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A sparse supervised learning approach for dynamic sampling (SLADS) is

described for dose reduction in diffraction-based protein crystal positioning.

Crystal centering is typically a prerequisite for macromolecular diffraction at

synchrotron facilities, with X-ray diffraction mapping growing in popularity as

a mechanism for localization. In X-ray raster scanning, diffraction is used to

identify the crystal positions based on the detection of Bragg-like peaks in the

scattering patterns; however, this additional X-ray exposure may result in

detectable damage to the crystal prior to data collection. Dynamic sampling, in

which preceding measurements inform the next most information-rich location

to probe for image reconstruction, significantly reduced the X-ray dose

experienced by protein crystals during positioning by diffraction raster scanning.

The SLADS algorithm implemented herein is designed for single-pixel

measurements and can select a new location to measure. In each step of

SLADS, the algorithm selects the pixel, which, when measured, maximizes the

expected reduction in distortion given previous measurements. Ground-truth

diffraction data were obtained for a 5 mm-diameter beam and SLADS

reconstructed the image sampling 31% of the total volume and only 9% of

the interior of the crystal greatly reducing the X-ray dosage on the crystal.

Using in situ two-photon-excited fluorescence microscopy measurements as

a surrogate for diffraction imaging with a 1 mm-diameter beam, the SLADS

algorithm enabled image reconstruction from a 7% sampling of the total volume

and 12% sampling of the interior of the crystal. When implemented into the

beamline at Argonne National Laboratory, without ground-truth images, an

acceptable reconstruction was obtained with 3% of the image sampled and

approximately 5% of the crystal. The incorporation of SLADS into X-ray

diffraction acquisitions has the potential to significantly minimize the impact of

X-ray exposure on the crystal by limiting the dose and area exposed for image

reconstruction and crystal positioning using data collection hardware present in

most macromolecular crystallography end-stations.

1. Introduction

X-ray diffraction (XRD) at synchrotron facilities is the most

widely used approach for generating high-resolution struc-

tures of macromolecules. Synchrotron and X-ray free-electron

lasers exhibit much higher fluxes and tighter localization than

benchtop sources, allowing for substantial improvements in

signal-to-noise and total analysis time. A key step in this

pipeline is accurately positioning the protein crystal prior

to diffraction analysis. Challenges in crystal positioning are

exacerbated by current trends towards serial crystallography

and nanocrystal analysis using synchrotron sources and fixed
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targets, in which the reduced dimensions of the protein crys-

tals present challenges for conventional imaging approaches

(Aishima et al., 2010; Andrey et al., 2004; Cherezov et al., 2009;

Moukhametzianov et al., 2008; Pothineni et al., 2006; Stepanov,

Hilgart et al., 2011). Positioning becomes even more challen-

ging when the crystals are in a turbid medium such as lipidic

mesophase, in which techniques currently in use for crystal

detection, i.e. bright-field imaging (Andrey et al., 2004; Jain &

Stojanoff, 2007; Pothineni et al., 2006) and UV fluorescence

imaging (Pohl et al., 2004; Pothineni et al., 2006; Vernede et al.,

2006), routinely offer poor discrimination between a crystal

and its surroundings.

Nonlinear optical imaging methods are particularly

promising as they are capable of detecting protein crystals

rapidly through turbid media without inducing damage from

X-rays or UV radiation (Kissick et al., 2010, 2011). This

multimodal nonlinear optical microscope combines comple-

mentary optical imaging techniques, such as second-harmonic

generation (SHG), two-photon-excited ultraviolet fluores-

cence (TPE-UVF), two-photon-excited fluorescence (TPEF),

single-photon visible fluorescence and laser transmittance

bright-field imaging, in a single platform (Newman et al.,

2016). SHG, or the frequency doubling of light, provides

contrast for noncentrosymmetric crystalline material, with no

signal for amorphous protein aggregate (Kissick et al., 2010).

