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Using a high-speed camera and an intensified charge-coupled device (ICCD), a

simultaneous X-ray imaging and diffraction technique has been developed for

studying dynamic material behaviors during high-rate tensile loading. A Kolsky

tension bar has been used to pull samples at 1000 s�1 and 5000 s�1 strain-rates

for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By

altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 ms have

been achieved in capturing the diffraction patterns of interest, thus equating to

single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-

thickness deformation process has been simultaneously imaged via phase-

contrast imaging. It is also shown that adequate signal-to-noise ratios are

achieved for the detected white-beam diffraction patterns, thereby allowing

sufficient information to perform quantitative data analysis diffraction via in-

house software (WBXRD_GUI). Of current interest is the ability to evaluate

crystal d-spacing, texture evolution and material phase transitions, all of which

will be established from experiments performed at the aforementioned elevated

strain-rates.
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1. Introduction

In any high-rate loading environment, for example, penetra-

tion, blast loading or impact, material deformation and

resulting stress-states cannot be described by simple quasi-

static testing parameters. It becomes evidently apparent that

dynamic loading processes are inherently complex in nature,

as simple rigid-body motion gives way to wave propagation

effects. Furthermore, in efforts to properly understand a

dynamic loading condition, it is of great importance to ascer-

tain the deformation response of each interacting material in

loading regimes similar to those experienced in the event of

interest, thereby giving constitutive material properties which

can ultimately be used in a modeling scheme. Thus, material

property characterization is routinely performed with Kolsky

bar analysis or flyer plate impact. The former method loads a

material under a uniaxial stress condition thereby providing

stress–strain response at strain rates in the 102–104 s�1 range,

but, for special bar geometries, can provide strain rates as low

as 10 s�1 and as high as 105 s�1, also further depending on

sample material response and size (Chen & Song, 2011; Casem

et al., 2011). The latter technique, pressure-shear plate impact,

typically yields shear strain-rates in the 105–106 s�1 regime but

for specific sample geometries (e.g. thin films) has been

reported as high as 107 s�1 (Clifton & Klopp, 1985). Indeed,

a wide array of strain rates can be achieved with proper

understanding and utilization of such techniques, although the

experimental results provide solely an average deformation

within the sample and give no understanding of localized

deformation or damage propagation. Barring transparent

materials, only surface tracking of damage mechanisms can be

performed with high-speed optical imaging, thereby gaining a

slight advantage over signal response, yet still limiting analysis

onto the sample surface, leaving the interior deformation

mechanisms unknown. Recently, an in situ imaging technique

has been developed wherein through-thickness damage and

deformation can be tracked internally within the sample

utilizing hard X-rays (Luo et al., 2012; Gupta et al., 2012;

Hudspeth et al., 2013; Chen et al., 2014). Using phase-contrast

imaging (PCI), high levels of contrast can be generated for

variations in the refractive index of different materials, and

successful through-thickness image sequences have been

produced for both a variety of material types and structural

interactions. Although this is of extreme interest, there is still

a vast amount of information that could be generated from

analyzing the X-rays which are diffracted by the samples‡ These authors contributed equally to this work.
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during the dynamic loading process (Turneaure & Gupta,

2009; Turneaure et al., 2009). Historically, this sort of experi-

ment has been performed on samples undergoing stepwise

strain states or, at best, very low quasi-static loading condi-

tions. With this sort of loading history, determination of crystal

d-spacing, texture evolution and phase transitions can be

analyzed, but unfortunately, as was stated, is inherently limited

to static stress–strain states. Even though such quasi-static

measurements provide a baseline understanding of the effect

of loading processes on different materials or structural types,

it does not allow for a richer understanding of the complex

mechanisms presented during a dynamic stress sequence. For

example, it has been shown that the phase change occurring

during Kolsky bar loading in equiatomic NiTi displays an

extreme amount of rate sensitivity (Chen et al., 2001). The

sharp transition front (Young et al., 2010) which sweeps across

the sample becomes either smeared or multiple transition

zones develop, which negate the elastic-plastic elastic stress–

strain response inherent for this material when tested at quasi-

static conditions, thereby yielding a mixed elastic plastic

response in the phase transition regime (Chen et al., 2001;

Nemat-Nasser et al., 2005a,b). With high-speed diffraction,

such transient phase change can be probed in real time.

