
research papers

J. Synchrotron Rad. (2017). 24, 205–219 http://dx.doi.org/10.1107/S1600577516015794 205

Received 18 May 2016

Accepted 6 October 2016

Edited by S. M. Heald, Argonne National

Laboratory, USA

Keywords: X-ray tomographic microscopy;

interior tomography; reconstruction artifacts;

iterative tomographic reconstruction;

gridding method.

Fast iterative reconstruction of data in full
interior tomography

F. Arcadu,a,b* F. Maroneb and M. Stampanonia,b

aInstitute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland, and bSwiss Light Source,

Paul Scherrer Institute, 5232 Villigen, Switzerland. *Correspondence e-mail: filippo.arcadu@psi.ch

This paper introduces two novel strategies for iterative reconstruction of full

interior tomography (FINT) data, i.e. when the field of view is entirely inside the

object support and knowledge of the object support itself or the attenuation

coefficients inside specific regions of interest are not available. The first

approach is based on data edge-padding. The second technique creates an

intermediate virtual sinogram, which is, then, reconstructed by a standard

iterative algorithm. Both strategies are validated in the framework of the

alternate direction method of multipliers plug-and-play with gridding projectors

that provide a speed-up of three orders of magnitude with respect to standard

operators implemented in real space. The proposed methods are benchmarked

on synchrotron-based X-ray tomographic microscopy datasets of mouse lung

alveoli. Compared with analytical techniques, the proposed methods substan-

tially improve the reconstruction quality for FINT underconstrained datasets,

facilitating subsequent post-processing steps.

1. Introduction

The term interior tomography (INT) refers to the problem of

reconstructing an object function, when its support (S) is not a

subset of the field of view (FOV) (Natterer & Wübbeling,

2001). This imaging modality is broadly applied in medical

screening, material science and biology, as it allows high-

resolution investigations of small regions of interest (ROIs).

Since INT projections contain information =2 FOV, recon-

structions with filtered backprojection (FBP) suffer from a

DC shift and low-frequency artifacts (Natterer & Wübbeling,

2001), that compromise the quantitativeness of the results and

make further post-processing, visualization and rendering of

the investigated object complicated (Xiao et al., 2007).

Two different analytical reconstruction methods can

address this problem: the differentiated backprojection (DBP)

and FBP of edge-padded projections (FBP-E). The idea of

DBP (Noo et al., 2004) is to backproject the derivative of the

data and, then, recover the original object by Hilbert trans-

form techniques. This method provides quantitative recon-

structions, when S is known and only specific geometries are

involved: two opposite boundaries of the object are inside the

FOV (Noo et al., 2004); the FOV exceeds the object only from

one side (Defrise et al., 2006); the FOV � S and the attenua-

tion coefficients are known in a subregion R � FOV (Ye et al.,

2007; Kudo et al., 2008; Courdurier et al., 2008). FBP-E (Seger,

2002; Marone et al., 2010; Kyrieleis et al., 2011) corresponds

to FBP of projections, that have been padded with the edge

pixels. This strategy prevents the appearance of low-frequency

artifacts within the reconstructed FOV, although results are

not fully quantitative.
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Iterative methods have also been proposed for INT data-

sets, characterized by low photon statistics and/or with a low

number of views (e.g. low-dose scan). Usually, these under-

constrained datasets cannot be reconstructed with sufficient

accuracy with analytical methods. The separable paraboloidal

surrogate (SPS) (Xu et al., 2011), the maximum-likelihood

expectation-maximization (EM-ML) (Rashed & Kudo, 2013)

and the penalized weighted least square (PWLS) method

(Zhang et al., 2014) have been modified to deal with truncated

projections. In Xu et al. (2011), the regularized SPS is initi-

alized through the projection-onto-convex-sets (POCS)

(Defrise et al., 2006); the knowledge of S, the attenuation

coefficients in one or multiple subregions and the position

of the background pixels are needed for this reconstruction

technique. In Rashed & Kudo (2013), the standard EM-ML is

combined with thresholding, acting on pixels of selected ROIs.

In Zhang et al. (2014), the PWLS is regularized with a

complete high-quality scan of the same object. All these

methods work for very specific (mostly medical) applications

and require a priori knowledge obtained from previous scans.

Iterative reconstruction of INT datasets without knowledge of

either the object support or the attenuation coefficients inside

specific ROIs (case of ‘full’ interior tomography, abbreviated

as FINT) has been initiated by Yu & Wang (2009). In this

work, the authors prove that an iterative scheme working with

total variation (TV) regularization yields a unique recon-

struction of a FINT dataset, in case the object under study is

piecewise constant.

At synchrotron imaging beamlines, time-resolved high-

resolution investigations of a large variety of dynamic systems

spanning different fields [e.g. biology (Walker et al., 2014;

Hesse et al., 2015), material sciences (Aagesen et al., 2010;

Campi et al., 2015), energy research (Ebner et al., 2013; Lu et

al., 2016), earth and environmental sciences (Berg et al., 2012;

Ganne et al., 2012)] are becoming routine. Due to the large

variability of the examined samples and to the large datasets

(several tens of TB) often associated with these experiments,

efficient iterative reconstruction algorithms, not bounded to a

specific application, are highly demanded.

This paper introduces two fast strategies for iterative

reconstruction of FINT data, i.e. the FOV� S, S is unknown as

well as the attenuation coefficients inside specific ROIs of the

FOV. In this regard, the presented results can be considered a

step further on the line of research launched by Yu & Wang

(2009). Differently from previous studies, this work shows the

importance of data pre-processing (either edge-padding or

differentiation) for analytical and iterative reconstruction of

FINT datasets. The proposed iterative strategies are fast and

provide high-quality non-quantitative reconstructions, best

suited for subsequent post-processing and analysis steps (e.g.

segmentation and morphological studies), independently of

the imaged system.

