

6-*tert*-Butyl-4-[(4-hydroxymethyl-2*H*-1,2,3-triazol-2-yl)methyl]-2*H*-chromen-2-one. Corrigendum

Nasseem El-Khatatneh,^a Chandra,^a D. Shamala,^b K. Shivashankar^b and M. Mahendra^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India. *Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

In the paper by El-Khatatneh *et al.* [*IUCrData* (2016), **1**, x161618], the scheme and chemical name in the title are corrected.

In the paper by El-Khatatneh et al. (2016), the chemical scheme should be as shown here.

The chemical name in the title is then corrected as '6-*tert*-Butyl-4-[(4-hydroxymethyl-1*H*-1,2,3-triazol-1-yl)methyl]-2*H*-chromen-2-one'.

References

El-Khatatneh, N., Chandra, Shamala, D., Shivashankar, K. & Mahendra, M. (2016). *IUCrData*, **1**, x161618.

ISSN 2414-3146

Received 9 October 2016 Accepted 12 October 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; chromones; triazole; hydrogen bonding; C—H··· π interactions.

CCDC reference: 1509457

Structural data: full structural data are available from iucrdata.iucr.org

6-*tert*-Butyl-4-[(4-hydroxymethyl-2*H*-1,2,3-triazol-2-yl)methyl]-2*H*-chromen-2-one

Nasseem El-Khatatneh,^a Chandra,^a D. Shamala,^b K. Shivashankar^b and M. Mahendra^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India. *Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

In the title compound, $C_{17}H_{19}N_3O_3$, the triazole ring and the chromene ring system [maximum deviation = 0.018 (2) Å for the O atom] bridged *via* a methylene C atom, are inclined to one another by 73.2 (1)°. In the crystal, molecules are linked by $O-H\cdots N$ hydrogen bonds, forming zigzag chains along [001]. The chains are linked by $C-H\cdots O$ hydrogen bonds, forming layers parallel to (010), and these layers are linked by $C-H\cdots \pi$ and $\pi-\pi$ interactions [intercentroid distance = 3.557 (1) Å], forming a three-dimensional newwork. The hydroxymethyl group at the 4-position of the triazole ring is disordered over two sets of sites, with a refined occupancy ratio of 0.418 (11):0.584 (11).

Structure description

Chromones are a group of natural and synthetic oxygen heterocyclic compounds having a high degree of chemical diversity that is frequently linked to a broad array of biological activities (Gaspar *et al.*, 2015). Coumarins and their derivatives have wide applications in a number of diverse areas. They are used in the pharmaceutical industry as precursor reagents in the synthesis of a number of synthetic anticoagulant pharmaceuticals (Bairagi *et al.*, 2012), the most notable being warfarin (Holbrook *et al.*, 2005). Modified coumarins are a type of vitamin K antagonist (Marongiu & Barcellona, 2015). Coumarins are of great interest due to their biological properties (Lacy & O'Kennedy, 2004). In particular, their physiological, bacteriostatic and anti-tumour activity (Mustafa *et al.*, 2011) makes these compounds attractive for further backbone derivatization and screening for their therapeutic properties. *2H*-chromen-2-ones exhibit extensive natural occurrence and biocompatibility, and have been found to exhibit variety of biological activities (Naik *et al.*, 2012).

Figure 1

A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability (atoms C6A/O7A and C6B/O7B concern the disordered hydroxymethyl group).

In the molecular structure of the title compound (Fig. 1), the chromene unit (O16/C9–C15/C17/C18), as expected, is almost planar, with a maximum deviation of 0.018 (2) Å for the ring atom O16. The carbonyl O atom, O19, is displaced from the chromene mean plane by 0.059 (2) Å. The triazole (N1/N4/N5/C2/C3) and the chromene (O16/C9–C15/C17/C18) rings, bridged *via* a methylene C atom, C8, are inclined to one another by 73.2 (1)°. The intra-ring bond conformation between chromene and triazole moieties are also characterized by torsion angles of -72.6 (2)° (C9–C8–N1–N5) and 178.24 (18)° (C20–C12–C11–C10). The hydroxymethyl O atom is not coplanar with the triazole ring, as indicated by

Figure 2

A view along the *c* axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the $C-H\cdots\pi$ interactions as black lines (see Table 1), and examples of the $\pi-\pi$ interactions as thick orange lines. For clarity, only the H atoms involved in these intermolecular interactions have been included.