Furthermore, as previously stated, one could use the diffracted

beam to gain insight into crystalline d-spacings and texture

evolution of dynamically loaded samples, thereby aiding in the

understanding of deformation mechanisms of the elastic

regime in rate-sensitive materials. It is therefore the purpose

of this work to show the possibility of performing such high-

strain-rate diffraction experiments on two different material

types, namely aluminium 1100-O and super-elastic equiatomic

NiTi when being loaded in a dynamic tensile environment. A

miniature tension Kolsky bar has been used to provide loading

to these materials in efforts to display the peak position

change of certain crystal directions in the Al samples, and the

stark phase change from austenite to martensite that occurs in

the NiTi material.

2. Experimental

2.1. X-ray source

Kolsky bar experiments are inherently dynamic in nature,

with the specimen deformation process generally occurring in

the realm of 100–200 ms. Thus, as compared with more rapid

loading schemes such as shock wave studies developed via gas

gun experiments, Kolsky bar loading provides comparatively

ample deformation time, thereby yielding experiments which

are more easily captured in the current timing scheme (details

are described in x2.4). That said, these events are still quite

rapid, thereby enforcing the implementation of high-energy

high-flux X-rays which can penetrate through the sample

thickness to generate phase-contrast images and diffraction

patterns with a sufficient signal-to-noise ratio. In order to

obtain such bright X-rays, the Advanced Photon Source

(APS) at Argonne National Laboratory has been utilized, as it

produces X-rays with temporal resolutions and energy char-

acteristics of consequence. In the standard run mode offered

at APS, 24 equispaced 100 ps-long electron bunches travel

around the storage ring with a period of 153 ns, thereby

providing ample framing time for Kolsky bar loading.

Furthermore, due to the longevity of the experimental dura-

tion, multiple X-ray pulses can be used for detection of each

image and diffraction frame via increasing the camera expo-

sure time.

The X-ray beamline utilized for these experiments (32-ID-

B) was equipped with APS Undulator A, which possesses a

period and length of 3.3 cm and 2.4 m, respectively. A white

beam was used so as to increase the X-ray flux for high-speed

imaging and diffraction experiments with limited number of

pulses. The undulator gap is variable, providing variations in

spectral flux along with energy shifts of harmonic peaks. In the

present work the undulator gaps of interest were 30 mm and

20 mm, and resulting energy spectrum curves can be found in

Fig. 1. Compared with a monochromatic beam, the flux of a

white beam is usually many orders higher, and thereby the

beam-induced heating effect needs to be carefully assessed. In
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Figure 1
X-ray energy spectrum for the (a) aluminium and (b) NiTi specimens. The
aluminium tests used an undulator gap of 30 mm, and the first harmonics
become of most interest. The NiTi samples used an undulator gap of
20 mm, which yields X-rays with much higher flux. In efforts to mitigate
this sample absorption effect, a single-crystal Si wafer (1 mm thickness)
was placed upstream of the X-ray path to filter out the low-energy
photons.



a separate experiment with the undulator gap set to 30 mm, we

collected single-pulse diffraction patterns from Al samples

during in situ heating in a helium environment. The results

reveal that the measured lattice parameters of the sample at

different temperatures match the theoretical values very well.

In the temperature range from 298 to 573 K, the largest

deviation is only 0.01%, which is much smaller than the

magnitude of strain measured in our Kolsky bar experiments.

When we reduced the undulator gap to 20 mm in our

experiments, a Si single crystal of thickness 1 mm was placed

in the upstream beam path to filter out the low-energy

photons. As shown in Fig. 1(b), photons with the first-

harmonic energies are entirely absorbed by the Si filter. As a

result, compared with the beam generated by the undulator

with 30 mm gap, the integrated flux of the Si filtered beam is

smaller and the harmonic energies are higher. Both of these

two factors contribute to an even lower heat load on the

sample. Therefore, we believe the beam-induced heating

effect in our experiments is negligible.

