Derivation of formula 5

The I₀ detected signal will be finally multiplied by a digital square wave function $S(\omega t + \phi)$, with the same frequency ω and phase ϕ , and numerically integrated for a time t_i much bigger than the oscillation period (equation 5).

$$Sout(t) = \frac{1}{T} \int_{t}^{t+T} S(\omega t + \phi) Io(t) dt =$$

$$\frac{1}{T} \int_{t}^{t+T} S(\omega t + \phi) (f(V) + f'(V) Va \sin(\omega t)) dt \approx 1/2 f'(V) Va$$

This formula is based on the property of orthogonality of sinusoidal function, if \square and \square are two interenumber then:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(\mu \theta) \sin(\nu \theta) d\theta = \begin{cases}
0 & \text{if } \mu \neq \nu \\
1 & \text{if } \mu = \nu \neq 0
\end{cases}$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(\mu \theta) \cos(\nu \theta) d\theta = \begin{cases}
0 & \text{if } \mu \neq \nu \\
1 & \text{if } \mu = \nu \neq 0
\end{cases}$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(\mu \theta) \cos(\nu \theta) d\theta = 0$$

This property could be demonstrated by Werner formulas

$$\sin(\mu)\sin(\nu) = 1/2[\cos(\mu - \nu) - \cos(\mu + \nu)]$$

$$\cos(\mu)\cos(\nu) = 1/2[\cos(\mu - \nu) + \cos(\mu + \nu)]$$

$$\sin(\mu)\cos(\nu) = 1/2[\sin(\mu - \nu) + \sin(\mu + \nu)]$$

For first term of orthogonality properties

$$1/\pi \int_{-\pi}^{\pi} \sin(\mu \theta) \sin(\nu \theta) d\theta = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu + \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta - \int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^{\pi} \cos((\mu - \nu) \theta) d\theta \right) = 1/2\pi \left(\int_{-\pi}^$$

If u=v:

$$= 1/2\pi \left(\int_{-\pi}^{\pi} d\vartheta - \int_{-\pi}^{\pi} \cos(2\vartheta) d\vartheta \right) = 1/2\pi \left(2\pi - 0 \right)$$

If μ≠ν:

$$=1/2\pi\left(\int_{-\pi}^{\pi}\cos((\mu-\nu)\vartheta)d\vartheta-\int_{-\pi}^{\pi}\cos((\mu+\nu)\vartheta)d\vartheta\right)=1/2(0-0)$$

If the integral is performed on a more generic range not a multiple of the period of $\sin(\mu \, \theta)\sin(\nu \, \theta)$ or with ν and μ no more integer the orthogonality properties became approximated.

$$\frac{2}{T} \int_0^T \sin(\mu \theta) \sin(\nu \theta) dx = \frac{2}{2n\pi + y} \int_0^{2n\pi + y} \sin(\mu \theta) \sin(\nu \theta) d\theta =$$

$$\frac{2}{2n\pi + y} \left(n \int_0^{2\pi} \sin(\mu \theta) \sin(\nu \theta) d\theta + \int_0^y \sin(\mu \theta) \sin(\nu \theta) d\theta \right)$$

Where the bigger deviation from the over cited equation is for $\mu = \nu$ and $y = \pi/4\mu$

$$\frac{2n\pi}{2n\pi + y} + \frac{2\mu y - \sin(2\mu y)}{2\mu y + 4\mu n\pi} = 1 \pm \frac{2}{(8n\mu + 1)\pi}$$

We could generalize for a generic period substituting the variable ϑ with 2p/Lx where L is the period of the function $\sin(2\pi\mu x)\sin(2\pi\nu x)$

$$1/\pi \int_{-\pi}^{\pi} \sin(\mu \theta) \sin(\nu \theta) d\theta =$$

$$2/L \int_{-L/2}^{L/2} \sin(2\pi \mu x/L) \sin(2\pi \nu x/L) dx = \begin{cases} 0 \text{ if } n \neq m \\ 1 \text{ if } n = m \neq 0 \end{cases}$$

The Fourier series of the square wave function of amplitude $\pi/4$:

$$S(\omega t + \phi) = \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \sin(n\omega x + \phi)$$

The equation 5 became

$$Sout(t) = \frac{1}{T} \int_{t}^{t+T} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \sin(n\omega x + \phi) Io(t) dt$$

in the integral survive only the term with n=1

$$\frac{1}{T} \int_{t}^{t+T} \sin(n\omega x + \phi) (f(V) + f'(V) V a \sin(\omega t)) dt =$$

$$\frac{1}{T} \left(\int_{t}^{t+T} \sin(n\omega x + \phi) f(V) dt + \int_{t}^{t+T} \sin(n\omega x + \phi) f'(V) V a \sin(\omega t) dt \right) \approx \frac{1}{2} f'(V) V a \sin(\omega t) dt$$