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Diffraction imaging is an X-ray imaging method which uses the crystallinity

information (cell parameter, orientation) as a signal to create an image pixel by

pixel: a pencil beam is raster-scanned onto a sample and the (powder) diffraction

signal is recorded by a large area detector. With the flux provided by third-

generation synchrotrons and the speed of hybrid pixel detectors, the acquisition

speed of these experiments is now limited by the transfer rate to the local

storage as the data reduction can hardly be performed in real time. This

contribution presents the benchmarking of a typical data analysis pipeline for a

diffraction imaging experiment like the ones performed at ESRF ID15a and

proposes some disruptive techniques to decode CIF binary format images using

the computational power of graphics cards to be able to perform data reduction

in real time.

1. Introduction

Since all major third-generation synchrotrons are undergoing

upgrades to provide brighter sources (Biasci et al., 2014;

Tanaka, 2014) the same flux of photon will be available soon in

much smaller beams. Two types of experiments will benefit the

most from this improved X-ray source: coherence diffraction

experiments and raster-scanning experiments.

X-ray diffraction computed tomography (hereafter XRD-

CT, Fig. 1) (Jacques et al., 2011) is one of the raster-scanning

experiments where a pencil beam is scanned onto a sample.

The volumetric information is obtained by rotating the sample

in the X-ray beam to generate the sinogram. The diffraction

signal, scattered over a large solid angle, is recorded by an area

detector and saved as a stack of images. Those images are

azimuthal averaged into powder diffraction patterns with the

intensity given as a function of either the diffraction angle (2�)

or the scattering vector q ¼ 4� sinð2�=2Þ=�. The sinogram is

built, pixel by pixel, by storing this pattern as a function of the

sample position: translations and rotation. The tomogram is

finally reconstructed from the back-projection of the sino-

gram.

It turns out that the current detectors are already fast

enough to fill the temporary storage, and data analysis

workflows cannot cope with the pace imposed by modern

detectors (Mokso et al., 2017): data analysis is the limiting

factor for the whole experiment. This work focuses on the

performance optimization of the data reduction pipeline for

cases where the reduction is simply an azimuthal regrouping of

input images. More complex analyses are possible (and often

desirable) but the target of this work is online data analysis so

the analysis will be restricted to simple ones.

We will focus in the second section on the setup of the

materials beamline (ID15a) of the ESRF (Vamvakeros et al.,
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2016) and perform a complete benchmarking of the data

analysis pipeline used. This will highlight various bottlenecks

in the data analysis chain. To address the image decompres-

sion bottleneck, different parallelization schemes have been

developed and are presented in x3.

2. X-ray diffraction imaging: data analysis pipeline

2.1. Beamline hardware

2.1.1. Pilatus3 2M CdTe detector. The ID15a beamline at

the ESRF uses mainly a Pilatus3 2M detector with a 1000 mm

CdTe sensor, manufactured by Dectris (Kraft et al., 2009). The

detector is made up of 8 � 3 Pilatus modules (100 kilopixels

each). Unlike silicon-based sensors, there are two Cd–Te

wafers bump-bound to every single Pilatus module, with a gap

of 3 pixels between the wafers. The gaps between the Pilatus

modules are the same as in the silicon-based detectors,

i.e. 7 pixels vertically and 17 pixels horizontally.

This detector is sold with a detector-PC which is in charge of

compressing and saving the images on the network. This

detector-PC comes with a 10 Gbit s�1 network card and is

directly connected to the data analysis server.

The detector is advertised as operating at 250 frames per

second (fps). Each frame has 2.4 megapixels, stored as 32-bit

integers (the dynamic range is only 20 bit). At full speed, the

raw (uncompressed) stream thus represents 19.2 Gbit s�1 to

transfer. Compression is hence mandatory to transfer the

acquired data through the 10 Gbit s�1 network interface.

Dectris uses the CIF binary format (CBF) (Bernstein &

Hammersley, 2006) for Pilatus detectors with byte-offset

compression which provides a compression factor close to 4�.