In TPE-UVF, a 532 nm laser is used to excite fluorescence

from aromatic residues in proteins such as tryptophan

(Madden et al., 2011). TPEF and single-photon fluorescence

provide an additional complimentary fluorescence mechanism

able to detect proteins with color centers, as well as proteins

which may have undergone oxidation (Padayatti et al., 2012).

A recent study also suggests that, under cryogenic conditions,

TPEF can excite intrinsic fluorescence from cryogenically

stabilized conjugated double bonds within a protein (Lukk et

al., 2016). However, an instrument with these capabilities has

only been implemented at one beamline (Madden et al., 2013;

Newman et al., 2016), limiting widespread access.

X-ray rastering has found the widest use as it requires no

additional hardware other than that already in place for

diffraction analysis (Cherezov et al., 2009; Hilgart et al., 2011;

Song et al., 2007; Stepanov, Hilgart et al., 2011; Aishima et al.,

2010). With the emergence of high-speed direct-detection

array sensors, raster scanning can be performed in reasonable

timeframes for manual and automated crystal positioning

(Broennimann et al., 2006). In this method, diffraction is used

to identify the crystal positions based on the detection of

Bragg-like peaks in the scattering patterns. However, this

additional X-ray exposure prior to data collection has the

potential to contribute to crystal damage (Dettmar et al.,

2015). X-ray exposure can produce both specific damage (e.g.

to disulfide bonds) (Burmeister, 2000; Holton, 2009; Nave &

Garman, 2005) and global loss in diffraction power (Holton,

2009; Garman, 2010). Although X-ray rastering can be

performed on smaller crystals it requires a beam with a higher

flux and smaller diameter, increasing both the overall

measurement time and the X-ray exposure to the crystals

(Sanishvili et al., 2011). In principle, one could avoid such

complications by solving the structures directly from the data

acquired from raster scanning over many crystals at fixed

orientations. Even with a single orientation per diffraction

pattern, data can be merged from the pool to recover protein

structure, as is now regularly carried out in diffraction

measurements using X-ray free-electron laser sources

(Schlichting, 2015; Martin-Garcia et al., 2016). Alternative

sampling strategies with synchrotron sources span between

the extreme cases of one orientation each with many crystals

to full data sets on single crystals. However, in practice X-ray

damage typically extends significantly beyond the exposed

region of targeted analysis under cryogenic conditions, such

that samples in neighboring voxels can still suffer damage

prior to analysis for all these sampling strategies.

The advantages of reduced total X-ray exposure prior to

data collection are even more pronounced in room-tempera-

ture data collection. In these cases, free radicals produced by

photoelectrons can migrate over much longer distances than

in measurements under cryogenic conditions. Exposures of

regions void of proteins still produces radicals that can result

in loss of protein integrity and diffraction resolution, even

when the exposures are tens of micrometers or more away

from the protein crystal locations (Warkentin et al., 2013).

An adaptation of X-ray rastering is proposed here, in which

dynamic sampling greatly reduces the X-ray exposure of the

crystals prior to data collection. In brief, the set of preceding

localized diffraction measurements are used to select the next

most informative location for diffraction scanning image

reconstruction, such that crystals can be localized with a much

smaller net X-ray exposure of the sample. Ground-truth

diffraction data were obtained for a 5 mm-diameter beam and

were in excellent agreement with higher-resolution posi-

tioning measurements carried out using TPEF and SHG. The

supervised learning approach for dynamic sampling (SLADS)

was assessed for crystal localization to reduce both the total

dose to the sample and the specific dose to the crystals. The

anticipated reductions in exposure were also assessed for

measurements with a 1 mm beam diameter using TPEF images

as surrogates for XRD with a 1 mm-diameter beam. SLADS

was then implemented, without ground-truth images, into a

beamline at Argonne National Laboratory.

2. Experimental methods

Full length mCherry was cloned into pGEX6P1 and trans-

formed into Rosetta cells using standard cloning protocols.