1.1. Contributions

The contributions of this manuscript are summarized as

follows:

(i) Analyze the importance of FINT data pre-processing

through edge-padding and differentiation for analytical and

iterative tomographic reconstruction.

(ii) Introduction of two fast forward gridding projectors for

iterative reconstruction of FINT data: one implements the

derivative of the Radon transform, the other acts as Radon

transform combined with edge-padding (Arcadu et al.,

2016a,b).

(iii) Introduction of the virtual strategy, as a more efficient

alternative to specific forward projectors for INT data. This

strategy is independent of the chosen iterative scheme and

regularization.

(iv) Validation of the proposed methods within the frame-

work of the alternate direction method of multipliers plug-

and-play (ADMP) (Venkatakrishnan et al., 2013), on simu-

lated and real datasets of full interior X-ray tomographic

microscopy.

The edge-padding and virtual strategies studied in this work

are neither bounded to the ADMP nor applicable only to the

case of piecewise constant objects, but they can be utilized

within any kind of iterative reconstruction algorithm and

regularization scheme.

2. Reconstruction artifacts in interior tomography

2.1. Preliminaries

This work focuses on the reconstruction of a two-dimen-

sional slice from line projections acquired in parallel beam

geometry. However, results can be generalized to more

complex tomographic configurations (e.g. fan- and cone-

beam).

The collection of line projections, measured at different

angles � 2 ½0; �Þ, is called a sinogram. The object to be

reconstructed is a finite integrable real function, whose

support, S, is assumed to be compact.

In interior tomography, the object support lies outside the

FOV, i.e. S 6� FOV and S \ FOV 6¼ ;. Different INT config-

urations, listed by Defrise et al. (2006) and displayed in Fig. 1,

have been studied in the literature. The case of full interior

tomography, often characterizing microtomographic scans

(Fig. 1d, FOV � S), is considered in this work.

2.2. Case of analytical reconstruction methods

FBP reconstruction of a FINT sinogram is affected by a DC

shift and low-frequency artifacts (Seger, 2002; Marone et al.,

2010; Kyrieleis et al., 2011), due to the effect of the ramp filter

on truncated projections (Seger, 2002). To clarify this point,

the example discussed by Seger (2002) is reproposed here.

Fig. 2 shows a complete and truncated projection of a

homogeneous circle before and after ramp filtering. In stan-

dard tomography (Fig. 2, left), the filtered projection has a

constant, positive profile in the middle with symmetric nega-

tive tails. Once all projections in ½0; �Þ are smeared back to the

image grid, the circle is filled with constant pixel values and

the negative tails of each projection are zeroed-out by the

positive contributions from all other projections (Fig. 3b). In
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interior tomography, the filtered projection (Fig. 2, right) is

instead everywhere positive, characterized by a bowl-shaped

profile and tails with very high values. After backprojection,

these positive tails are still present, because no negative

compensation in the reconstruction process is possible,

yielding the bowl artifact displayed in Fig. 3(c). The DC

shift and bowl-shaped profile, shown in

Fig. 3(d), can severely compromise the

interpretation/morphological analysis of

reconstructed FINT datasets.

2.3. Case of iterative reconstruction
methods

Although iterative algorithms do not

involve explicit ramp filtering, recon-

structions of FINT data are affected

by the same artifacts as for analytical

methods. Fig. 4 shows an iterative

reconstruction with SPS of the same

sinogram used for Fig. 3(c) and the

corresponding line profile along the

central row. The image is once again

affected by a DC shift and a bowl arti-

fact (Fig. 4b). The reconstruction with

any other iterative algorithm would

present the same problems.

This observation can be explained by the fact that iterative

methods ‘mimic’ the effect of the ramp filter: the reconstruc-

tion after the first iteration corresponds to a blurred version

of the object, similar to the result of backprojection when

omitting the filtering step; after several iterations, the object

research papers

J. Synchrotron Rad. (2017). 24, 205–219 F. Arcadu et al. � Fast iterative interior tomography 207

Figure 2
Illustrative example of the effect of the ramp filter on a single projection in the case of standard and
interior tomography. Notation: F t (F �1

! ) is the (inverse) Fourier transform along the variable t (!);
j!j is the ramp filter; P�ðtÞ is the projection in parallel beam geometry acquired at angle �.

Figure 3
(a) Simulated homogeneous circle: the background pixels are set to 0.0, the pixels inside the circle are set to 1.0. The image size is 512 � 512 pixels. The
dashed red circle identifies the FOV for the interior tomography case. (b) FBP reconstruction of a sinogram with 800 views � 512 pixels in standard
tomography. (c) FBP reconstruction of a sinogram with 800 views� 200 pixels in interior tomography with FOV depicted in (a). The image is zoomed to
have the same dimensions as (a) and (b). (d) Comparison of the line profiles along the segment D, indicated in (a), for the reconstructions shown in (b)
(blue line) and (c) (green line).

Figure 1
Different interior tomography configurations. The black line represents the boundary of the object support S; the red line delimits the FOV. The striped
area identifies S\ FOV. (a) Standard tomography. (b) INT with two opposite sides of @S � FOV (Noo et al., 2004; Zhang et al., 2014). (c) INT with the
FOV exceeding S only from one side (Defrise et al., 2006). (d) Full INT (FINT), where FOV� S (Courdurier et al., 2008; Xu et al., 2011; Rashed & Kudo,
2013; Yu & Wang, 2009). This work focuses on the latter configuration.



becomes sharper, until a similar spatial resolution as for the

FBP reconstruction is reached. This ‘mimicking’ behavior

leads to the same problems characterizing FBP, when dealing

with FINT data.