Table 1 Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C10-C15 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7B - H7B \cdot \cdot \cdot N4^{i}$	0.82	2.49	3.198 (7)	146
$C2-H2\cdots O19^{ii}$	0.93	2.54	3.365 (3)	147
$C23-H23B\cdots O19^{iii}$	0.96	2.59	3.421 (3)	146
$C22-H22B\cdots Cg3^{iv}$	0.96	2.99	3.818 (3)	145

Symmetry codes: (i) $-x + 2, -y + 1, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) x - 1, y, z - 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

torsion angle $C2-C3-C6B-O7B = -58 (2)^{\circ}$. One methyl unit of the *tert*-butyl group is almost coplanar with the chromene ring as suggested by the torsion angle $C11-C12-C20-C23 = 5.2 (3)^{\circ}$, while the other two methyl groups are above and below the ring plane, with torsion angles C13-C12-C20-C21 and C13-C12-C20-C22, being 64.9 (2) and $-54.7 (3)^{\circ}$, respectively.

In the crystal, molecules are are linked by an $O-H\cdots N$ hydrogen bond, forming chains along the *c*-axis direction (Table 1). The chains are linked by $C-H\cdots O$ hydrogen bonds, forming layers parallel to the *ac* plane (Table 1 and Fig. 2). Finally, the layers are linked by $C-H\cdots \pi$ and $\pi-\pi$ interactions, forming a three-dimensional network (Table 1 and Fig. 2). The $\pi-\pi$ interactions involve $Cg1\cdots Cg2^i = Cg2\cdots Cg1^{ii} = 3.557$ (1) Å [the two rings are inclined to one another by 14.95 (11)°, and the interplanar distances and slippages are 3.463 (1) and 1.545 Å, and 3.204 (1) and 0.812 Å, respectively; Cg1 and Cg2 are the centroids of rings N1/N4/N5/C2/C3 and O16/C9/C10/C15/C17/C18; symmetry codes: (i) $-x + 1, -y + 1, z - \frac{1}{2}$ and (ii) $-x + 1, -y + 1, z + \frac{1}{2}$].

Synthesis and crystallization

A mixture of propargyl alcohol (1.9 mmol), sodium azide (0.14 g, 2.0 mmol), copper(I) iodide (10 mol%) and triethylamine (0.19 g, 1.9 mmol) in 20 ml of acetone was taken in a round-bottom flask and stirred for 1 h. To this mixture, 4-bromomethylcoumarin (1.9 mmol) was added and the stirring continued for 8 h (the reaction was monitored by TLC). After the completion of the reaction, the catalyst was filtered through celite and the product was extracted with ether (3.10 ml). The solvent was removed under vacuum. The crude product was dried and recrystallized from ethyl acetate solution to give colourless block-like crystals of the title compound (yield 90%, m.p. 473–475 K). IR (KBr, cm⁻¹): 1715 (lactone C=O), 3221 (OH). ¹H NMR (400 MHz, CDC₁₃): δ 1.28 (s, 9H, 3-CH₃ of tert-butyl group), 1.70 (s, 1H, OH), 4.84 (s, 2H, -CH₂O-), 5.77 (s, 2H, -CH₂N-), 6.06 (s, 1H, C₃-H), 7.31 (d, 1H, C_7 -H, $J_{1,2}$ = 12 Hz), 7.57(s, 1H, C_5 -H), 7.61(d, 1H, C_8 -H, $J_{1,2} = 8.8$ Hz), 7.73 (s, 1H, Tr-H) p.p.m. ¹³C NMR (100 MHz, DMSO-d6): δ 31.0 (3C), 34.5, 49.2, 54.9, 113.7, 116.3, 116.4, 121.0, 123.7, 129.8, 147.0, 148.6, 150.4, 151.1, 159.5 p.p.m.. Analysis for C₁₇H₁₉N₃O₃. Calculated: C, 65.16; H, 6.11; N, 13.41%. Found: C, 65.12; H, 6.07; N, 13.39%.

Table 2 Experimental details.