Cells were grown to an optical density of 0.4–0.6 and induced

by the addition of 200 mM IPTG, at which point the

temperature was decreased to 18�C for 16–18 h. The cultures

were harvested by centrifugation and lysed via a French press.

Resulting lysates were then cleared by centrifuging at 100000g

for 1 h and the protein purified following standard GST

purification protocols. The sample was further purified by size-

exclusion chromatography and concentrated to 20 mg ml�1 to

be used in crystallization experiments. The crystals used in

these studies were grown using both sitting drop and hanging

drop vapor diffusion methods in mother liquor containing
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100 mM Tris pH 8.0, 100 mM sodium acetate and 30% PEG

4000 at room temperature, as has been previously reported

(Shu et al., 2006). The crystals grew over the course of 1–4 d

and formed large clusters of rod-shaped crystals, which would

eventually be broken apart for individual experiments.

Lysozyme crystals were grown using a Hampton lysozyme

kit; 20 mg of lysozyme was solubilized in 1 ml of 0.02 M

sodium acetate trihydrate, pH 4.6 (HR7-108). Crystals were

grown by hanging drop vapor diffusion using the reagent 30%

(w/v) polyethylene glycol monomethyl ether 5000, 1.0 M

sodium chloride and 50 mM sodium acetate trihydrate pH 4.5

(HR2-805).

XRD raster scan images were acquired for mCherry crystals

looped and cryo-cooled. XRD raster images were acquired

using the 5 mm minibeam collimator with a 5 mm � 5 mm cell

size. Total X-ray exposure time was 1 s unattenuated inte-

grating over a 1� rotation of the sample during the raster scan

acquisition. In total, 3200 cells were interrogated corre-

sponding to an area of 200 mm � 400 mm over a period of 4 h.

Dynamic sampling of the lysozyme crystals was performed

using a 5 mm collimator with a total X-ray exposure of 0.1 s per

sampled pixel with 20� attenuation and no integration over

rotation angles. During SLADS data acquisition, calculation

of the optimal position for subsequent sampling was

completed in approximately 1 ms. Random access time per

pixel averaged 1 s.

Diffraction raster in JBluIce (Stepanov, Makarov et al.,

2011) currently employs the program DISTL (Zhang et al.,

2006). DISTL is a part of the package LABELIT (Sauter et al.,

2004), which estimates potential Bragg candidates. There are

three steps involved: (i) isolating diffraction-like peaks from

the background in a diffraction image considering the noise

variability in the local environment; (ii) validating the isolated

peaks from the rejection of possible sources of ice-rings, salt

particles or crystal disorder, and (iii) gauging

size and shapes of each peak. DISTL estimates

diffraction peaks more quickly than full-blown

indexing and processing of diffraction data

[normally performed with programs such

as XDS (Diederichs, 2006; Kabsch, 2010),

MOSFLM (Leslie & Powell, 2007), HKL2000

(Minor et al., 2000)].

The nonlinear optical images were acquired

using an integrated multi-modal nonlinear

optical microscope system at The National

Institute of General Medical Sciences and

National Cancer Institute Structural Biology

Facility beamline 23-ID-B at the Advanced

Photon Source (GM/CA@APS) as described

previously (Madden et al., 2013; Newman et al.,

2016). A Fianium FemtoPower 1060 ultrafast

fiber laser was utilized to generate �160 fs

pulses centered at �1060 nm, with a 50 MHz

repetition rate. The maximum laser power sent

to the sample was �90 mW. SHG, TPE-UVF,

TPEF and fluorescence signals were collected

with a 25 mm lens and then separated from the

fundamental by a dichroic mirror. The TPEF and fluorescence

signals were separated from the SHG and TPE-UVF by a

second dichroic mirror and detected using a photomultiplier

tube (PMT). The SHG and TPE-UVF were then separated

from each other by a third dichroic mirror and detected by

two separate PMTs. The 512 � 512 SHG, TPE-UVF, TPEF,

fluorescence and bright-field images were acquired concur-

rently using a PCI Express Digitizer (ATS9440, AlazarTech).

