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Two crystals with precise parabolic holes were used to demonstrate sagittal

beam collimation by means of a diffractive–refractive double-crystal mono-

chromator. A new approach is introduced and beam collimation is demon-

strated. Two Si(333) crystals with an asymmetry angle of � = 15� were prepared

and arranged in a dispersive position (+,�,�, +). Based on theoretical

calculations, this double-crystal set-up should provide tunable beam collimation

within an energy range of 6.3–18.8 keV (�B = 71–18.4�). An experiment study

was performed on BM05 at ESRF. Using 8.97 keV energy, the beam profile at

various distances was measured. The experimental results are in good

agreement with theoretical predictions. Owing to insufficient harmonic

suppression, the collimated (333) beam was overlapped by horizontally

diverging (444) and (555) beams.
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1. Introduction

Beam shaping based on diffractive–refractive optics has been

previously studied and demonstrated by our group at the

Institute of Physics of the Academy of Sciences of the Czech

Republic. Both Bragg (Hrdý, 1998) and Laue (Hrdý et al.,

2006) diffraction approaches have been demonstrated. Based

on theoretical calculations (Hrdý & Oberta, 2008) and ray-

tracing simulations (Artemiev et al., 2004), various applica-

tions for diffractive–refractive optics were proposed and

tested at synchrotron facilities. Recently, the smallest focal

spot size by diffractive–refractive optics (Oberta et al., 2010)

was achieved and a novel method of higher harmonics

separation in space was proposed at the Swiss Light Source

(SLS; Hrdý et al., 2011). In addition to beam focusing, another

application of diffractive–refractive optics is beam collima-

tion. In this paper a new approach is introduced and beam

collimation is demonstrated using a dispersive arrangement of

two crystals with precise parabolic holes.

There are a number of methods used to collimate X-rays.

Mirrors or asymmetrically cut crystals can be used (Mori &

Sasaki, 1995; Renninger, 1961), but these approaches change

the direction of beam propagation and additional optics are

needed to correct this deviation. Our method is based on two

asymmetrically cut crystals into which we machined holes with

a precise parabolic profile: two channel-cut crystals. The

dispersive arrangement has the advantage, compared with

other methods, that it conserves beam direction: the entrance

and exit beam positions are fixed. The same advantage holds

for refractive lenses (Snigirev et al., 1996); however, they can

only be used for hard X-ray radiation. Another advantage of

the diffractive–refractive method is lower flux loss compared

with other collimation methods. The Si(333) reflection loses

just about 10% of flux after diffraction.

2. Theoretical description

Imagine a crystal into which a hole is drilled. This hole is

further machined to reach an ideal parabolic shape. The

crystal is cut in such a way that the crystallographic planes of

the (111) orientation form an angle � with the crystal surface

(asymmetric crystal), Fig. 1. If one takes a point source,

located at a distance S from the crystal, then the diffracted

radiation from the parabolic surface profile of the drilled hole

in the crystal will be sagittally focused to a point at a distance f

from the crystal. The formula describing the parabolic profile

can be expressed as

y ½mm� ¼ a ½mm�1
� x2
½mm2
�; ð1Þ

where a is the parabola parameter. Then the relationship

between S, f and a can be expressed as (Hrdý & Oberta, 2008;

Snigirev et al., 1996)

f ¼ S=ð2aNK0S� 1Þ; ð2Þ

where
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K0 ¼ Kð2þ bþ 1=bÞ=4 cos�; ð3Þ

b ¼ sinð� � �Þ= sinð� þ �Þ; ð4Þ

K ¼ ð2reF0=�VÞ dhkl �; ð5Þ

where for silicon

K ¼ 1:256� 10�3 dhkl ½nm� � ½nm�: ð6Þ

Here re is the classical electron radius, F0 is the structure

factor, V is the unit-cell volume, � is the wavelength, dhkl is the

atomic plane spacing, � is the asymmetry angle (� > 0 for the

grazing-incidence case), � is the Bragg angle, N is the number

of diffraction events and b is the asymmetry factor. A plot of

formula (2) for dhkl = (111) shows the dependence of the

focusing distance over energy or Bragg angle (Oberta et al.,

2010). By using only one crystal with a parabolic shaped hole,

Fig. 1, the number of diffracting events is two, N = 2. As shown

by Hrdý & Siddons (1999), such a crystal arrangement cannot

achieve a sharp focal spot, because of the combined vertical

and horizontal spread of the beam. To cancel the vertical and

horizontal beam spreads, a Bartels crystal arrangement must

be used. For this case the number of diffracting events is four,

N = 4 (Fig. 2). A single crystal with two diffracting events, N =

2, is a non-dispersive system, but the two-crystal system used

in the experiment represents a dispersive system, with N = 4

diffracting events (Fig. 2).