C ₁₇ H ₁₉ N ₃ O ₃
313.35
Orthorhombic, Pna21
293
8.9099 (12), 24.550 (3), 7.2359 (11)
1582.7 (4)
4
Cu Ka
0.75
$0.32 \times 0.22 \times 0.12$
Bruker X8 Proteum
5136, 1581, 1565
0.022
0.585
0.030, 0.080, 1.07
1581
227
38
H-atom parameters constrained
0.10, -0.11

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2016 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxymethyl group at the 4-position of the triazole ring is disordered over two sets of sites, with a refined occupancy ratio of 0.418 (11):0.584 (11) for atoms C6A:C6B and O7A:O7B. The structure was refined as an inversion twin; Flack parameter = 0.2 (5).

Acknowledgements

MM thanks the UGC, New Delhi, Government of India, for awarding a project under the title F. No. 41–920/2012(SR) dated: 25–07-2012. SD is grateful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [grant No. 02 (0172)/13/EMR-II].

References

- Bairagi, S. H., Salaskar, P. P., Loke, S. D., Surve, N. N., Tandel, D. V. & Dusara, M. D. (2012). *Int. J. Pharm. Res.* 4, 16–19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). *Curr. Top. Med. Chem.* **15**, 432–445.
- Holbrook, A. M., Pereira, J. A., Labiris, R., McDonald, H., Douketis, J. D., Crowther, M. & Wells, P. S. (2005). Arch. Intern. Med. 165, 1095–1106.
- Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Marongiu, F. & Barcellona, D. (2015). Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease, edited by R. R. Watson & V. R. Preedy, pp. 395–398. New York: Academic Press.
- Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). *Molecules*, **16**, 4305–4317.
- Naik, R. J., Kulkarni, M. V., Pai, K. S. R. & Nayak, P. G. (2012). Chem. Biol. Drug Des. 80, 516–523.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2016). **1**, x161618 [https://doi.org/10.1107/S2414314616016187]

6-*tert*-Butyl-4-[(4-hydroxymethyl-2*H*-1,2,3-triazol-2-yl)methyl]-2*H*-chromen-2-one

Nasseem El-Khatatneh, Chandra, D. Shamala, K. Shivashankar and M. Mahendra

6-tert-Butyl-4-[(4-hydroxymethyl-2H-1,2,3-triazol-2-yl)methyl]-2H-chromen-2-one

Crystal data

 $C_{17}H_{19}N_3O_3$ $M_r = 313.35$ Orthorhombic, $Pna2_1$ a = 8.9099 (12) Å b = 24.550 (3) Å c = 7.2359 (11) Å $V = 1582.7 (4) \text{ Å}^3$ Z = 4F(000) = 664

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 18.4 pixels mm⁻¹ φ and ω scans 5136 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.080$ S = 1.071581 reflections 227 parameters 38 restraints Primary atom site location: structure-invariant direct methods $D_x = 1.315 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1581 reflections $\theta = 7.2-64.4^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.32 \times 0.22 \times 0.12 \text{ mm}$