3. Theoretical methods

In dynamic sampling a new measurement location is selected

using previous measurements. The different dynamic sampling

methods in the literature differ primarily in the definition of

a measurement and in the criteria used for measurement

selection. For this application, dynamic sampling for XRD, the

supervised learning approach for dynamic sampling (SLADS)

algorithm, presented by Godaliyadda et al. (2016) and illu-

strated in Fig. 1, was used.

SLADS was selected primarily because it is designed for

single-pixel measurements and has shown potential for

measurement selections on application similar to XRD such as

electron backscatter diffraction (Godaliyadda et al., 2016).

In the following simulations, reconstructions with normalized

distributions, defined in equation (9), below 4 � 10�3 were

achieved by acquiring just 7–30% of all available measure-

ments within the image. Furthermore, SLADS can select a

new location to measure in 1–50 ms a practical timescale for

high-throughput XRD raster scanning. The theory of the

SLADS algorithm follows.

To explain the formulation of SLADS, the underlying

object is denoted as X 2 RN. Here, N is the number of pixels

in X. Now assume that k measurements have already been
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Figure 1
Illustration of the SLADS algorithm. The inputs to the function are initial measurements
and the parameters from training. SLADS runs until a predefined stopping condition is met.



acquired at a set of locations S = sð1Þ; sð2Þ; . . . ; sðkÞ
� �

. These

measurements are an N � 2 matrix Y ðkÞ,

Y ðkÞ ¼

sð1Þ;Xsð1Þ

..

.

sðkÞ;XsðkÞ

2
64

3
75; ð1Þ

where XsðiÞ refers to the value of pixel location sðiÞ. The goal is

to find the location sðkþ1Þ that most reduces the reconstruction

distortion. This reconstruction distortion is a value quantifying

the difference between the underlying image and the recon-

structed image, e.g. the number of pixels in the reconstruction

that do not match their corresponding pixels in the underlying

image. The distortion between the images X and X̂X ðkÞ, the

image reconstructed using Y ðkÞ, is defined as D X; X̂X
� �

, where

D X; X̂X
� �

¼
X
r2�

D Xr; X̂Xr

� �
: ð2Þ

For this particular problem where there is a binary image, let

D Xr; X̂Xr

� �
¼

0 if Xr ¼ X̂Xr;
1 if Xr 6¼ X̂Xr:

�
ð3Þ

Assuming another measured pixel s, then presumably X̂X ðk;sÞ

which is the reconstruction performed using the measurement

Xs and Y(k) is a better estimate of X when compared with X̂X ðkÞ.

Hence, the reduction in distortion can be defined after the

location s is measured as

Rðk;sÞ
¼ D

�
X; X̂X

ðkÞ
�
�D

�
X; X̂X

ðk;sÞ
�
: ð4Þ

However, as the underlying image, X, is unknown during

image acquisition, the expected reduction in distortion

(ERD), �RRðk;sÞ, for every pixel can be computed, which is given

by

�RRðk;sÞ
¼ E

	
D
�

X; X̂X
ðkÞ
�
�D

�
X; X̂X

ðk;sÞ
�


Y ðkÞ

�
: ð5Þ

Then the location of the next measurement sðkþ1Þ is given by

sðkþ1Þ
¼ arg max

s2 �\Sf g

E

	
D
�

X; X̂X
ðkÞ
�
�D

�
X; X̂X

ðk;sÞ
�


Y ðkÞ

�� �
; ð6Þ

where � is the set of all locations in the image. The pixel which

corresponds to the largest ERD is then sampled.