3. Proposed approach

The proposed approach builds upon existing methods,

extended and combined to address the FINT problem.

Although here for illustration purposes, specific projectors,

iterative scheme and regularization have been chosen, the

proposed strategy is more general and not bounded to these

choices.

3.1. Flexible iterative reconstruction scheme

The alternate direction method of multipliers plug-and-play

(ADMP) (Venkatakrishnan et al., 2013) offers an optimization

framework, where the reconstructive and the regularization

tasks are neatly separated in two subproblems. This structure

allows the direct use of any forward projector for the recon-

structive subproblem and any denoising method for the

regularization subproblem. The ADMP can be viewed as a

particular case of the classical formulation of the alternate

direction method of multipliers (Boyd et al., 2011).

In parallel beam geometry, the tomographic problem for a

piecewise constant object has the following form,

~xx ¼ argmin
x

RðxÞ
��Axi ¼ bi for i ¼ 0; . . . ; nz � 1;

x ¼ xT
0 ; . . . ; xT

nz�1

� �T

2 R
nz�n�n; xi 2 R

n�n;

A 2 Rm�n;n�n; bi 2 R
m�n;

ð1Þ

where m is the number of views, nz is the number of slices, n is

the number of pixels along a row or a column (assuming the

image grid to be square), x is the unknown three-dimensional

object, xi is the unknown ith slice, A is the forward projection

operator (Ay is the adjoint operator or backprojector), b is

the sinogram and R is the functional enforcing the object to

be piecewise constant. The dual variable u is introduced to

transform the constrained optimization problem (1) into

argmin
x;u

Fðx; uÞ ¼ argmin
x;u

1

2

Xnz�1

i¼ 0

Axi � bi

�� ��2

2
þ �RðuÞ

( )

subject to u ¼ x: ð2Þ

The constraint u = x is incorporated in the functional by

augmenting F with an array of multipliers c. In this way, the

following Lagrangian is obtained,

argmin
x;u;c

Lðx; u; cÞ ¼

argmin
x;u;c

1

2

Xnz�1

i¼ 0

Axi � bi

�� ��2

2
þ �RðuÞ þ

�

2
kx� uþ ck2

2

( )
: ð3Þ

The original problem (1) is, therefore, mapped into the mini-

mization of the Lagrangian (3). The ADMP solves (3) by

cyclically minimizing two subproblems with respect to the

variable x and u and by updating the multipliers c until

convergence,

xðkþ1Þ
 � argmin

x

L x; uðkÞ; cðkÞ
� �

uðkþ1Þ
 � argmin

u

L xðkþ1Þ; u; cðkÞ
� �

cðkþ1Þ  � cðkÞ þ xðkþ1Þ � uðkþ1Þ
� �

8>>>>><
>>>>>:

ð4Þ

where the superscript ðkÞ refers to the kth iteration of a

selected variable. The first and third terms of (3) will contri-

bute to the x-subproblem, whereas the second and the third

terms will contribute to the u-subproblem. To explicitly derive

the form of the x-subproblem, the gradient of L with respect

to x is calculated,

R
n�n
3 0 ¼ rxi

L x; uðkÞ; cðkÞ
� �

¼ rxi

1

2

Xnz�1

i¼ 0

Axi � bi

�� ��2

2
þ �

��xi � u
ðkÞ
i þ c

ðkÞ
i

��2

2

� �( )

¼ Ay Axi � bið Þ þ � xi � uðkÞi þ cðkÞi

� �
¼ AyAþ �I
� �

x� Aybþ � u
ðkÞ
i � cðkÞi

� �h i
¼ ~AAx� ~bb: ð5Þ

Since ~AA is symmetric and positive-definite, the conjugate

gradient (CG) technique (Hestenes & Stiefel, 1952) is adopted

to iteratively find the solution of the system ~AAx = ~bb. For the

u-subproblem, it results that

argmin
u

L xðkþ1Þ; u; cðkÞ
� �

¼ argmin
u

n
�RðuÞ þ

�

2
kxðkþ1Þ

� uþ cðkÞk2
2

o
ð6Þ

¼ argmin
u

1

2
ku� ~uuk2

2 þ
�

�
RðuÞ

� 	
:

The last term in (6) corresponds exactly to a denoising

problem, where ~uu represents the input noisy image and � =

�=� is the regularization strength. The form of the u-

subproblem gives the ‘plug-and-play’ qualification to the
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Figure 4
(a) Iterative reconstruction with SPS of the FINT sinogram used also for
Fig. 3(c). (b) Profile of the central line in the iterative reconstruction (a).



ADMP, as the type of denoising can be changed without

altering the structure of the entire algorithm.

The iterative procedure is stopped when the L2-norm of

the relative difference between reconstructions of subsequent

iterations, xðkÞ and xðkþ1Þ, is smaller than a certain threshold,

i.e. kxðkþ1Þ � xðkÞk2
2=kx

ðkÞk
2
2 < " = 0.01. One of the main

advantages of ADMM-type methods is that satisfactory

results in terms of image quality can be achieved after very few

iterations.

For the experiments presented in x4, ADMP with split

Bregman total variation (SBTV) (Goldstein & Osher, 2009) as

plug-and-play regularization has been used. � strongly deter-

mines the quality of the iterative reconstruction since it

controls the trade-off between spatial resolution and noise

removal.

3.2. Fast forward projectors for interior tomography

The DC shift compromises the quantitativity of FINT

reconstructions, but, except for an offset constant throughout

the tomographic slice, the information is preserved. The bowl

artifact leads, instead, to non-quantitative reconstructions

characterized by varying grey level values within homo-

geneous regions and prevents, therefore, any reliable

morphological analysis, unless ‘decupping’ algorithms or

sophisticated segmentation approaches are utilized.