The focusing condition is sensitive to dispersion and thus

depends on the reflection. Fig. 3 shows the focusing distance

over a Bragg angle of a dispersive arrangement of two crystals

with a parabolic-shaped drilled hole for the Si(333) crystal

orientation. The crystal–source distance was S = 33613 mm as

used at BM05 at ESRF where the experiment was performed.

The parabola parameter of our crystals is a = 0.15 mm�1. As

can be seen from Fig. 3, for certain

Bragg angles (energies) the focusing

distance is several hundred meters from

the crystal or becomes infinite (inclined

dashed area). Under these conditions

the crystal arrangement is a collimator.

The collimation is therefore indepen-

dent of the divergence of the impinging

beam. This is the working principle of

the diffractive–refractive X-ray colli-

mator.

Fig. 3 plots the calculated focal

distance for three different harmonics. The black full line

represents the Si(333) focusing versus Bragg angle depen-

dence. We can see higher harmonics, plotted as red dash-

dotted [Si(444)] and blue dashed [Si(555)] lines. A negative

focusing distance means a divergence of the beam with a focal

point placed before the crystals. A positive focusing distance

represents focusing with the focal point placed after the

crystals. If a focusing distance of an optical set-up, like the

proposed crystal arrangement, is from several hundred meters

up to kilometers; such a set-up can be described as collimating.

For the case of the diffractive–refractive X-ray collimator this

value was set to �500 m. The focusing distance is very

sensitive to the crystal–source distance S (Fig. 4). By changing

S and moving the crystals over a range of 10 m, we can achieve

a collimation effect over an angular range of �B = 71–18.4�,

that corresponds to an energy range of 6.3–18.8 keV. Because

the proposed crystal collimator is based on the diffractive–

refractive effect, which is much stronger for longer wave-

lengths, the working range of the collimator lies in the soft X-

ray region. In Fig. 4 we find two collimating angular ranges

(inclined dashed area). The range for larger �B (smaller

energies) is broader than that for smaller �B (larger energies).

Both ranges are approaching each other with increasing

distance S.
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Figure 2
The two-crystal dispersive system with four diffraction events. The four
diffraction events are in reality separated in space (1–4). The theory
simplifies them into one point in space.

Figure 3
Focusing distance as a function of Bragg angle for diffractions Si(333)
(black full line), Si(444) (red dash-dotted line) and Si(555) (blue dashed
line). The gray inclined dashed areas represent the working range of the
collimator for a crystal–source distance of 33.6 m.

Figure 1
A silicon Si(111) asymmetrically cut crystal with a parabolic-shaped drilled hole and double-bounce
beam path inside the crystal.



Table 1 includes the tabulated angular and energy ranges

for eight different crystal–source distances, along with the

focal distances of some harmonics. Table 2 also includes the

tabulated broadening of the beam compared with an ideal

collimation as a percentage of the impinging beam dimensions.

The additional broadening of the

Si(333) diffraction for a focal distance of

500 m is within �0.18% of ideal, which

justifies our approximation approach. In

the case of the higher harmonics the

share to the beam broadening is higher,

but still in the range between 5.8%

and 14%.

As one can see from Fig. 4 and Table

2, harmonic contamination will project

itself as an additional beam broadening

and will decrease the multiwavelength

collimation. One can overcome this

problem by using a special crystal

geometry to separate the higher

harmonics in space without deforming

the reflectivity curve, as carried out

by traditional harmonics separation

methods (Hrdý et al., 2011), or by

introducing a slit system between the

two crystals.

3. Experimental results

The experiment was performed on a

vertical diffractometer at the BM05

beamline at ESRF. We set two crystals with

precise machined parabolic holes into a

dispersive position and set the beamline

monochromator to 8.97 keV.