Now in order to compute the ERD during dynamic

sampling, a relationship between the measurements and the

ERD must be found. In SLADS, this relationship is a simple

regression function that is computed using an offline training

process. In order to reduce computation time during training

the reduction in distortion is approximated by

RðsÞ �
X
r2�

hðsÞr D Xr; X̂Xr

� �
: ð7Þ

Here hðsÞr is defined as

hðsÞr ¼ exp �
c

2 �ðsÞð Þ
2

r� sk k
2

� �
; ð8Þ

where �ðsÞ ¼ min
t 2 S

�
ks� tk2

�
. The reasons behind choosing this

particular approximation and the need for it are also detailed

by Godaliyadda et al. (2016). In training, a linear relation

between R2 and Y ðkÞ is found and this learned relation is used

to compute the ERD. The ERD can then be computed in real

time during dynamic sampling and, as a result, a new sampling

location can be found in 1–10 ms for the measurements herein

using a 5 mm-diameter X-ray beam.

The SLADS algorithm also incorporates a stopping condi-

tion that allows sampling to stop when a desired reduction in

distortion has been achieved. If the underlying image is

known, dynamic sampling can be stopped when the normal-

ized distortion (ND) is below a threshold T, i.e. when

1

�j j
D X; X̂X

ðkÞ
� �

� T: ð9Þ

However, as the image is unknown, the ND cannot be

computed. Therefore, the recursion computed shown below at

each step of SLADS and a threshold were set instead,

"ðkÞ ¼ ð1� �Þ"ðk�1Þ þ �D XsðkÞ ; X̂X
ðk�1Þ

sðkÞ

� �
� ~TTðTÞ: ð10Þ

This threshold ~TTðTÞ was computed during training so as to

correspond to a desired normalized distortion level T. The

procedure to find this threshold ~TTðTÞ is also described by

Godaliyadda et al. (2016).

4. Results and discussion

Dynamic sampling experiments were performed directly on

ground-truth X-ray diffraction data as well as nonlinear

optical images serving as high-resolution surrogates for crystal

position. Analyses are included both for a 5 mm-diameter

beam in x4.1 consistent with the ground-truth diffraction data,

as well as for simulations corresponding to a 1 mm-diameter

beam using the nonlinear optical measurements as surrogates

for diffraction images in x4.2. When implemented into the

beamline at Argonne National Laboratory, SLADS ran

without a ground truth, x4.3. A comparison of SLADS with

conventional approaches can be found in x4.4.

4.1. SLADS experiment on 5 mm XRD images

In the previous section, it was mentioned that SLADS

requires training using representative images with known

positions. As the final reconstructions are not particularly

sensitive to the nature of the training images, surrogates were

created for the XRD images by modifying high-resolution

TPEF measurements of protein crystals [Figs. 2(a) and 2(c)].

The TPEF images for training were acquired at a resolution of

1 mm, but the ground-truth image had a resolution of 5 mm.

Therefore, first the 1 mm resolution image was downsampled

by a factor of five to create an image that corresponds to

measurements made at 5 mm resolution. In order to correct for

aliasing artefacts that result from direct decimation the image

was smoothed using a low-pass filter and converted to a binary

image resulting in Fig. 2(b). The SLADS algorithm also

requires more images to find the stopping condition. For this

purpose, the same procedure was implemented on the image
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shown in Fig. 2(c) to create another image that corresponds to

measurements made at 5 mm resolution (Fig. 2d).

For crystal positioning prior to diffraction data collection,

the measurement objective was squarely focused on locating

the presence or absence of a crystal, such that the training

images were converted into binary images corresponding to

the presence or absence of protein-like diffraction. For this

purpose, the intensity values of the downsampled TPEF

images used for training were rescaled to an 8-bit intensity

range and binarized based on threshold selection using Otsu’s

method (Sezgin, 2004). This approach maximizes the inter-

class variance and minimizes the intra-class variance between

the two classes in each image (i.e. class 0, crystal absent; class 1,

crystal present). Next, the average between them was

computed to determine the threshold that, when applied to

both downsampled images, created the binarized images,

Figs. 2(b) and 2(d). Fig. 2(b) was used to create the training

database and Fig. 2(d) to find the threshold to stop SLADS.

This same relative threshold (rescaled to the dynamic range of

the diffraction measurements) was implemented to binarize

the XRD image used for testing (i.e. ground truth).