Two analytical methods can be adopted to avoid this bowl

artifact: DBP and FBP-E. Reconstructions with these techni-

ques are non-quantitative, i.e. exact up to an unknown

constant, but can be safely used for image analysis if the

knowledge of the attenuation coefficients in an absolute sense

is not needed, as is often the case. Fig. 5 shows the recon-

struction of a FINT sinogram created from a Shepp–Logan

(SL) phantom using FBP, DBP and FBP-E. The original SL

with 2048� 2048 pixels (Fig. 5a) is forward projected over 800

angles in ½0; �Þ and only the central 512 pixels of the sinogram

are retained. The bowl artifact is visible at the corners of the

FBP reconstruction (Fig. 5c) and in a line profile (Fig. 5f, red).

This artifact is instead not present in the DBP and FBP-E

reconstructions (Figs. 5d, 5e; Fig. 5f, green, black). For the

iterative reconstruction of FINT data, the proposed idea is to

use tomographic forward operators based on the principles of

DBP and FBP-E, i.e. a projector that implements the deriva-

tive of the Radon transform and a Radon transform acting on

edge-padded projections, respectively.

To guarantee fast reconstructions, the forward gridding

projector (FGP) (Arcadu et al., 2016a), that works in the

Fourier space and has a complexity of OðN2 log2 NÞ, has been

selected for this work. Studies conducted by Arcadu et al.

(2016a) showed that the FGP is significantly faster than

standard space-based projectors [complexity of OðN3Þ] (Toft,

1996) and its accuracy results comparable with that of very

sophisticated operators, when used in iterative schemes.

In standard tomography, the FGP works on an oversampled

grid created with zero-padding. For FINT data, the following

modifications of the original forward gridding projector are
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Figure 5
(a) Complete SL phantom. (b) SQRES of the SL phantom. (c) SQRES of the FBP reconstruction. (d) SQRES of the DBP reconstruction. (e) SQRES of
the FBP-E reconstruction. ( f ) Line profiles along segment D. The line profiles in ( f ) show that DBP and FBP-E successfully remove the bowl artifact.
The line profiles are manually shifted along the vertical axis to better distinguish one from another.



proposed: (i) the differentiated FGP (DFGP) (Arcadu et al.,

2016b), that implements the derivative of the Radon trans-

form (still works on an oversampled grid created with zero-

padding) and computes a differential sinogram; (ii) the FGP

combined with edge-padding (FGP-E), i.e. the oversampled

grid is created by edge-padding of the object. If these two

operators are used within the ADMP framework, two iterative

schemes can be defined: ADMP-D implementing the DFGP

and ADMP-E implementing FGP-E.

As a proof of principle, the experiment in Fig. 5 is repeated

with the standard ADMP, ADMP-D and ADMP-E. The bowl

artifact, appearing in the reconstruction with the standard

ADMP (Fig. 6c), is not present in the images computed with

ADMP-D (Fig. 6d) and ADMP-E (Fig. 6e).

Edge-padding has two main advantages with respect to the

differentiated operator. First, the computation of the differ-

ential sinogram by finite differentiation is very likely to

enhance the noise affecting the original sinogram; if a

sophisticate technique is used instead [like the Savitzky–Golay

filter (Savitzky & Golay, 1964)], additional parameters, ruling

the trade-off between noise and spatial resolution, are added

to the reconstruction problem. This argument is valid for both

analytical and iterative reconstructions. Second, the number of

sub-iterations required by the CG step in the ADMP is related

to the conditioning number (CN) of the operator A: for

ADMP-D, A corresponds to the derivative of the Radon

transform; for ADMP-E, A is the Radon transform itself,

having a lower CN than its derivative. It has been experi-

mentally observed that to reach convergence with the same

number of iterations the CG loop of ADMP-D requires at

least 15 sub-iterations, whereas four are enough for the CG

loop of ADMP-E. For these reasons, only ADMP-E is utilized

for the experiments discussed in x4.

3.3. Iterative virtual method

For the iterative reconstruction of FINT data without

a priori knowledge of the object support or of the attenuation

coefficients inside specific ROIs, an alternative four-step

strategy is also proposed: the iterative virtual method

(abbreviated as ADMP-V). The steps of ADMP-V are (Fig. 7):

(i) data reconstruction by an analytical method, like DBP or

FBP-E; (ii) zeroing of all pixels outside the reconstruction

circle; (iii) forward projection of this newly computed image to

obtain a ‘virtual’ sinogram, simulating a non-FINT dataset;

(iv) reconstruction with ADMP using projectors for standard

tomography (FGP, in this case) and using physical constraints

(e.g. zeroing all pixels outside the reconstruction circle at each

iteration). After steps (i), (ii) and (iii), the initial FINT dataset

is transformed into a standard tomographic dataset with

known support, that can be reconstructed with any analytical

or iterative algorithm.
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Figure 6
(a) Complete SL phantom. (b) SQRES of the SL phantom. (c) SQRES of the ADMP reconstruction. (d) SQRES of the ADMP-D reconstruction.
(e) SQRES of the ADMP-E reconstruction. ( f ) Line profiles along segment D. The line profiles in ( f ) show that ADMP-D and ADMP-E successfully
remove the bowl artifact. The line profiles are manually shifted along the vertical axis to better distinguish one from another.



4. Experiments

4.1. Analysis framework

Metrics to assess the reconstruction accuracy are computed

over the square inscribed inside the reconstruction circle

(SQRES). The contrast-to-noise ratio (CNR) is defined as

CNR ¼
jSri1
� Sri2

j

�ri1
þ �ri2

; ð7Þ

where Sri
and �ri

are the mean and standard deviation of the

ROI ri, assumed to be homogeneous. For the computation of

the CNR, ri1 and ri2 must be neighbouring. The values of CNR,

reported in the tables of x4, represent averages over multiple

ROIs at different distances from the image centre.