2.2. Imaging and diffraction geometry

Fig. 2 shows a schematic and photographs of the experiment

setup. In the experiments, both in-line phase-contrast imaging

and in situ diffraction can be detected simultaneously. The

sample orientation and camera geometry have been utilized

and prepared so as to allow for transmission diffraction, as the

reflection mode requires greater amounts of bar rotation with

respect to the beamline, and inherently hinders small-angle

detection due to the placement of the backstop and mounted

load cell. The phase-contrast images of the samples were

collected by an optically coupled high-speed camera (Photron

FastCam SA1.1), while the diffraction patterns were recorded

using an optically coupled intensified charge-coupled device

(ICCD; Princeton Instruments PI-MAX). The scintillators for

imaging and diffraction detection are LuAG:Ce (100 mm

thickness) and LYSO (300 mm thickness) crystals, respectively.

The ICCD was mounted on a rotation arm, which allowed for

the camera to be continually located in the typical circular

track configuration as compared with an arbitrary position.

The circular track configuration could facilitate ease of pre-

and post-analysis of white-beam diffraction patterns and

control of the detection angle. A Huber 410 goniometer was

used to control the rotation arm with an angle resolution of

0.001�. It was possible to adjust the sample-to-detector

distance by sliding the camera along a linear rail on the

rotation arm; a photograph of the assembly has been included

in Fig. 2(b).

The diffraction work performed in this study was aided via

the in-house program WBXRD_GUI. This Matlab-coded

software has been developed for simulating and analyzing

white-beam diffraction patterns from polycrystalline samples.

It is particularly useful when one deals with (single-pulse)

noisy diffraction patterns, and an area detector is placed with

an offset angle from the incident direction, i.e. the detection

plane is not perpendicular to the incident beam while the

transmission spot may not fall on the detector, as shown in

Fig. 3(a). For a given detector location and X-ray energy, the

scattering vector q and azimuthal angle ’ at each pixel posi-

tion on the detector can be calculated. Figs. 3(b) and 3(c) show

examples of q and ’ maps for a detector angle of 25� and

X-ray energy of 12.9 keV (i.e. 30 mm undulator gap) assuming

the beam position is vertically centered with the detector.

The simulation of a white-beam diffraction pattern from a

known material starts from the calculation of monochromatic

beam diffraction patterns for the specific detector location,

I(�,E). Here, the intensity profile is described using the

pseudo-Voigt function. The sample crystal structure and the
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Figure 2
(a) Schematic of the integrated X-ray system and Kolsky bar apparatus.
Note that the standard 24-bunch mode offered by APS was utilized. In
the current configuration, both transmission X-ray diffraction and PCI
were detected simultaneously during the high-rate Kolsky bar loading via
an ICCD and high-speed camera, respectively. (b) Photographs of the
setup within the 32-ID-B hutch. Demarcations have been placed on vital
pieces of equipment in both images including: (1) high-speed camera used
for PCI; (2) miniature tension Kolsky bar; (3) helium-filled X-ray flight
path; (4) ICCD camera used to record the diffraction pattern during high-
rate loading; (5) rotating camera arm; (6) goniometer; and (7) positioning
stage used to mount the fast-response load cell. Note that there is a
compression Kolsky bar also located on the bar frame, thereby allowing
for either tension or compression testing depending on bar selection.



diffraction intensities I of different atomic planes (hkl) are

input parameters, which can be obtained from the Interna-

tional Center for Diffraction Data (i.e. JCPDS cards). For each

X-ray energy E, WBXRD_GUI calculates the reciprocal

lattices and projects diffraction information onto the detector

plane. These mono-beam diffraction patterns are then inte-

grated over the entire energy range with the weighting factor

being the flux of photons with different energy, F(E). Here,

F(E) reflects the post-sample flux density, which has been

modified by considering the sample absorption of photons

with different energies,

Iwhite ¼

ZE2

E1

Ið�;EÞFðEÞ dE; ð1Þ

For our case, E1 and E2 are typically 1 keV and 60 keV,

respectively. Photons with energy higher than 60 keV have

much lower flux (Fig. 1) and the corresponding diffraction

scattering angles are very small, thereby their diffraction

contribution is not considered. To improve the calculation

speed, discrete diffraction peaks are considered, meaning that

I(�,E) is normally replaced by a series of Ihkl(�,E). Equation

(1) then becomes

Iwhite ¼

ZE2

E1

Pn
i¼ 1

Ihklð�;EÞ

� �
FðEÞ dE: ð2Þ

Essentially, the white-beam diffraction intensity at a given

scattering angle is the convolution of the input diffraction

intensity for different atomic planes with the energy spectrum

of the X-rays. Note that the polarization of X-rays is not

considered in the simulation.