1581 independent reflections 1565 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 64.4^\circ, \ \theta_{min} = 7.2^\circ$ $h = -10 \rightarrow 9$ $k = -28 \rightarrow 27$ $l = -3 \rightarrow 8$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 0.1878P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.10$ e Å⁻³ $\Delta\rho_{min} = -0.11$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.2 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C12	0.1311 (2)	0.32195 (7)	0.4515 (3)	0.0390 (4)	
N1	0.60931 (17)	0.47866 (6)	0.3641 (3)	0.0440 (4)	
C11	0.2465 (2)	0.35946 (7)	0.4284 (3)	0.0362 (4)	
H11	0.246706	0.381302	0.323334	0.043*	
016	0.47177 (19)	0.33551 (6)	0.8472 (3)	0.0573 (4)	
C13	0.1364 (2)	0.28959 (8)	0.6120 (3)	0.0498 (5)	
H13	0.060668	0.264168	0.631743	0.060*	
C15	0.3613 (2)	0.33239 (8)	0.7134 (3)	0.0431 (5)	
019	0.6737 (2)	0.37446 (8)	0.9624 (3)	0.0858 (7)	
C9	0.4845 (2)	0.40488 (8)	0.5398 (3)	0.0399 (5)	
N4	0.7328 (2)	0.54936 (8)	0.4439 (3)	0.0576 (5)	
C10	0.3626 (2)	0.36557 (7)	0.5575 (3)	0.0359 (4)	
C2	0.7321 (2)	0.47844 (8)	0.2567 (3)	0.0438 (5)	
H2	0.757906	0.453111	0.166558	0.053*	
N5	0.6080(2)	0.52202 (8)	0.4770 (3)	0.0578 (6)	
C17	0.5846 (3)	0.37326 (9)	0.8355 (4)	0.0564 (6)	
C8	0.4850 (2)	0.44007 (9)	0.3695 (4)	0.0472 (5)	
H8A	0.490187	0.416841	0.261230	0.057*	
H8B	0.391225	0.460096	0.363693	0.057*	
C18	0.5886 (2)	0.40772 (9)	0.6742 (4)	0.0497 (5)	
H18	0.666089	0.432863	0.662608	0.060*	
C20	0.0017 (2)	0.31619 (8)	0.3138 (4)	0.0442 (5)	
C23	0.0228 (3)	0.35213 (11)	0.1440 (4)	0.0645 (7)	
H23A	0.023399	0.389703	0.180780	0.097*	
H23B	-0.058150	0.345981	0.058916	0.097*	
H23C	0.116334	0.343349	0.085332	0.097*	
C21	-0.1441 (2)	0.33404 (11)	0.4108 (5)	0.0676 (7)	
H21A	-0.135254	0.371364	0.448802	0.101*	
H21B	-0.160897	0.311489	0.517178	0.101*	
H21C	-0.226873	0.330379	0.326834	0.101*	
C14	0.2491 (3)	0.29416 (9)	0.7405 (3)	0.0531 (5)	
H14	0.250115	0.271857	0.844358	0.064*	
C6A	0.957 (3)	0.5456 (15)	0.238 (6)	0.0620(7)	0.418 (11)
H6A1	0.981776	0.528038	0.121698	0.074*	0.418 (11)
H6A2	0.947595	0.584396	0.215757	0.074*	0.418 (11)
O7A	1.0709 (6)	0.5357 (3)	0.3685 (13)	0.076 (3)	0.418 (11)
H7A	1.126711	0.562246	0.373797	0.113*	0.418 (11)
C6B	0.958 (2)	0.5453 (10)	0.243 (4)	0.0620(7)	0.582 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H6B1	0.949910	0.554755	0.113039	0.074*	0.582 (11)