A known ‘ground truth’ diffraction image was obtained

(Fig. 3) for assessing the SLADS algorithm for crystal posi-

tioning. The grayscale brightness in the XRD map in Fig. 3(a)

is proportional to the number of diffraction-like peaks iden-

tified in the original X-ray scattering pattern. With the aim of

using SLADS to identify crystal position, the grayscale image

was converted to a binary map based on a threshold imposed

on the peak counts. The threshold was computed using

training data (explained later in this section). The resulting

binary image (Fig. 3b) consisted of two labels: label 1 (yellow)

for pixels where sample was present and label 0 (green) for

pixels where sample was absent. In this particular experiment

the threshold was 1.6 � 105 counts, total integrated signal for

DISTL, and Fig. 3(b) was used as the ground truth.

For the training phase of this experiment, the smoothing

parameter c in equation (8) was empirically determined to be

8 and the weighted-mode interpolation method described by

Godaliyadda et al. (2016) was used for all reconstructions. To

compute the stopping condition in equation (10), � = 0.006

and the threshold in equation (10) corresponded to an ND

[defined in equation (9)] of 2 � 10�3.

The initial measurement mask was generated using the

haltonset function in MATLAB resulting in a 1% random

sampling of the ground-truth image. Then, the location of each

subsequent measurement was determined according to the

SLADS algorithm also run through MATLAB. The sampling

procedure continued until the stopping condition was met.

The results of the experiment are shown in Figs. 3(c) and 3(d).

These images correspond to when the stopping condition was

met, which in this experiment was when 30.8% of the image

was sampled. Fig. 3(c) shows the locations and measurements

that were acquired (yellow for a crystal pixel and green for a

background pixel), Fig. 3(d) shows the image reconstructed

using the measurements in Fig. 3(c).

As a measure of quality, the ND was calculated, defined

in equation (9), between the ground truth, Fig. 3(b), and the

reconstructed image, Fig. 3(d). The ND when SLADS stopped

was 4 � 10�3 (0–1). The primary goal was to minimize the

X-ray dosage and exposure time experienced by the crystal.

To quantify exposure, the percentage of measurements made
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Figure 3
(a) XRD image of mCherry crystals with accompanying diffraction
pattern. (b) Binary-image ground-truth imageconstructed by setting a
threshold of 5 � 105. (c) Location and measurements that were acquired;
green = background; yellow = crystal; 30.8% of the image was sampled
and 9.03% of the interior of the crystal was measured. (d) Image
reconstructed from SLADS measurements in (c). The ND between the
ground truth in (b) and reconstructed image in (d) was 4 � 10�3.

Figure 2
(a, c) TPEF of mCherry crystal acquired at 1 mm resolution. (b, d)
Synthetic binary XRD image created by thresholding, filtering the TPEF
image using a Gaussian kernel and downsampling the image five times. A
training database for the algorithm was created with (b), whereas (d) was
used to determine a threshold to stop SLADS.



within the sample (excluding the boundaries) was computed

and found to be 9.0%; thereby, limiting the area of the crystal

exposed to potentially harmful radiation before analysis.

4.2. SLADS experiment on 1 mm simulated XRD images

SLADS can also be implemented on higher-resolution

measurement schemes. First, the algorithm was trained on

similar images, once again using TPEF images as surrogates

for diffraction. To construct the training database, the image

shown in Fig. 4(b) was used which was created by thresholding

the image in Fig. 4(a). Again the weighted mode interpolation

method was used for all reconstructions and set c = 8 in

equation (8). Then to find the threshold to stop SLADS, the

image shown in Fig. 4(d) was used. This image was created by

thresholding the image shown in Fig. 4(c). To compute the

stopping condition � was set to 0.001. This � value is different

from the previous experiment. The reason for this discrepancy

is that the value of � is chosen according to the number of

pixels in the image with larger images requiring a smaller �.