An alternative compression scheme used in the novel Eiger

detector is the LZ4 but the compression factor is much less,

around 2� (and variable, depending on the signal of the

detector) which makes this option not applicable for operating

the Pilatus detector continuously over an extended period

of time.

2.1.2. The data analysis computer. The data analysis

computer (Fig. 2) acts as an NFS (network file server) server

over RDMA (remote direct memory access) for optimal

performance with the detector and is directly connected to the

GPFS (general parallel file-system) storage cluster (Schmuck

& Haskin, 2002). This data analysis computer has two Intel

Xeon E5-2643 v3 processors, each with six cores and 20 MB

of cache, and 128 GB of memory. There are additionally two

10 Gbit network cards, a fast Intel P3700 solid-state drive

(SSD) and an Nvidia Titan-X graphics card, all connected on

the PCI-express bus.

2.2. Processing for a diffraction imaging experiment

The pre-processing for diffraction imaging experiments is

typically the azimuthal integration of the whole image with

some mask. The code snippet in Appendix A is a typical

example: each image is read, integrated in a one-dimensional

profile and saved in a HDF5 file [here not following the Nexus

(NIAC, 2003) convention for the sake of concision in this

example].

This code snippet is written in the Python programming

language (van Rossum, 1989) and uses some extra libraries:

(i) H5Py: for accessing HDF5 files in Python (Collette,

2013).

(ii) FabIO: for reading most of the X-ray image formats

(Knudsen et al., 2013).

(iii) PyFAI: for performing the azimuthal integration from

two-dimensional images into one-dimensional profiles

(Kieffer & Karkoulis, 2013).

The function ‘process’ described in this code snippet has

been used for profiling the application (i.e. measuring how

much time is spent in each part of the code). The input data set

is composed of 1202 images in CBF format coming from an

actual experiment on ID15a stored on the SSD. One should

distinguish two cases: when data are only available on the

solid-state disk and when they are available in the cache of the

computer programs
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Figure 2
Data analysis computer with the main interconnections and their
associated bandwidth.

Figure 1
Scheme of an X-ray diffraction tomography setup where the sample can
be translated and rotated in front of a pencil beam. The Debye–Scherrer
rings formed by the diffraction of crystallites are collected by an area
detector, integrated into a powder diffraction pattern and assembled to
create a sinogram, which is computationally back-projected to build the
tomogram.



operating system. The total amount of raw data is 3 GB, so

only the first read can be considered as a ‘cold-start’; subse-

quent reads actually benefit from the cache of the operating

system and should be considered as a ‘hot-start’. To be able to

profile in ‘cold-start’, the disk has been un-mounted and re-

mounted to flush all caches. Each measurement has been

performed five times and the results are reported in Table 1.

Only the median frame rate with the median absolute devia-

tion to this median have been reported in fps (or Hertz).

The first and the third (respectively, second and fourth)

lines report the performance in cold- and hot-start. This allows

us to evaluate the actual read time per frame from the SSD

drive which is 4 ms (respectively, 5 ms).

As a consequence, it is impossible to process images at

250 fps from this SSD as it is not possible to read the

(compressed) data at the required pace. There is an emerging

technology (3D XPoint technology by Intel) for replacing

NAND cells in SSDs which looks promising and should offer

lower latency for acting as a cache for the raw data. As of

today, those drives are not yet available in capacities large

enough for replacing the memory for the kind of temporary

storage needed for beamline application.

As online data analysis has to rely on data ‘living in

memory’ and not read from any drive, the 128 GB of memory

available on the computer represents a cache of about 3 min of

experiment time and thus the data analysis pipeline has to

keep up the pace of the experiment. Profiling ‘precisely’ the

data analysis program is hence of crucial importance.