2.3. Kolsky bar apparatus

In order to provide a dynamic tension loading environment,

a modified Kolsky bar was employed. A very basic schematic

of the apparatus can be seen in Fig. 2(a) and is thoroughly

reviewed elsewhere (Chen & Song, 2011). The bar material

was aluminium and possessed a length and diameter

measuring 225 cm and 12.7 mm, respectively. A brass striker

tube was used to impact a flange located on the incident bar

end, thereby generating an elastic tensile stress pulse. The

usual travel time between the solenoid firing signal and

striker-bar impact was �120 ms and possessed no more than

a 10 ms jitter. Typical striking velocities ranged from 3 to

5 m s�1. Post-impact, the elastic stress wave was recorded via

two strain gauges located on the incident bar surface. Location

of the strain gauges was specifically designed to ensure that

overlap in the incident and reflected pulses would be non-

existent and also to ensure a necessary time window elapsed

for shutter activation, which is described in x2.4. In this

experimental configuration, due to constraints driven by hutch

size limitations, the traditional transmission bar was replaced

by a Kistler 9712B5 fast-response quartz-based load cell,

which is acceptable if the impedance mismatch between the

bar end and sample is large (Cheng et al., 2005; Chen & Song,

2011). The resulting force transducer output signal was then

sensed and amplified by a Kistler 5010 dual mode amplifier.

Both the amplified signal generated from the incident bar

strain gauges and the transmission load signal were collected

using a Tektronix DPO 4032 oscilliscope. Further description

of the loading scheme has been described in previous works

(Hudspeth et al., 2013; Chen et al., 2014).

In order to ascertain the strain rate ( _"") and strain (")
incurred by the dynamically loaded sample, the well known

Kolsky bar relations have been utilized and are described in

equations (3) and (4),

_"" ¼
cb

ls

"I � "Rð Þ; ð3Þ

" ¼

Zt

0

_"" d� ¼

Zt

0

cb

ls

"I � "Rð Þ d�; ð4Þ

wherein cb, ls, "I, "R represent the incident bar acoustic wave

speed, sample gauge length, incident signal bar strain and

reflected signal bar strain, respectively. As previously stated,

due to hutch size limitations and the specifically designed large

impedance mismatch between the sample and incident bar

end, the typical Kolsky transmission bar has been replaced
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Figure 3
(a) Diffraction geometry. O is where the X-ray beam and the sample
interact; O 0 is the transmitted beam position on the detector plane; A is
the scattered beam position on the detector; ki and kf stand for the
wavevectors for the incident and out-going beam, and q is the scattering
wavevector. 2� (i.e. angle O 0OA) is the diffraction angle. (b, c) The
pixelated scattering vector q map (b) and azimuthal angle ’ map (c) on
the ICCD, when the detector rotation angle is 25�, X-ray energy is
12.9 keV and the beam position is assumed to be vertically centered with
the detector.



with a fast-response load cell, thereby allowing for direct

detection of sample axial force (F). This force is divided by the

sample initial cross-sectional area (Ao) in order to obtain the

average instantaneous longitudinal engineering stress (� =

F/Ao) throughout the duration of loading.

In order to deliver a valid stress–strain response from a

loaded material, it is imperative that the strain rate experi-

enced during the experiment be of a constant value. Thus,

typical strategic pulse shaping was employed which allows for

modification of the incident stress wave shape, ultimately

being tailored to meet the response of the tested material with

an educated trial-and-error approach (Christensen et al., 1972;

Nemat-Nasser et al., 1991) or via analytical solution (Frew et

al., 2002). In the current experimental design, the cross-

sectional area of both the Al and NiTi samples were of such

insignificant size with respect to the incident bar that the vast

majority of the incident signal is reflected due to the extremely

high impedance mismatch. In this case, it is then desired to

generate a trapezoidal pulse, and only slight pulse shaping is

needed to reduce the high-frequency stress response. A typical

set of recorded waveforms can be seen in Fig. 4(a), which

demonstrate the trapezoidal shape of the incident and

reflected waveforms. Achievement of a constant strain-rate is

corroborated by Fig. 4(b), which shows the strain-rate history

of the loaded sample along with the specimen stress recorded

by the fast-response load cell.