Due to the large amount of time it takes to acquire a full

high-resolution (pixel size �1 mm) XRD image and the high

value of beam time at facilities delivering 1 mm high-flux

beams, a simulated ‘ground-truth’ XRD image was created

using an already available high-resolution TPEF image with

similar spatial resolution. The original TPEF image is shown in

Fig. 5(a) and the simulated image created by thresholding this

image is shown in Fig. 5(b). Once more, the threshold for

creating the binary image was carried out by applying Otsu’s

method on the training images.

The results of the SLADS sampling are shown in Figs. 5(c)

and 5(d). Fig. 5(c) shows the locations and measurements that

were acquired, Fig. 5(d) displays the image reconstructed

using the measurements in Fig. 5(c). In this experiment,

SLADS stopped when just 6.7% of the image was sampled

and the ND between the reconstructed image, Fig. 5(d), and

ground truth, Fig. 5(b), was approximately 1.7 � 10�3.

Furthermore, only 11.5% of the interior of the crystal was

sampled; therefore, limiting the area of the crystal exposed to

X-rays before analysis.

4.3. Proof of concept: SLADS implementation at Argonne
National Laboratory

In the previous two sections, simulations of dynamic

sampling were performed on images that were already

collected to demonstrate proof of concept. SLADS was then

incorporated into the software at Argonne National Labora-

tory and run without ground-truth images.

Two experiments were performed: the same lysozyme

crystal was used and the loop imaged at two positions defined

at 0� and 90�. Both experiments were initialized by sampling

first 1% of the image using low-discrepancy (pseudo

sequence) sampling, then SLADS took over until 3% of the

image was sampled.

The results are shown in Fig. 6 and the acquired videos with

overlaid reconstruction (carried out after the acquisition) are

shown in Videos S1 and S2 of the supporting information,

whereas a bright-field image of the looped crystal is shown in

Fig. S1. Figs. 6(a) and 6(b) shows the results for 0� orientation

and Figs. 6(c) and 6(d) when the sample is rotated by 90�.

Figs. 6(a) and 6(c) show the measured images, yellow for a
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Figure 4
(a) TPEF image of mCherry crystals, (b) thresholded image for use as
training set, (c) TPEF of mCherry crystals and (d) thresholded image to
find stopping condition.

Figure 5
(a) TPEF image of mCherry crystals. (b) Synthetic image created by
thresholding the image in (a) and used as ground truth for reconstruction.
(c) Location and measurements that were acquired; green = background;
yellow = crystal; 6.7% of the image was sampled and 11.5% of the interior
of crystal was measured. (d) Image reconstructed from SLADS
measurements in (c). The ND between the ground truth in (b) and
reconstructed image in (d) was 1.7 � 10�3.



crystal and green for no crystal, and Figs. 6(b) and 6(d) show

the reconstructed images. From these figures it is clear that the

positions of the crystals can be found by sampling just 3% of

the total image and approximately 5% of the crystal.

4.4. Comparison of SLADS and conventional approaches

In terms of X-ray exposure prior to data collection, SLADS

significantly decreases dosage when compared with raster

scanning; where raster scanning exposes 100% of the sample

to X-rays, SLADS resulted in only 9.0% of the crystal being

sampled using the 5 mm-diameter beam in simulations and

only approximately 5% of the crystal sampled in real systems.

Furthermore, those pixels were predominately located on the

edges leaving the central areas of the crystal pristine and

available for data acquisition. Additionally, as the resolution

increases, the potential advantages of SLADS correspond-

ingly remains. In the simulations corresponding to a 1 mm-

diameter beam, the fraction of sampled pixels required to

reliably locate a crystal was only 11.5%.