2.3. Profiling of the data analysis pipeline

The snippet of code from Appendix A presented previously

has been run in a profiler to measure how much time is spent

in every part of the code for a reference data set of 1202

compressed images. The code executes on this reference data

set in 43 s and the three most time-consuming parts are: the

azimuthal integration (29 s), the byte-offset decompression

(4.9 s) and the checksum calculation (4.7 s). The checksum

verification is optional in CBF and may simply be ignored.

The azimuthal integration was originally performed on the

processor and could be offloaded to the graphics card, which

lowers azimuthal integration time to 13 s. As described by

Kieffer & Ashiotis (2014), most of the time for azimuthal

integration on a graphics card is spent on the transfer of the

raw image to the device. To speed up the azimuthal integra-

tion, the best option would be to transfer less data to the

graphics card, i.e. the compressed data, and decompress them

on the GPU. Until now, this approach has still been challen-

ging for unmodified compressed formats (Sitaridi et al., 2016).

The bottleneck of byte-offset decompression remains; this

algorithm will be described in detail in the next section and

analysed.

3. Optimizing the decompression of CBF images

3.1. Decompression on the processor

The core idea of the byte-offset compression is to encode

only the difference value between two adjacent pixels and

hope this value is small enough to fit in an 8-bit (signed)

integer, i.e. in the range�127 to +127. Larger values are coded

with a special value (�128) which indicates an exception and

the subsequent 2 bytes are decoded as a 16-bit integer in little-

endian order. If the value does not fit in a 16-bit integer, a 32-

bit exception is signalled (with value �32768) and the actual

value is coded over the next 4 bytes as a 32-bit little-endian

integer. Hence, each value can be coded with a variable size of

1, 3 (= 1 + 2) or 7 (= 1 + 2 + 4) bytes, which makes it very

difficult to decompress in a parallel fashion.

Since 2004, processors have been running at a maximum

speed of about 4 GHz. This means that a serial algorithm like

the byte-offset decompression described previously runs at the

same speed on a high-end computer as it would on a 13 year-

old computer. Parallelization is the only way to get the

processing done faster and a couple of strategies have been

explored and will be presented.

3.2. Pool of workers strategy

A classical strategy in parallel computing is to attribute one

type of computation to a given compute engine. With azimu-

thal averaging already being executed on the graphics card, it

is natural to devote the image decompression to the central

processor (CPU).

Unlike lower-end (disk) drives, where the data access is

serialized, the SSD used in this experiment is interfaced in

PCI-express using the NVME protocol (Xu et al., 2015) which

allows thousands of parallel accesses for reading and writing.

We validated that the performance is actually better when the

read step is performed with multiple threads rather than

sequentially on this hardware.

A pool of workers (Fig. 3) is set up using multiple threads

for reading and decoding the data. The number of workers

in this pool is the parameter that needs to be optimized

computer programs
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Table 1
Average performance (in fps) for the azimuthal integration of 1202
Pilatus3 2M CdTe images saved in CBF format read from SSD (or from
memory) on a dual Xeon E5-2642v3 with an Nvidia Titan-X graphics
card.

Median over five runs and median deviation to the median.

Strategy Readers Integrator
Data
source

Median
speed
(fps)

Deviation
(fps)

Sequential CPU CPU SSD 28.2 0.3
Sequential CPU GPU SSD 53.1 1.4
Sequential CPU CPU MEM 31.6 0.9
Sequential CPU GPU MEM 74.6 1.3
Pool 1 GPU MEM 167 3
Pool 2 GPU MEM 192 7
Pool 3 GPU MEM 155 5
Pool 4 GPU MEM 190 4
Pool 6 GPU MEM 168 18
Pool 12 GPU MEM 121 4
Pool 24 GPU MEM 88 2
OpenCL GPU GPU MEM 253 2



depending on the computer, especially as a function of the

number of processors, of cores and the amount of cache

available. The list of files to be processed is distributed to the

pool of readers via a parallel queue. The code snippet used for

profiling is reproduced in Appendix A. Each worker, which is

implemented as a thread, loops over input filenames it gets

from the input queue. This queue guarantees that each file is

processed once, regardless of which worker does the job. After

reading the file and decompressing the data, each worker puts

the image into the output queue. Later on, azimuthal inte-

gration and data saving, using HDF5, are again performed

sequentially. As the order of the filenames in the input queue

can be different from the order of the images in the output

queue, due to parallel processing, it is important to propagate

the index associated with each filename or frame.