2.4. Timing sequence

In order to protect the scintillator for PCI and reduce

unnecessary heat load on the sample, temporal bracketing of

the experimental period of interest becomes necessary and

is therefore described in detail. Effective timing for experi-

mental delays was achieved via careful development and

execution of a double-window timing scheme composed of a

set of fast shutters and slow shutters. The slow shutters consist

of water-cooled bulky copper blocks which can bear the heat

load caused by the intense white beam, while the fast shutters

are made of small rotating lead blades that open and close

much faster than the slow shutters. A schematic of the entire

sequence can be seen in Fig. 5. The external window, refer-

enced from t�3 until t4, controls the slow shutter system and

is governed by delays referenced from t�4, namely firing the

solenoid, which releases gas into the gun barrel thereby

accelerating the striker. This external timing window is

designed to possess a slow shutter full opening time of roughly

40 ms (t�2 to t3), which can adequately account for the striker

to incident bar impact time variation. Inside of the slow

shutter open time window lies the internal timing window

operating a pair of fast shutters, which further bracket the

actual experimental time of interest down to a few milli-

seconds (t�1 to t1). Triggering for the PCI camera was sent

immediately at t0, as the onboard memory storage allowed for

ample total time of recording, being much longer than the

duration of the entire experimental event. In contrast, trig-

gering of the ICCD camera required special attention as, in

the case of this experiment, the system was only able to

capture one single frame. A system of sequential delay

changes was thus instilled over multiple experimental events

so as to build up a diffraction pattern evolution during the

entire loading history. As the purpose of this set of experi-

ments was to show the efficacy of achieving a necessary signal-

to-noise ratio during small time windows throughout the

entire Kolsky bar loading event, this capture method was

reasonable, but, upon future work, installation of a multi-

frame intensified imaging system would be more fruitful,

thereby allowing for the capture of a diffraction pattern

evolution during an entire loading sequence. Thus, for each

dynamic tensile experiment, a multi-frame PCI sequence was

recorded with a high-speed camera, along with a single

diffraction pattern that was registered onto an ICCD within

the duration of loading. Furthermore, as described in x3.1,

single-pulse diffraction was possible for the aluminium
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Figure 4
(a) Raw voltage signals relevant to the high-rate loading produced from
the Kolsky bar setup. Note that in lieu of a transmission bar, a fast-
response quartz load cell has been utilized, which results in a reduced
experimental framework footprint required by the constrained hutch
dimensions. This load response is represented by the dotted black line.
Furthermore, this load detection approach is viable if the impedance
mismatch between the incident bar end and sample is quite large, which
is demonstrated by the similarity between the incident and reflected
waveforms shown by the solid black line. (b) Resulting force and strain-
rate histories represented by dotted black and solid black curves,
respectively. Note that the sample is loaded into the constant strain-rate
regime.



samples tested and eight-pulse diffraction was achieved for the

NiTi samples, thereby resulting in a possible framing rate of

6.5M frames s�1 and 815K frames s�1, respectively.

3. Results and discussion

3.1. Aluminium

Inclusion of aluminium 1100-O in this experimental

sequence as the first trial material was twofold. First, the

material response of Al has been well characterized via

mechanical loading and thus provides a reasonably well

understood stress–strain response at high loading rates

(Lindholm & Yeakley, 1968; Kahn & Huang, 1992). Second,

diffraction analysis of Al embodies a large sect of research,

and thus a plethora of diffraction analysis already exists

(Kabekkodu, 2010). Ultimately, the goal of this material class

is to show the efficacy of ascertaining strains in specific crystal

directions via diffraction peak shift.

In order to generate a high-rate tension loading environ-

ment, the miniature Kolsky bar apparatus described in x2.3

was utilized, thereby generating a strain rate in the regime of

5000 s�1. An average resulting stress–strain curve is plotted in

Fig. 6, showing agreement with previous work (Lindholm &

Yeakley, 1968; Kahn & Huang, 1992), wherein the flow stress is

higher for the current data due to the rate sensitivity of the

material. On the said stress–strain figure, symbols have been
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Figure 5
Schematic of the timing sequence used throughout the experimental duration. At time t�4 a delay generator (DG) signal is sent to open the gas gun valve,
thereby firing the striker. Governed by a specified delay dictated from a predetermined striker travel time, an additional DG signal is sent to open the
slow shutter at time t�3, which is the opening bracket for the outer experimental window. Note that the slow shutter opening signal is sent early enough to
ensure that the shutter window is completely open before the striker impacts the incident bar end. Upon striker impact, a tensile stress wave is sent down
the incident bar and, as this wave passes through the bar at time t0, it is detected by a set of strain gauges, which are located 84 cm from the sample
interface. Upon detection of the stress wave, a delayed DG signal is sent to close the fast shutter system, demarcated by time t1. Finally, an ultimate DG
signal is sent to close the slow shutter system at time t3, thus closing the outer experimental time window.