H6B2	0.981856	0.578301	0.310511	0.074*	0.582 (11)
O7B	1.0773 (4)	0.5076 (3)	0.2653 (10)	0.0883 (19)	0.582 (11)
H7B	1.086999	0.489670	0.170471	0.132*	0.582 (11)
C3	0.8105 (2)	0.52358 (8)	0.3088 (3)	0.0456 (5)	
C22	-0.0126 (3)	0.25684 (10)	0.2520 (5)	0.0696 (7)	
H22A	-0.097310	0.253182	0.170927	0.104*	
H22B	-0.026487	0.233981	0.358248	0.104*	
H22C	0.077008	0.246108	0.187940	0.104*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C12	0.0373 (9)	0.0366 (8)	0.0432 (11)	-0.0002 (7)	0.0003 (10)	-0.0017 (9)
N1	0.0402 (8)	0.0519 (9)	0.0397 (10)	-0.0097 (6)	-0.0021 (8)	-0.0082 (9)
C11	0.0372 (10)	0.0377 (8)	0.0338 (11)	0.0004 (7)	-0.0020 (8)	0.0010 (8)
016	0.0706 (10)	0.0580 (8)	0.0434 (9)	0.0082 (7)	-0.0239 (9)	0.0048 (8)
C13	0.0542 (12)	0.0445 (10)	0.0508 (13)	-0.0063 (9)	0.0027 (11)	0.0063 (10)
C15	0.0509 (11)	0.0427 (10)	0.0356 (11)	0.0083 (8)	-0.0067 (10)	-0.0006 (9)
019	0.0912 (14)	0.0893 (12)	0.0769 (14)	0.0107 (10)	-0.0554 (13)	-0.0029 (12)
С9	0.0339 (9)	0.0470 (10)	0.0388 (11)	0.0024 (7)	-0.0050 (9)	-0.0057 (9)
N4	0.0570 (10)	0.0593 (10)	0.0566 (12)	-0.0176 (8)	0.0027 (11)	-0.0126 (10)
C10	0.0372 (9)	0.0382 (8)	0.0323 (10)	0.0039 (7)	-0.0032 (9)	-0.0021 (8)
C2	0.0435 (11)	0.0489 (10)	0.0389 (11)	-0.0026 (8)	0.0026 (9)	-0.0026 (9)
N5	0.0543 (10)	0.0618 (11)	0.0573 (14)	-0.0144 (9)	0.0083 (10)	-0.0190 (11)
C17	0.0573 (13)	0.0580 (12)	0.0538 (15)	0.0130 (10)	-0.0274 (13)	-0.0112 (12)
C8	0.0399 (10)	0.0591 (11)	0.0426 (12)	-0.0140 (8)	-0.0071 (10)	0.0021 (11)
C18	0.0420 (10)	0.0566 (11)	0.0505 (13)	0.0010 (9)	-0.0124 (11)	-0.0103 (11)
C20	0.0354 (9)	0.0446 (10)	0.0525 (13)	-0.0069 (7)	-0.0045 (10)	0.0017 (10)
C23	0.0521 (12)	0.0841 (16)	0.0572 (16)	-0.0168 (12)	-0.0195 (13)	0.0131 (14)
C21	0.0410 (11)	0.0788 (15)	0.083 (2)	-0.0002 (10)	0.0005 (14)	-0.0012 (15)
C14	0.0702 (13)	0.0482 (11)	0.0409 (12)	0.0017 (10)	-0.0016 (11)	0.0120 (10)
C6A	0.0507 (13)	0.0732 (15)	0.062 (2)	-0.0176 (11)	0.0022 (14)	0.0079 (14)
O7A	0.049 (3)	0.085 (4)	0.092 (6)	-0.014 (3)	-0.016 (3)	0.022 (4)
C6B	0.0507 (13)	0.0732 (15)	0.062 (2)	-0.0176 (11)	0.0022 (14)	0.0079 (14)
O7B	0.0576 (19)	0.094 (3)	0.113 (4)	-0.0042 (19)	0.029 (2)	-0.010 (3)
C3	0.0431 (10)	0.0502 (10)	0.0434 (12)	-0.0084 (8)	-0.0005 (10)	0.0036 (10)
C22	0.0727 (15)	0.0572 (13)	0.0789 (19)	-0.0102 (11)	-0.0213 (16)	-0.0117 (13)