First we set only one crystal into the

diffraction position (�B Si(333) = 41.4�) and

detected the diffraction. Then we removed

the crystal and set the second crystal. After

adjusting the second crystal we set both

crystals in-line. At different distances we

recorded diffraction images on X-ray films

and on a digital camera.

3.1. Single-crystal arrangement

In a set-up with only one crystal diffracting we detected

higher harmonics. As can be seen in Fig. 5, there are two

parabolic-shaped diffraction spots on the X-ray film. The full

parabolic diffraction spot corresponds to the Si(333) diffrac-

tion, which copies the shape of the parabolic groove. Based on

the distance of 7 m of the X-ray film and the angular separa-

tion of 0.7� of the two diffractions one can calculate the

corresponding energy of the other diffraction. Based on this

approach we found out that the partial parabolic diffraction

corresponds to the Si(444) diffraction energy.

After diffraction from one crystal the higher harmonics are

separated in space (Hrdý et al., 2011), and after two crystals

the higher harmonics are assembled again in-line and overlap

each other. Therefore, higher harmonics contamination could

be solved by introducing a slit system between the two crystals.

The schematic in Fig. 5 shows the layout of the experiment.
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Figure 4
Focusing distance versus Bragg angle for four different crystal–source distances. With increasing
crystal–source distance the two working ranges are approaching each other.

Table 1
Angular and energy ranges for eight different crystal–source distances, S, along with the focal
distances of some harmonics.

S (m) Collimation range (�) Collimation range (keV) f333 (m) f444 (m) f555 (m)

32.8 18–19/53.5–71 19.2–18.23/7.38–6.27 �500 �69.29 �49.52
34.8 18.4–19.4/47.5–62 18.81–17.86/8.05–6.72 �500 �77.26 �53.73
36.8 19–20/43–56 18.23–17.36/8.7–7.15 �500 �87.86 �58.65
38.8 19–21/38–51 18.23–16.57/9.64–7.63 �500 �100 �63
40.8 20–22/33.5–46.5 17.36–15.85/10.75–8.17 �500 �97 �65
42.8 20–43 17.36–8.7 �500 �93 �70
44.8 21–39.5 16.57–9.33 �500 �111 �72
46.7 22–37 15.85–9.86 �500 �118 �76

Table 2
Broadening of the beam compared with an ideal collimation as a
percentage of the impinging beam dimensions.

Broadening (%)

S (m) Si(333) Si(444) Si(555)

32.8 0.18 9.8 14.0
34.8 0.18 9.0 13.0
36.8 0.18 7.8 11.8
38.8 0.18 7.0 11.0
40.8 0.18 7.2 10.6
42.8 0.18 7.4 10.0
44.8 0.18 6.2 9.6
46.7 0.18 5.8 9.2



Here A is the crystal–source distance (33600 mm), B is the

crystal–X-ray film distance (7000 mm), X is the Si(333)

diffraction spot size [width of the Si(333) parabolic diffraction,

9.05 mm] and Y is the width of the primary beam, 10.9 mm.

These dimensions are related as

X=A ¼ Y=ðAþ BÞ: ð7Þ

From this simple relationship we can calculate the width of the

Si(333) collimated diffraction spot if the collimation is ideal.

For the ideal collimation the Si(333) diffraction spot is

9.02 mm. The error between experiment (9.05 mm) and

calculation (9.02 mm) is just 0.3%.

3.2. Double-crystal arrangement

By assembling the two crystals in-line, higher harmonics,

which were spatially separated by the first crystal, are

assembled again together by the second crystal. This way the

spot after the two crystals is contaminated by higher harmo-

nics, which are not collimated and degrade the apparent

collimation effect. Also the parabolic-

shaped diffraction after one crystal is

canceled by the second crystal. As a

result we restore a line beam (Figs. 6

and 7). By rocking one of the crystals

(Fig. 6), higher harmonics are visible.