In the case of simulated data, the peak signal-to-noise ratio

(PSNR) (Huyn-Thu & Ghanbaru, 2008) and the mean struc-

tural similarity index (MSSIM) (Wang et al., 2004) are also

used as figures of merit. Since results are not quantitative due

to the DC shift, a linearly regressed version, Iregr, of the

reconstruction, I, is used as input for the analysis. Calling O

the phantom, Iregr is computed as

Iregr ¼ a � I þ b such that Iregr �O
�� ��2

2
is minimized; ð8Þ

where a; b 2 R. In this way, PSNR and MSSIM scores are not

biased by the DC shift. Edge profiles and histograms are also

displayed to provide additional information about the spatial

resolution and the segmentability of the images. Reconstruc-

tions are mapped to the interval [0, 1] to facilitate the display

and direct comparison of profiles and histograms.

4.2. Data and settings

The phantoms used to generate the simulated data are

displayed in Fig. 8. The first dataset is the SL phantom (Shepp

& Logan, 1974), which is often utilized to validate tomo-

graphic reconstruction algorithms. The second dataset is a

segmented reconstruction of mouse lung tissue and it is

labelled MLT. This phantom is evidently characterized by a

high structural complexity and is related to the real data used

in x4.7. The procedure to create FINT sinograms from a

reference image has been described in x3.2.

The real datasets have been acquired at the TOMCAT

beamline of the Swiss Light Source in the framework of the

SNF project ‘in vivo study of lung physiology with fast X-ray

tomographic microscopy’ (Lovric et al., 2013). The three

sinograms correspond to scans of mouse lung tissue at the
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Figure 7
Diagram showing the steps of the virtual strategy (ADMP-V). (i) Reconstruction with FBP-E. (ii) Zero-out all pixels =2 FOV. (iii) Forward projection to
obtain the virtual sinogram (mv = n�=2). (iv) The virtual sinogram is used as input for ADMP. The �ðanÞ-padding used for FBP-E is coloured in light blue,
whereas the �ðintÞ-padding inside ADMP is coloured in light red.

Figure 8
Phantoms used to generate the simulated FINT sinograms. (a) SL
phantom. (b) MLT phantom.



micrometre scale with an effective detector pixel size of

2.9 mm (MOUSE-1, MOUSE-2) and 1.1 mm (MOUSE-3). The

first two datasets consist of 901 Paganin phase-retrieved

(Paganin et al., 2002) projections and 2016 pixels, whereas the

third one has 501 projections � 2016 pixels.

The regularization strength � (the only free parameter in

ADMP) is tuned so that reconstructions with ADMP-E and

ADMP-V look visually as similar as possible.

4.3. Optimal edge-padding length for analytical and iterative
reconstructions

The edge-padding length rules the trade-off between the

reconstruction accuracy and computational efficiency for both

analytical and iterative reconstruction methods. An insuffi-

cient amount of padding fails at removing the bowl artifact,

whereas an excessive padding substantially increases the

computational cost with insignificant gain in the reconstruc-

tion quality.

In this work, analytical reconstructions of FINT data

are performed by means of the ramp-filtered adjoint FGP-E.

The method, labelled GRID-E, is equivalent to FBP-E. To

improve the signal-to-noise ratio (SNR) of the retrieved

image, projections are additionally windowed with a Hamming

function superimposed on the ramp filter. GRID-E is also

used in the first step of ADMP-V.

When performing analytical reconstructions with GRID-E,

the edge-padding required for the INT dataset and the over-

sampling needed by the gridding backprojector coincide. The

edge-padding or oversampling factor, i.e. the ratio between

the number of pixels of edge-padded and original projections,

used for GRID-E is indicated with �ðanÞ (the superscript stands

for ‘analytical’). Fig. 9 shows the PSNR and MSSIM scores

as a function of �ðanÞ for the reconstructions of a SL and MLT

sinograms with 1500 views � 512 pixels created from initial

phantoms with 4096 � 4096 pixels. The smallest �ðanÞ corre-

sponding to the highest values of both PSNR and MSSIM in

Fig. 9 is 2.32 (marked with a dashed red line).

An iterative reconstruction method utilizing the FGP-E as

forward projector (like ADMP-E) depends on two distinct

edge-padding factors: �ðintÞ (the superscript stands for

‘internal’), corresponding to the oversampling factor required

by each call of the gridding implementations of A and Ay for

both standard and interior tomography; �ðextÞ (the superscript

stands for ‘external’), which is the edge-padding factor

required to address the reconstruction of FINT datasets, can

be considered a simple data extrapolation approach and is

used for the entire duration of the iterative procedure. A

sinogram b, reconstructed by ADMP-E, is first padded by a

factor �ðextÞ, becoming b0 [	 = (number of pixels b0)/(number of

pixels b)]. Then, every time Ay (analogously it works for A) is

invoked inside the CG, b0 is padded again by a factor �ðintÞ,

becoming b00. The second padding is only temporary (since it is

a requirement of the gridding operators) and, once Ay (A) has

completed its own calculation, the resulting image (sinogram)

is cropped to remove the additional �ðintÞ-padding. The �ðextÞ-

padding, instead, remains for the entire run of ADMP-E. The

double-padding mechanism required by ADMP-E is shown

in Fig. 10.

Fig. 11 shows the PSNR and MSSIM maps as a function of

�ðintÞ and �ðextÞ for the reconstruction of the same SL sinogram

as in the experiment of Fig. 9. The maps clearly point out that

the reconstruction accuracy strongly varies with �ðextÞ and only

in a weaker way with �ðintÞ. We selected �ðintÞ = 1.7 and �ðextÞ =

1.87 as optimal edge-padding parameters, because they are the

smallest values (highest computational efficiency) guaran-

teeing simultaneously maximum accuracy in terms of both

PSNR and MSSIM.