Geometric parameters (Å, °)

C12—C11	1.391 (3)	C18—H18	0.9300	
C12—C13	1.408 (3)	C20—C23	1.524 (4)	
C12—C20	1.531 (3)	C20—C22	1.529 (3)	
N1—C2	1.342 (3)	C20—C21	1.540 (3)	
N1—N5	1.342 (2)	C23—H23A	0.9600	
N1—C8	1.458 (2)	C23—H23B	0.9600	
C11—C10	1.402 (3)	C23—H23C	0.9600	

C11—H11	0.9300	C21—H21A	0.9600
O16—C17	1.370 (3)	C21—H21B	0.9600
O16—C15	1.383 (3)	C21—H21C	0.9600
C13—C14	1.373 (3)	C14—H14	0.9300
С13—Н13	0.9300	C6A—O7A	1.411 (18)
C15—C14	1.385 (3)	C6A—C3	1.50 (4)
C15—C10	1.391 (3)	C6A—H6A1	0.9700
O19—C17	1.214 (3)	С6А—Н6А2	0.9700
C9—C18	1.346 (3)	O7A—H7A	0.8200
C9—C10	1.458 (3)	C6B—O7B	1.416 (15)
C9—C8	1.505 (3)	C6B—C3	1.50 (3)
N4—N5	1.320 (3)	C6B—H6B1	0.9700
N4—C3	1.355 (3)	С6В—Н6В2	0.9700
C2—C3	1.363 (3)	07B—H7B	0.8200
C2—H2	0.9300	C22—H22A	0.9600
C17—C18	1.442 (4)	C22—H22B	0.9600
C8—H8A	0.9700	C22—H22C	0.9600
C8—H8B	0.9700		
00 1102			
C11—C12—C13	116.66 (19)	C22—C20—C21	109.52 (19)
C11—C12—C20	122.66 (18)	C12—C20—C21	108.2 (2)
C13—C12—C20	120.67 (17)	С20—С23—Н23А	109.5
C2—N1—N5	111.27 (16)	C20—C23—H23B	109.5
C2—N1—C8	129.22 (18)	H23A—C23—H23B	109.5
N5—N1—C8	119.51 (17)	С20—С23—Н23С	109.5
C12—C11—C10	122.41 (19)	H23A—C23—H23C	109.5
C12—C11—H11	118.8	H23B—C23—H23C	109.5
C10-C11-H11	118.8	C20—C21—H21A	109.5
C17—O16—C15	121.1 (2)	C20—C21—H21B	109.5
C14—C13—C12	122.45 (19)	H21A—C21—H21B	109.5
C14—C13—H13	118.8	C20—C21—H21C	109.5
C12—C13—H13	118.8	H21A—C21—H21C	109.5
O16—C15—C14	116.9 (2)	H21B—C21—H21C	109.5
O16—C15—C10	121.97 (18)	C13—C14—C15	119.2 (2)
C14—C15—C10	121.14 (19)	C13—C14—H14	120.4
C18—C9—C10	118.9 (2)	C15—C14—H14	120.4
С18—С9—С8	124.07 (18)	O7A—C6A—C3	110 (3)
С10—С9—С8	116.99 (17)	O7A—C6A—H6A1	109.8
N5—N4—C3	108.91 (18)	C3—C6A—H6A1	109.8
C15—C10—C11	118.14 (17)	O7A—C6A—H6A2	109.8
C15—C10—C9	117.70 (18)	С3—С6А—Н6А2	109.8
C11—C10—C9	124.15 (18)	H6A1—C6A—H6A2	108.2
N1—C2—C3	104.73 (19)	С6А—О7А—Н7А	109.5
N1—C2—H2	127.6	O7B—C6B—C3	112.9 (18)
С3—С2—Н2	127.6	O7B—C6B—H6B1	109.0
N4—N5—N1	106.58 (18)	C3—C6B—H6B1	109.0
O19—C17—O16	116.7 (3)	O7B—C6B—H6B2	109.0
O19—C17—C18	125.6 (2)	С3—С6В—Н6В2	109.0

O16-C17-C18	117.72 (19)	H6B1—C6B—H6B2	107.8
N1—C8—C9	113.38 (18)	C6B—O7B—H7B	109.5
N1—C8—H8A	108.9	N4—C3—C2	108.50 (18)
С9—С8—Н8А	108.9	N4—C3—C6B	120.9 (11)
N1—C8—H8B	108.9	C2—C3—C6B	130.6 (11)
С9—С8—Н8В	108.9	N4—C3—C6A	121.5 (15)
H8A—C8—H8B	107.7	C2—C3—C6A	130.0 (15)
C9—C18—C17	122.5 (2)	C20—C22—H22A	109.5
С9—С18—Н18	118.7	C20—C22—H22B	109.5
C17—C18—H18	118.7	H22A—C22—H22B	109.5
C23—C20—C22	109.0 (2)	C20—C22—H22C	109.5
C23—C20—C12	112.25 (16)	H22A—C22—H22C	109.5
C22—C20—C12	109.95 (17)	H22B—C22—H22C	109.5
C23—C20—C21	107.9 (2)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O7 <i>B</i> —H7 <i>B</i> ···N4 ⁱ	0.82	2.49	3.198 (7)	146
C2—H2…O19 ⁱⁱ	0.93	2.54	3.365 (3)	147
C23—H23 <i>B</i> ···O19 ⁱⁱⁱ	0.96	2.59	3.421 (3)	146
C22—H22 <i>B</i> ··· <i>Cg</i> 3 ^{iv}	0.96	2.99	3.818 (3)	145

Symmetry codes: (i) -*x*+2, -*y*+1, *z*-1/2; (ii) *x*, *y*, *z*-1; (iii) *x*-1, *y*, *z*-1; (iv) *x*-1/2, -*y*+1/2, *z*.