Figure 6
Representative stress–strain curve from the 1100-O aluminium samples
pulled in tension. The current data, representing a testing strain-rate of
5000 s�1, is demarcated with the solid black curve, and for comparison
previous data performed at 1000 s�1 (Kahn & Huang, 1992; Lindholm &
Yeakley, 1968) have also been included. The various symbols which are
overlaid on the plot dictate stress–strain states at which a diffraction
pattern has been recorded with the ICCD. In-depth analysis from only an
unloaded sample and a sample loaded up to demarcation 10 have been
included in the in-depth diffraction pattern analysis shown in Fig. 8, as the
current goal of this study is to show the possibility of performing such
high-strain-rate loading while simultaneously capturing high-frame-rate
diffraction patterns and phase-contrast images.



plotted which demarcate the strain at which a diffraction

pattern was taken. In the current setup, only one pattern was

capable of being recorded during the short duration of

interest, being 3.37 ms duration for the Al tests, relating to an

integration of 22 X-ray pulses. This duration has been chosen

to maximize signal intensity, thereby increasing the signal-to-

noise ratio and thus allowing for valid diffraction pattern

analysis. It is important to note that capturing a single-pulse

diffraction pattern was possible for the Al samples, and a

resulting pattern was included in Fig. 7(a). For a reference, an

Al diffraction pattern generated with 65 X-ray pulses is shown

in Fig. 7(b). Note that the intense ring-shape feature appearing

at the corners of each pattern is the edge of the scintillator.

Both patterns were obtained from 225 mm-thick samples.

Furthermore, integration of both patterns was performed to

display the corresponding one-dimensional intensity plots and

the results are displayed in Figs. 7(c) and 7(d), respectively.

Pulse duration parameters have also been succinctly included

in Table 1.

Figs. 8(a) and 8(b) show the diffraction patterns from an Al

sample collected before and 30 ms after the start of the tensile

pulling, respectively. These patterns were formed by 22 pulses

of X-rays (i.e. exposure time 3.37 ms) with the energy spectrum

shown in Fig. 1(a). In both patterns, two diffraction peaks can

be observed. The peak at the lower angle (left) is attributed to

Al (111), and the peak at the higher angle (right) is Al (200).

Both are generated by X-rays with the first-harmonic energy

(12.94 keV). The second-harmonic (311) and (222) peaks are

present between these two major peaks. However, as the flux

of X-rays with the second-harmonic energy is less than 3% of

that of the first-harmonic X-rays, the (311) and (222) peaks

are overwhelmed by the intense first-harmonic (111) peak.

Fig. 8(c) depicts the one-dimensional diffraction intensity

profiles (open symbols) and corresponding theoretical simu-

lations (lines) of unstrained and strained states of the Al

sample. The one-dimensional data were obtained by inte-

grating the two-dimensional patterns over the azimuthal

angles ranging from 173� to 187�, as indicated in Figs. 8(a) and

8(b). As shown in the diffraction geometry (Fig. 3), diffraction

peaks around 0� and 180� azimuthal

angles (i.e. along the horizontal q axis)

contain strain information under the

present uniaxial stress condition. In the

simulations, an anisotropy parameter

(i.e. I111/I200) was considered to

account for the initial texture structure

of the Al sample. Fig. 8(d) shows a

closer look of the (111) peaks, and a

shift of the peak position to the lower

angle caused by the tensile stress can be

clearly observed. The simulation indi-

cates a 0.25% lattice expansion of the

Al sample along the tensile loading

direction. The quantitative agreement

between the data and simulation

demonstrates that ultrafast white-beam

diffraction is capable of measuring

elastic strain with extremely small

magnitude. Thus, rather than solely

determining an average strain measure

over the entire sample during Kolsky

bar loading, it is now possible to addi-

tionally analyze elastic strain in a

specific loading direction at extremely

high temporal resolutions.