The diffraction in Fig. 6 has a FWHM of

10.4 arcsec, which corresponds to the

Si(444) diffraction at 8.97 keV with a

theoretical FWHM of 10.6 arcsec. The

second diffraction spot, visible in frames

3–8, is the diffracted Si(333). Fig. 7

shows an X-ray film image of diffraction

after two crystals at a distance of 7 m

after the crystals. The false colors

represent the different energies. The red

color denotes the diffraction spot of the Si(333) diffraction,

green the Si(444) diffraction, and light blue for the Si(555)

diffraction. The dimensions of the diffraction footprint in Fig. 7

correspond to the theoretical spread of the higher harmonics

calculated from Fig. 3. The theoretical broadening of the beam

after a slit size of 5 mm should be 5.16, 5. 48 and 5.67 mm for

the Si(333), Si(444) and Si(555) diffraction, respectively. The

beam dimensions obtained by experiment were 5.12, 5.44 and

5.70 mm for the Si(333), Si(444) and Si(555) diffraction,

respectively. The theoretical description (Hrdý & Oberta,

2008; Snigirev et al., 1996) supposes that all the diffraction

events occur in one point in space; this way a clear crystal–

source distance is set. In reality there are four different points

of diffraction in the two crystals; the diffracted beam bounces

twice from each crystal. Contrary to theory, we do not have

one spatial point for all four diffracting events and one

crystal–source distance, but four points and four different

crystal–source distances. This situation can be simplified to

one of the three different points in Fig. 2. We can either choose

the first diffraction event at the first crystal (A) as the point

where all diffraction events occur, or we choose the very exit

point of the fourth and the final diffraction on the second

crystal (C). We can also choose a point between the two

research papers

J. Synchrotron Rad. (2011). 18, 522–526 Peter Oberta et al. � X-ray collimation 525

Figure 6
Diffraction after two crystals at a distance of 7 m. We rocked the first
crystal and registered a strong moving (333) diffraction and a weaker
disappearing (444) diffraction.

Figure 7
X-ray film at a distance of 7 m from the crystal with a (333) diffraction
and the (444) and (555) diffractions in background. The original film spot
(top) and false colors description (bottom).

Figure 5
Diffractions after one crystal at a distance of 7 m. The horizontal line spot is the primary beam
propagating through the crystal, the full parabolic spot is the Si(333) diffraction, and the partial
parabolic double-spot is the Si(444) diffraction. Owing to the diffractive–refractive effect the
harmonics are separated in space.



crystals (B). At the end we can calculate using three different

points, which gives us three different crystal–source distances

(Fig. 2). This situation leads to aberrations and thus dis-

agreements between calculation and experiment (Hrdý et al.,

2005).

The jagged shape of the left-hand side of the diffraction

spot in Fig. 6 is due to crystal subsurface imperfections. The

same imperfection can be seen in Fig. 7.

The horizontal divergence of the bending magnet at BM05

is 2.4 mrad. We observed a 5.16 mm Si(333) diffraction spot at

a distance of 7 m after the crystal from a 5 mm impinging

beam. This means a divergence of the collimator of only

4.7 arcsec in the horizontal plane, which is much smaller

compared with other crystal collimation methods (Ferrari &

Korytar, 2001). The horizontal divergence is not coupled to

the vertical divergence. The vertical divergence is set by the

dispersive setting of the crystals, the cross section of the

DuMond diagram, and is independent of the divergence of the

impinging beam.

4. Conclusions

X-ray collimation as a novel application of diffractive–

refractive optics was studied theoretically and experimentally.

A set-up with two crystals in a dispersive arrangement

successfully demonstrated X-ray collimation in the energy

range 6.3–18.8 keV. The experimental results are close to the

theoretical calculations of the spectral dependence of the

focusing distance. To reach a better agreement between the

theory of beam shaping through diffractive–refractive optics

and our experiment, further theoretical and experimental

research is necessary.

A minor drawback of the device is the higher harmonics

contamination, which overlaps on the primary beam. We can

overcome this problem by using a special crystal set-up (Hrdý

et al., 2011) or by placing a slit between the two crystals. The

widths of the diffraction spots in Fig. 5 are experimental proof

of the collimating optics. An interesting feature of this colli-

mation method is its energy range. Being able to collimate

lower energies (below 20 keV) can supplement compact

refractive lenses. The degree of collimation is adjustable with a

shifting of the value of the focusing distance at which we

approximate collimation.

This work was supported by the following funds: Institu-

tional Research Plan AS CR (No. AVOZ 10100522), MPO CR

(FR-TI1/412) and MSMT CR (INGO LA 10010 and MSM

0021622410). We would like to thank Mr Lukáš and the
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