The optimal edge-padding factors determined here are used

for the following reconstructions with ADMP-V and ADMP-

E. For ADMP-V, �ðanÞ = 2.32 is utilized inside GRID-E and

�ðintÞ = 1.7 inside ADMP. ADMP-E utilizes �ðextÞ = 1.87 as

external and �ðintÞ = 1.7 as internal edge-padding factors.

4.4. Validation for different zoom-in factors

The reconstruction accuracy of ADMP-E and ADMP-V has

been tested for different zoom-in factors (ZIFs), defined as the

ratio between the number of pixels of the sinogram in stan-

dard tomography and the corresponding FINT one. For

example, given a sinogram in standard

tomography with 4096 pixels, ZIF = 4

describes a FINT sinogram consisting of

the central 1024 pixels of the original

dataset.

Fig. 12 shows reconstructions

computed by the two iterative methods

for increasing ZIFs. The original MLT

sinogram has 1500 views � 4096 pixels.

At visual inspection the reconstructions

are not affected by FINT artefacts and

look almost identical, showing that both

methods can satisfactorily tackle the

reconstruction of FINT data for

different ZIFs.

The reconstructions with ZIF = 8

[Figs. 12(c), 12( f)] are overall char-
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Figure 9
PSNR and MSSIM of the reconstructions of a FINT sinogram of SL and MLT phantoms computed
by GRID-E as a function of �ðanÞ, the edge-padding factor. The dashed red line locates the optimal
oversampling factor, �ðanÞ = 2.32.



acterized by a sort of background pattern. For the simulated

data used here, this problem, starting to be barely visible with

ZIF = 8, can be neglected up to ZIF ’ 32. This does not

represent a problem for the real datasets used in x4.7, as the

highest ZIF is roughly 9.

4.5. Validation for different conditions of asymmetry

The accuracy of ADMP-E and ADMP-V has been tested

also for the reconstruction of FOVs placed at various distances

from the phantom centre. In this way, the iterative methods

can be validated for different conditions of asymmetry, i.e.

not symmetrical distribution of the

attenuation coefficients around the

selected FOV.

An example of such a test, performed

with the SL phantom, is shown in Fig. 13.

The sinograms for FOV-1 and FOV-2

both have 1500 views� 512 pixels. Once

again, the reconstructions are not

affected by FINT artefacts and look

practically identical, proving that both

methods can handle FINT cases with

pronounced feature asymmetry around

the FOV.

4.6. Reconstruction of undercon-
strained sinograms

Iterative tomographic algorithms are

mostly designed to address under-
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Figure 10
Difference between the two edge-paddings required by ADMP-E. The edge-padding by a factor �ðextÞ [�ðextÞ-padding, indicated in the scheme with a light
green colour] is carried out before the start of ADMP-E and remains for the entire duration of the iterative reconstruction. The edge-padding by a factor
�ðintÞ [�ðintÞ-padding, indicated in the scheme with a light red colour] is required every time the forward gridding projector, A, and its adjoint operator, Ay,
are called inside ADMP-E. The �ðintÞ-padding is summed up to the �ðextÞ-padding when making use of A and Ay.

Figure 11
PSNR and MSSIM maps of the reconstructions of a FINT sinogram of a SL phantom computed by
ADMP-E as a function of �ðintÞ and �ðextÞ.



constrained datasets, providing insufficient direct information

for accurate reconstruction with analytical methods. An

underconstrained sinogram is either undersampled, noisy or a

combination of both factors. A sinogram in standard tomo-

graphy is considered undersampled if m < n�=2, where m is

the number of views and n is the number of detector pixels

(Kak & Slaney, 2001). An FINT sinogram is undersampled

when m < ns �=2 with ns = n ZIF: ns represents the number of

detector cells required to ‘cover’ the

entire object in standard tomography

and n the number of available detector

cells from the FINT scan (Xiao et al.,

2007). Since low-dose fast scans of FINT

tomographic microscopy are usually

characterized by m� n� ns, under-

sampling combined with local tomo-

graphy artifacts result in a sort of

‘background texture’, that can severely

affect FINT reconstructions. Iterative

reconstruction in standard tomography

can greatly reduce the amount of this

background texture through the usage

of constraints and regularization. Since

no constraints are available for the

FINT datasets, the removal of the

background texture relies entirely on

the regularization: for the same amount

of noise in the data, the regularization

strength � should be bigger, the higher

the undersampling factor, defined as

UF = ½1�m=ðn�=2 ZIFÞ	 � 100%. If �
is too low, the jump associated with the

background texture can be regarded by the TV as a collection

of faint edges to be preserved and the regularization will only

remove the noise component.

ADMP-E and ADMP-V are here tested for the recon-

struction of underconstrained datasets against GRID-E. The

regularization strength, �, is separately chosen for ADMP-E

and ADMP-V to guarantee a higher quality reconstruction in

terms of CNR (while maintaining a similar spatial resolution)

compared with GRID-E.