3.2. NiTi

Inclusion of the NiTi super-elastic

material class was chosen due to the

stark phase-change that occurs during
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Table 1
Experimental parameters for each of the chosen conditions. Note the
high level of temporal resolution.

Aluminium

Short exposure Long exposure NiTi

Undulator gap (mm) 30 30 20
Detector angle (�) 25 25 15
Shutter time (ms) 0.153 3.37 3.37
Temporal resolution (ns) 100 ps 3370 3370
Number of X-ray pulses 1 22 22

Figure 7
Experimental diffraction patterns wherein the ICCD gating time was varied so as to allow for (a)
single-pulse diffraction and (b) 65-pulse diffraction. Azimuthal integration of each pattern was
performed to display the corresponding one-dimensional intensity plots for (c) single-pulse
diffraction and (d) 65-pulse diffraction. Clearly the multi-pulse gating yields a much higher signal-
to-noise ratio, but note that there is still enough information in the single-pulse image to detect a
distinct ring pattern and well defined peak position via post-processing.



the austenite to martensite phase tran-

sition, being typically described as

stress-induced martensite (SIM). Owing

to the high level of exhibited loading-

rate sensitivity (Chen et al., 2001;

Nemat-Nasser et al., 2005a,b; Adhar-

apurapu et al., 2006), ultrafast diffrac-

tion has been used to verify the phase

change occurrence during Kolsky bar

tensile loading.

Similar to the Al samples, deforma-

tion of NiTi has been impinged via

Kolsky bar loading, resulting in a strain-

rate of �1000 s�1, and the stress–strain

response has been recorded and is

displayed in Fig. 9. Only single diffrac-

tion patterns could be collected for one

loading duration, thus rendering the use

of multiple loading sequences necessary

in order to build up a representative

response from the deformation history.

Each of the aforementioned demarca-

tions relates to a specific stress–strain

location wherein a diffraction pattern

was recorded. In this set of experiments

the detector collection time was 3.37 ms,

thereby resulting in a collection of 22

X-ray pulses, which is deemed reason-

able as the duration of loading is 100–

200 ms. The undulator gap was set to

20 mm and the corresponding X-ray

energy spectrum is shown in Fig. 1(b).

Figs. 10(a) and 10(b) show the

diffraction patterns from a NiTi sample, collected before

loading and 1.75 ms from the start of loading. The difference

in the diffraction peak position and intensity clearly indicates

a phase transformation of the NiTi sample during the dynamic

tensile deformation. Radially averaged one-dimensional

diffraction profiles of these two states of NiTi are shown in

Fig. 10(c), and they can be well indexed as austenite and

martensite phases, respectively. The different colors of the

indexing bars represent different X-ray harmonic energies.

The solid bars mark the peak positions of the austenite phase,

while the dashed bars mark those of the martensite phase. In

the diffraction data obtained during the dynamic loading, the

small peak around 21� can be observed, as indicated by the

arrow, which is attributed to the austenite phase. The presence

of this peak indicates the incomplete phase transformation of

NiTi at the present situation (Schmahl et al., 2004). This

example of NiTi shown here demonstrates the capability of

the ultrafast diffraction technique in probing the transient

phenomena in hard crystalline materials, such as rapid phase

transformation.

Figs. 11 and 12 are presented to further demonstrate the

simultaneous imaging-diffraction nature of these experiments.

The former image sequence depicts a set of phase-contrast

images derived from a single dynamically loaded NiTi sample
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Figure 8
Diffraction patterns from the Al sample, collected (a) before and (b) 30 ms after the start of tensile
pulling. (c) Diffraction intensity and corresponding simulations from unstrained and strained Al
samples. The one-dimensional data profiles were obtained by radially averaging the two-
dimensional diffraction patterns shown in (a, b) from azimuthal angle 173� to 187�, as indicated. (d)
A closer look at the (111) peaks, showing the shift of the peak due to a lattice strain of 0.25%. Note
the disparity in elastic strain of the (111) peak as compared with the large amount of average plastic
tensile strain demonstrated in Fig. 6.

