179.1 (2)
C20-C17-C18-N2	-0.2 (4)	C40—C37—C38—N4	0.9 (4)
C20-C17-C18-C13	178.7 (2)	C40—C37—C38—C33	-179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1…O3	0.86(1)	2.07 (1)	2.903 (3)	164 (3)
N2—H2…O1	0.86(1)	2.04 (1)	2.890 (3)	169 (3)
N3—H3…O7	0.86(1)	2.09 (1)	2.922 (3)	163 (3)
N4—H4 <i>A</i> …O5	0.86 (1)	2.02 (1)	2.867 (3)	168 (3)