In the first experiment, a FINT sino-

gram of the SL phantom with ZIF = 4,

200 views � 512 pixels, UF = 94% and

corrupted by Poisson noise with � =

2.5% of the sinogram mean is consid-

ered. Fig. 14 shows that the reconstruc-

tions computed by ADMP-E and

ADMP-V look more similar to the

phantom compared with the GRID-E

reconstruction. They have higher

MSSIM, PSNR and CNR (increased by

a factor of 4.4) scores, as reported in

Table 1. The edge profiles (Fig. 15a)

indicate that the proposed iterative

approaches lead to improved CNR

without deterioration of the spatial

resolution. Moreover, the peaks corre-

sponding to the different phases of the

SL phantom can be clearly identified in

the histograms for the iterative recon-

structions in Figs. 15(c) and 15(d),

whereas only two peaks appear in

Fig. 15(b) for the analytical reconstruc-

tion.
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Figure 12
Reconstructions computed by ADMP-E and ADMP-V of MLT sinograms with increasing ZIF: 2, 4
and 8. (a) ADMP-E reconstruction: ZIF = 2. (b) ADMP-E reconstruction: ZIF = 4. (c) ADMP-E
reconstruction: ZIF = 8. (d) ADMP-V reconstruction: ZIF = 2. (e) ADMP-V reconstruction: ZIF =
4. ( f ) ADMP-V reconstruction: ZIF = 8.

Figure 13
Reconstructions of two different FOVs computed by ADMP-E and ADMP-V. (a) SL phantom with
FOV-1 and FOV-2. (b) ADMP-E reconstruction: FOV-1. (c) ADMP-V reconstruction: FOV-1.
(d) ADMP-E reconstruction: FOV-2. (e) ADMP-V reconstruction: FOV-2.



For the second experiment, a FINT sinogram of the MLT

phantom with the same condition of undersampling as

considered in the previous case (200 views � 512 pixels, ZIF =

4) and a larger amount of Poisson noise (3.5% of the sinogram

mean) is used. ADMP-E and ADMP-V substantially reduce

the noise in the reconstructions displayed in Figs. 16(c) and

16(d) compared with GRID-E (Fig. 16b) making the light

structures clearer against the dark ones. The metric scores in

Table 2 are largely higher for the iterative reconstructions,

with an improvement of the CNR by a factor of nearly 4.4. The

edge profiles (Fig. 17a) for the three different reconstructions

coincide almost perfectly at the edge position, demonstrating

the efficacy of the split Bregman total variation regularization

in removing noise while preserving edges. The higher quality

of the iterative reconstructions is also highlighted by the

histograms in Figs. 17(c) and 17(d) showing clear peaks

corresponding to the two phases of the MLT phantom.

For the third experiment, the dataset of MOUSE-1, char-

acterized by ZIF ’ 3.2, 901 views � 2016 pixels, UF = 91%, a

pronounced asymmetry and highly absorbing structures (e.g.

ribs) outside the FOV, is considered. Due to the feature size

and the pattern complexity, the different quality of the
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Figure 14
Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the SL sinogram with 200 views � 512 pixels, additional Poisson noise
with � = 2.5% of the sinogram mean and ZIF = 4. The green segment in (a) shows the position of the line profiles displayed in Fig. 15(a). (a) SL phantom.
(b) GRID-E reconstruction. (c) ADMP-E reconstruction. (d) ADMP-V reconstruction.

Table 1
PSNR, MSSIM and CNR computed for the reconstructions of the SL
(Fig. 14) phantom.

GRID-E ADMP-E ADMP-V

MSSIM 0.026 0.047 0.045
PSNR 14.74 24.69 24.43
CNR 0.66 2.92 2.85

Figure 15
Edge profiles (a) and histograms (b, c, d) for the reconstructions with GRID-E, ADMP-E and ADMP-V shown in Fig. 14.

Figure 16
Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MLT sinogram with 200 views � 512 pixels, additional Poisson noise
with � = 3.5% of the sinogram mean and ZIF = 4. The green segment in (a) shows the position of the line profiles displayed in Fig. 17(a). (a) MLT
phantom. (b) GRID-E reconstruction. (c) ADMP-E reconstruction. (d) ADMP-V reconstruction.

Table 2
PSNR, MSSIM and CNR computed for the reconstructions of the MLT
(Fig. 16) phantom.

GRID-E ADMP-E ADMP-V

MSSIM 0.101 0.135 0.135
PSNR 8.39 12.68 12.63
CNR 0.44 1.98 1.87



reconstructions displayed in Fig. 18 can be best appreciated

in the blow-ups below the images. Features in the iterative

reconstructions can be more easily identified thanks to the

reduced noise and to the CNR increased by a factor of 5.3

(Table 3). The line profiles at the edge position (Fig. 19a) for

the ADMP-E and ADMP-V results match that for the GRID-

E reconstruction. Moreover, the double peak in Figs. 19(c) and

19(d) shows that the two main phases of the lung tissue are

better separated in terms of grey level in the iterative recon-

structions, whereas a single peak characterizes the histogram

for the analytical reconstruction in Fig. 19(b).

In the fourth experiment, the reconstructed dataset of

MOUSE-2 (901 views � 2016 pixels, ZIF ’ 3.2) has a very

similar pattern complexity as MOUSE-1, whereas the

morphology, e.g. the shape of the small structures, is quite

different. Reconstructions with the ADMP methods in Fig. 20

clearly show higher quality compared with the analytical one,
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Figure 17
Edge profiles (a) and histograms (b, c, d) for the reconstructions with GRID-E, ADMP-E and ADMP-V shown in Fig. 16.

Table 3
CNR scores computed for the reconstructions of the sinograms of
MOUSE-1 (Fig. 18).

GRID-E ADMP-E ADMP-V

CNR 0.16 0.83 0.85

Figure 19
Edge profiles (a) and histograms (b, c, d) for the reconstructions with GRID-E, ADMP-E and ADMP-V shown in Fig. 18.