Figure 9
Representative stress–strain curve produced from the equiatomic NiTi
super-elastic pulled in tension. Tests were performed at 1000 s�1 and are
demonstrated by the solid black curve, which is compared with the dotted
black line, representing previous data performed at �1200 s�1 (Adhar-
apurapu et al., 2006). Similar to the aluminium tests, symbols have been
overlaid on the plot demarcating stress–strain states at which diffraction
patterns have been captured with the ICCD.



being loaded at a �1000 s�1 strain-rate,

while the latter illustrates single

diffraction patterns captured from

various samples that have been loaded

via similar conditions. Each image

in Fig. 12 thus presents a diffraction

pattern which corresponds to a similar

stress-state at which the phase-contrast

image presented in Fig. 11 was

collected. While the real-space images

could only show limited structural

information of the NiTi sample during

high-rate loading, the diffraction

patterns clearly reveal the phase trans-

formation process. As shown in Fig. 12,

the NiTi transforms from the original

austenite phase to the martensite phase

(from the third frame to the fourth

frame) upon tensile strain, and changed

back to the austenite phase after the

sample fractured and the strain was

released in the end (from the sixth

frame to the seventh frame). As

captured by the current data set, NiTi

clearly undergoes the SIM transforma-

tion during dynamic tensile loading

in the 1000 s�1 strain-rate regime being

concretely verified by the slight pattern

shift shown in Figs. 10 and 12. As shown,

research papers

J. Synchrotron Rad. (2015). 22, 49–58 M. Hudspeth et al. � Material deformation mechanisms during high-rate loading 57

Figure 10
Diffraction patterns from the NiTi sample, collected (a) before and (b) 1.75 ms after the start of
tensile pulling. (c) One-dimensional diffraction intensity profiles, obtained by radially averaging the
two-dimensional patterns with all available azimuthal angles. Reference peak positions of the
austenite (solid lines) and martensite (dashed lines) phases are displayed at the bottom, and the
blue, red, green and cyan colors represent peaks that correspond to the second, third, fourth and
fifth harmonic energies, respectively. Note that the photons with the first-harmonic energy have
been entirely absorbed by the Si filter.

Figure 12
Diffraction pattern sequence captured with the ICCD which shows the evolution of the martensitic transformation at sequential stress states during the
dynamic loading process. It is important to note that each pattern is captured from a different sample within the tensile loading history at stress–strain
states represented by the appropriate symbols in Fig. 9 and at delay times shown in Fig. 11. The pattern taken at t = 1.75 ms was captured within the PCI
image sequence shown in Fig. 10.

Figure 11
PCI sequence captured with the high-speed camera showing the deformation process of the NiTi material throughout the loading process. Frame times
have been chosen to correlate with the stress–strain states at which diffraction patterns displayed in Fig. 12 were captured. Note that this image sequence
consists of snapshots within one loading event.



the ambient cubic crystal structure reorients to the martensitic

phase exhibiting a monoclinic structure during loading and

then, upon failure, returns to the initial cubic structure.

Furthermore, the NiTi example shown here is intended to

demonstrate that the ultrafast diffraction can well comple-

ment the established PCI technique, and help provide addi-

tional insight into the material deformation process. Also, it

underscores the need of proper analysis tools in understanding

the complex white-beam diffraction data. Although the

present work required multiple experimental runs to build up

a representative diffraction pattern evolution, it can be clearly

seen that it is possible to gather fine temporal resolution

pattern evolution during the high-rate loading sequence.

4. Conclusion

In order to better understand the deformation process of

materials loaded in a dynamic environment, both equiatomic

NiTi and aluminium samples have been pulled in tension with

a miniature Kolsky bar, while simultaneously performing

X-ray PCI and diffraction. Using synchrotron radiation at

beamline 32-ID-B of the Advanced Photon Source at

Argonne National Laboratory, high-temporal-resolution

X-ray diffraction patterns can be generated, which thus allow

for legitimate material analysis of dynamically loaded samples.

Evolution of sample texture, elastic crystal straining and

material phase can all be analyzed using in-house software

(WBXRD_GUI), with the latter two being immediately

confirmed in this work. Furthermore, with the described

experiments and data analysis, it has been shown that white-

beam diffraction is sufficient to perform the aforementioned

investigation. While the majority of this work displays a

diffraction pattern temporal resolution of 3.37 ms, it has also

been shown that a resolution of 100 ps is possible using the

standard 24-bunch mode offered at APS.
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