Table 1 provides the number of frames processed per

second when processing the sample set of frames and varying

the size of the pool of readers: 1, 2, 3, 4, 6, 12 and 24 workers,

all data being already in memory (hot-start). This number has

to be compared with the frame rate of the detector of interest:

250 fps. The performance of the linear pipeline is given as a

comparison; in this case the data can be read from the disk

(Intel P3700 SSD, cold-start) or are already available in the

memory, cached by the operating system (Linux).

It is noticeable that the optimal performance is reached

with a number of workers in the pool much lower than the

number of cores of the computer: two or four readers is

optimal while the computer has 2 � 6 cores. There are

multiple reasons for this:

(i) The main thread is also working: it controls the azimu-

thal integrator and the saving of the reduced data in HDF5

format.

(ii) The amount of cache of each processor, which is 20 MB,

has to be compared with the 2.5 + 10 MB for each frame

(encoded + decoded). More readers means less CPU cache for

each of them which is detrimental to the performance.

(iii) Python threads are serialized via the ‘global interpreter

lock’, called GIL. While most of the processing performed is

done in the ‘no-GIL’ section, more threads makes it more

likely that they will be fighting each other for acquiring

the GIL.

It is frustrating to have a powerful parallel processor on the

graphics card and see the total performance limited by the file

decompression which is purely serial.

3.3. Parallel decompression of CBF images

This section gives an overview of an implementation of the

byte-offset decompression on massively parallel processors

like graphics processors (GPU) using the OpenCL (Stone et

al., 2010) programming language. In those devices, threads are

grouped in ‘work groups’ of a given size. All threads from a

work group perform the same sequence of operations on

different data (in a single instruction, multiple data way).

This is called a ‘kernel’ and looks like a function written in

C language.

Parallel decompression of byte-offset may be divided into

the following steps (Fig. 4), each of them being divided into

one or two kernels called subsequently:

(i) Search for exceptions in the input stream (marked with

the value �128) and register them. Other ‘normal’ pixel-to-

pixel difference values are simply decoded and stored.

(ii) Process all registered sections of contiguous exceptions

in parallel to decode them and store their value. Here the

work-group size is one, so a single thread is processing a

complete section of adjacent exceptions and multiple threads

computer programs
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Figure 4
CBF decompression in parallel: step-by-step description of input and
output buffers for each step (kernel). Bold values indicate values that
have been changed in the previous step. The grey region corresponds to
values longer than 1 byte which need to be sieved out in in the final step.

Figure 3
Workflow for the data reduction of an XRD-CT experiment using the
pool of workers pattern.



are processing multiple sections in parallel. If a thread starts

in the middle of a section of contiguous exceptions, it does

nothing as this section has to be processed by the thread which

starts at the beginning of this section of contiguous exceptions.

(iii) Compute the cumulative sum of previously stored

pixel-to-pixel difference values. This is performed using a

‘prefix-sum algorithm’ (Blelloch, 1989).

(iv) Compute the position of each value (in the output

array) using the prefix-sum algorithm: a valid pixel position is

set to one in the input and the other remains at zero. This

algorithm provides the output pixel position for any input

position. Technically the two prefix-sums are performed

simultaneously in our implementation for better performance.

(v) Copy the reconstructed values at the proper place in the

output array, optionally with a conversion to floating-point

value to ease subsequent processing.

The implementation of this algorithm is available as part of

the silx (Sole et al., 2015–2017) library and will be part of the

version 0.7. While GPUs targeted by this implementation have

thousands of cores, this algorithm remains valid regardless

of the number of cores. Our implementation, based on

pyOpenCL (Klöckner et al., 2012), has been validated on

different architectures like Nvidia GPUs, integrated graphics

processors (Intel Iris) found in laptops and multi-core

processors (Intel, AMD and Apple OpenCL drivers).