Figure 18
Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-1 sinogram with 900 views� 2016 pixels. The green segment
in (a) shows the position of the line profiles displayed in Fig. 19(a). The blow-ups below each reconstruction are zoom-ins for two different ROIs.



thanks to the decreased noise level and the higher CNR

(increased by a factor of 4.6, Table 4). Small dark features are

well identifiable in Figs. 20(b) and 20(c), whereas they are

mainly covered by noise and undersampling/local tomography

artefacts in Fig. 20(a). The edge profiles in Fig. 21 for the

iterative reconstructions overlap almost exactly at the edge

position with that for the analytical result, indicating also in

this case that the total variation regularization operates with

negligible loss in terms of spatial resolution. The histograms

corresponding to the reconstructions with ADMP-E and

ADMP-V in Figs. 21(c) and 21(d) show the presence of two

phases. This is not the case in the histogram for GRID-E

in Fig. 21(b).

For the fifth experiment, the dataset of MOUSE-3, char-

acterized by 500 views� 2016 pixels and ZIF’ 9.0, is used. In

this case, UF = 98%, but features are on average much larger

compared with MOUSE-1 and MOUSE-2, since projections

were acquired with a higher magnification. The iterative

reconstructions in Fig. 22 offer a clearer vision of the object;

nevertheless, all structures recognizable in Figs. 22(b) and

22(c) can be visually identified in Fig. 22(a) as well. The CNR

is improved in this example by a factor of 3.7 (Table 5). In

Fig. 23(a) an edge can hardly be recognized for the recon-

struction with GRID-E, whereas those corresponding to

ADMP-E and ADMP-V, practically identical, do show a flank.

Histograms in Figs. 23(b) and 23(c) show a distinction between

the two main phases of the lung tissue, whereas a single peak

dominates in the histogram for the analytical reconstruction

in Fig. 23(a).

These five experiments with simulated and real sinograms

show that: (i) ADMP-E manages to substantially improve the

image quality compared with an analytical method like GRID-

E when tackling the reconstruction of underconstrained FINT

datasets with different ZIF, noise level and feature complexity;

(ii) the virtual strategy incorporated in ADMP-V can provide

comparable results with those achievable with the ADMP-E.

4.7. Computational cost

To give an idea of the superior computational performance

of ADMP-V compared with ADMP-E, the time required for

a single iteration, �t, has been measured for two different
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Figure 21
Edge profiles (a) and histograms (b, c, d) for the reconstructions with GRID-E, ADMP-E and ADMP-V shown in Fig. 20.

Figure 20
Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-2 sinogram with 900 views� 2016 pixels. The green segment
in (a) shows the position of the line profiles displayed in Fig. 21(a). The blow-ups below each reconstruction are zoom-ins for two different ROIs.

Table 4
CNR scores computed for the reconstructions of the sinograms of
MOUSE-2 (Fig. 20).

GRID-E ADMP-E ADMP-V

CNR 0.26 1.21 1.19



datasets on an Intel(R) Core(TM) i7-3520M CPU 2.90 GHz.

For a sinogram with 800 views � 504 pixels (convergence

reached after eight iterations), �t(ADMP-E) = 46.7 s and

�t(ADMP-V) = 1.45 s; for a sinogram with 1584 views �

1008 pixels (convergence reached after nine iterations),

�t(ADMP-E) = 173.2 s and �t(ADMP-V) = 5.7 s. Thus,

ADMP-V for small and medium datasets is approximately

30 times faster with respect to ADMP-E.

5. Conclusion

This work introduces two novel strategies for iterative

reconstructions of datasets in full interior tomography

(FINT), when the FOV is completely inside the object support

and no a priori knowledge regarding the support itself and the

distribution of the attenuation coefficients in certain ROIs

is available. FINT represents a very general case, frequently

encountered in many tomographic applications like synchro-

tron-based X-ray tomographic microscopy.

One strategy works with an edge-padding forward

projector. The second is a four-step procedure, requiring the

creation of an intermediate virtual sinogram, simulating a full

tomography dataset; this sinogram is, then, reconstructed by a

standard iterative algorithm, while enforcing a tight constraint

outside the reconstruction circle. Both strategies, although not

bounded to a specific iterative scheme, have been imple-

mented in this work inside the alternate direction method

of multipliers plug-and-play (ADMP), that offers a versatile

optimization framework, where different forward projectors

and regularizers can be easily plugged in, without altering the

structure of the iterative solver. The two resulting iterative

methods have been labelled ADMP-E (edge-padding

strategy) and ADMP-V (virtual strategy).
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Figure 22
Reconstructions computed by GRID-E (a), ADMP-E (b) and ADMP-V (c) of the MOUSE-3 sinogram with 500 views� 2016 pixels. The green segment
in (a) shows the position of the line profiles displayed in Fig. 23(a). The blow-ups below each reconstruction are zoom-ins for a ROI.

Figure 23
Edge profiles (a) and histograms (b, c, d) for the reconstructions with GRID-E, ADMP-E and ADMP-V shown in Fig. 22.

Table 5
CNR scores computed for the reconstructions of the sinograms of
MOUSE-3 (Fig. 22).

GRID-E ADMP-E ADMP-V

CNR 0.24 0.88 0.89



The forward gridding projector with minimal oversampling

(FGP) is used as standard and edge-padding forward operator

for the ADMP. The FGP guarantees fast iterative recon-

structions, while keeping the same accuracy of the results

achieved with more sophisticated, but much slower, imple-

mentations of the Radon transform.

ADMP-E and ADMP-V have been, first, validated for the

reconstruction of FINT datasets with different zoom-in factors

and asymmetry conditions around the FOV. The methods

have, then, been tested on underconstrained simulated and

real FINT datasets. Results show that both iterative techni-

ques yield reconstructions of higher quality compared with a

standard analytical method: the CNR is greatly improved (on

average four times higher), while preserving the spatial reso-

lution, and small features can be more easily identified. The

reconstruction quality achieved with the two proposed itera-

tive strategies is comparable. ADMP-V provides, though,

superior computational efficiency (about 30 times faster),

since it requires a much smaller grid for the computations

inside the iterative procedure.
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