From the preceding analysis, it should be evident that there

is clearly an interplay between the diameter of the beam

relative to the size and the aspect ratio of the crystal. For the

5 mm-diameter beam measurements, the widths of the crystal

were on average�5� larger than the beam width. In contrast,

the short axes of the crystals were 25-fold greater than the

beam width assuming a 1 mm-diameter beam. When the crystal

size approaches the dimensions of the X-ray beam, the

advantages of dynamic sampling are reduced. In the limit of

crystals comparable or smaller than the X-ray beam, dynamic

sampling provides no benefit as each crystal would comprise a

single pixel. Provided crystals are significantly larger than the

beam, it is clear that the smallest dose to the central portions

of the crystals are achieved with the smallest diameter X-ray

beams. It should also be clear from simple geometric argu-

ments that the exposed fraction of the crystals would be higher

for crystals with high aspect ratios.

In practice, the potential benefits of dynamic sampling may

be offset in part by technical challenges associated with rapid,

random access sampling. With improvements in detectors,

data collection can proceed in as little as a few milliseconds

per frame, whereas goniometers may require 10 ms to 100 ms

to perform random access positioning. In addition, the time-

frame for image transfer and analysis for diffraction-like

peaks, along with the calculations to perform the dynamic

sampling, can increase the overall positioning time relative to

the theoretical limit. However, many of these same constraints

still hold for conventional raster scanning at the majority of

beamlines integrating raster scanning for crystal positioning.

In this context, the advantages associated with reduction in

X-ray exposure prior to data collection may often offset any

increases in measurement and/or analysis time for crystal

positioning, particularly for X-ray labile samples and/or room

temperature data collection.

Several figures of merit are worth noting when comparing

the proposed approach with alternative strategies for crystal

positioning. Whereas SHG and TPE-UVF imaging methods

are faster, have high resolution and do not expose the sample

to any X-ray damage, the number of beamlines currently

equipped with such capabilities is limited to one. Furthermore,

there is a large diversity in SHG activity depending on the

symmetry of the protein crystal, as well as variability in

intrinsic TPE-UVF from the requirement of aromatic amino

acids.

5. Conclusions and future work

The incorporation of the SLADS approach for XRD raster

scanning was demonstrated for protein crystal positioning

with significant decreases in the X-ray dosage experienced

by the crystal. SLADS was found to reduce the exposure

experienced by model protein crystals by a factor of 11 for the

interior fraction when using a 5 mm-diameter X-ray beam

in simulations to position �25 mm-diameter crystals. Good

agreement in crystal position was observed between recon-

structions and ground-truth X-ray diffraction measurements.

Implementation of SLADS at GM/CA allowed automatic

identification of crystal position with an approximately 20-fold

reduction in dose relative to a conventional raster scan. The

crystal positions recovered by SLADS were also in excellent

agreement with locations determined independently by SHG

and TPEF microscopy measurements performed prior to

X-ray exposure. For beamlines not equipped with such

nonlinear optical imaging capabilities, SLADS provides an

alternative that is directly compatible with end-stations
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Figure 6
SLADS implementation at Argonne National Laboratory with lysozyme.
(a) Measured locations for the 0� rotation acquired; green = background;
yellow = crystal; 3% of the image was sampled and approximately 5% of
the interior of crystal was measured. (b) Generated reconstruction from
(a). (c) Measured locations for the 90� rotation acquired; green =
background; yellow = crystal; 3% of the image was sampled and
approximately 5% of the interior of crystal was measured. (d) Generated
reconstruction from (c).



currently capable of performing raster-based crystal posi-

tioning.

Future extensions of the SLADS approach may further

expand upon the capabilities of the measurements. All the

data acquired in the present studies were collected under

cryogenic conditions, in which the extent of X-ray radiation

damage is typically limited to distances only a few micro-

meters from the exposed locations. For room-temperature

data collection, diffusion allows for substantially greater

distances over which exposure results in damage. The

observed reduction in exposure to protein-free regions of

SLADS may be even more advantageous at room temperature

for this reason. In addition, the SLADS approach, as

demonstrated herein, based on binary image reconstruction

provides the location of the crystal, but the quality of

diffraction may vary depending on location within each single-

crystal. In future implementations, grayscale reconstruction

could be performed following crystal positioning in order to

identify likely locations of quality diffractions.
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