The strength of this approach resides in the limited amount

of data to be sent to the GPU memory, which allows decom-

pression and integration to be performed on the device

without additional transfer over the PCI-express bus (which is

the bottleneck for pyFAI).

The performance of this parallel decompression of CBF

images on a high-end GPU has been compared with the serial

implementation. For large images that do not fit in the cache

memory of the processor (typically for the Pilatus 6M images),

the speed-up of this GPU version is important (10�). For

smaller images, where data fit in the processor cache, the serial

algorithm performs very well on the CPU, and hence the

speed-up of the parallel version is rather limited (+50%).

Nevertheless, the combination of the parallel CBF decom-

pression with azimuthal integration on the graphics card

allows us to exceed the 250 fps imposed by the detector as

reported on the last line of Table 1. Moreover, this parallel

implementation naturally benefits from advances in graphics

card processors (i.e. more cores and faster memory): the same

benchmark has been performed on a desktop computer with

only one processor (Xeon 1650v3) instead of two, with less

cache (15 MB instead of 20 MB), half the memory (64 GB

instead of 128 GB) and a more recent, cheaper graphics card

(Nvidia GTX 1080Ti instead of Titan-X). This desktop

computer out-performed the server with more than 300 fps for

this benchmark. This parallel algorithm is not only faster than

the serial version, it is also much more stable in performance

as the variability (expressed as the median of absolute

difference to the median value) is only 2 fps on the GPU and

twice more for the pool of workers pattern. The stability of the

performance on the GPU can be explained by the dedication

of the graphics card to this calculation.

4. Outlook

To be able to interconnect the decompressed data obtained in

the silx library with the azimuthal integrator provided by

pyFAI, without transferring the data back and forth from the

device to the processor, the silx team implemented a way

to exchange memory objects located on the graphics card

between libraries. These results show the validity of the

concept which paves the way to interconnecting different

algorithms including image analysis and tomography algo-

rithms which are available as part of the silx library. In pyFAI,

a couple of advanced statistical analysis tools, recently ported

to OpenCL like median filtering in two-dimensional inte-

grated data and sigma-clipped average, could also be good

candidates for this kind of direct interconnection.

The other strength of this approach is that it hides

completely the complexity of byte-offset decompression with

a simple ‘decompression object’. In the GPU-based code

snippet (Appendix A) this ‘decompression object’ is called

‘bo’. The GPU-base code snippet is equivalent to the

sequential one (Appendix A); it is only a few lines longer and

uses the same strategy.

5. Conclusion

Processors used for data analysis hit the power wall more then

a decade ago. Since then, no noticeable increase in perfor-

mance has been seen on sequential algorithms, causing a

bottleneck in the processing pipeline for many beamlines,

especially those doing diffraction imaging. To be able to cope

with the stream of data coming from a modern detector,

today’s fastest SSD drives are not (yet) fast enough to act as an

effective cache and the data should best be kept in memory.

Two types of parallelization have been evaluated to speed up

the processing. The ‘pool of workers’ strategy has been eval-

uated for reading and decoding different images in parallel on

different cores. It provides additional performance compared

with the serial implementation but the speed is not propor-

tional to the number of cores of the computer, probably due to

cache congestion.

The first parallel implementation of the byte-offset

decompression algorithm is also presented. Leveraging the

performance of recent graphics cards, this code allows the

reduction of data for a diffraction imaging experiment

performed at full speed with a Pilatus3 2M detector (250 Hz),

in real time. Moreover this implementation is even faster on

newer hardware.

APPENDIX A
Figs. 5 to 7 give code snippets used for profiling the

performances of three approaches presented in this work.

Fig. 5: sequential decompression and azimuthal integration.

Fig. 6: pool of reader with a sequential integration.

Fig. 7: GPU-based decompression and azimuthal integration.

computer programs
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