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A new data analysis methodology for X-ray absorption near-edge spectroscopy

(XANES) is introduced and tested using several examples. The methodology

has been implemented within the context of a new Matlab-based program

discussed in a companion related article [Delgado-Jaime et al. (2010), J.

Synchrotron Rad. 17, 132–137]. The approach makes use of a Monte Carlo

search method to seek appropriate starting points for a fit model, allowing for

the generation of a large number of independent fits with minimal user-induced

bias. The applicability of this methodology is tested using various data sets on

the Cl K-edge XAS data for tetragonal CuCl4
2�, a common reference compound

used for calibration and covalency estimation in M—Cl bonds. A new

background model function that effectively blends together background profiles

with spectral features is an important component of the discussed methodology.

The development of a robust evaluation function to fit multiple-edge data is

discussed and the implications regarding standard approaches to data analysis

are discussed and explored within these examples.

Keywords: X-ray absorption spectroscopy; data analysis; ligand K-edge XAS;
normalization and background subtraction for XAS data.

1. Introduction

X-ray absorption spectroscopy (XAS) has made an ever-

increasing scientific impact over the last decade owing to the

increased availability and quality of synchrotron beam time

and an ever-improving understanding of the information

content of this technique. Even with these many advances, the

issue of XAS data processing and analysis has not developed

as quickly or as effectively. Common steps in the processing of

near-edge spectra (i.e. XANES or NEXAFS) such as back-

ground subtraction, normalization and peak fitting are

generally performed independently and uniquely without

knowledge of the effect of one of these steps on the others.

Furthermore, raw XAS data typically possess two or more

regions where the experimentally obtained background can

differ significantly. In the simplest cases (i.e. those where only

a single edge is involved), traditional approaches subtract two

different backgrounds: typically, a linear or Gaussian back-

ground before the edge, and a quadratic polynomial spline

after it. Such procedures are notoriously challenging and are

not applied or performed uniformly in the field. The fitting of

XAS features such as pre-edge peaks and edges is generally

performed after background subtraction and normalization

and does not necessarily yield a unique solution (see below).

Although approaches differ, it is generally considered

appropriate to perform a series of ‘independent’ fits to the

data to obtain a qualitative feel for the robustness of the fitting

solution, thus providing some estimate of the reliability of the

obtained fits. However, user bias in the fitting procedure is

difficult if not impossible to remove using manual fitting

procedures, which rely on the user to choose reasonable

starting parameters. We suggest that such bias may, at least in

some situations, have a significant impact on the conclusions

drawn.

Recently, efforts have been directed at developing more

systematic models for XAS data analysis. For example, an

efficient new approach to background subtraction has been

proposed (Weng et al., 2005). In the area of extended X-ray

absorption fine structure (EXAFS) fitting, several statistical

approaches to data analysis have been proposed, including

Monte Carlo-based methods (Curis & Bénazeth, 2000, 2005;

Curis et al., 2005). Herein, we describe a new methodology for

the holistic analysis of near-edge spectra implemented in a

Matlab-based graphical user interface entitled Blueprint XAS.

In this methodology, we propose a Monte Carlo-based method

to generate adequate starting points in the generation of

multiple independent fits in order to reduce bias, test fit

models and estimate errors associated with the evaluation of

the associated fitting parameters. In the following sections, a

description of this methodology is provided and several

examples, analysed in Blueprint XAS, are discussed. A

detailed description of the software used, as well as its basic

tools, can be found in a companion manuscript (Delgado-

Jaime et al., 2010).

http://crossmark.crossref.org/dialog/?doi=10.1107/S090904950904655X&domain=pdf&date_stamp=2009-12-09


2. New methodology for the fitting of XAS data

As with most current methods, the user must define an

evaluation function, which is the physical model used to fit a

particular data set. Each of the parameters required for the

evaluation function is assigned appropriate upper and lower

limits. Given that this methodology is intended to reduce user

bias, limits should be broadly defined allowing for a maximal

exploration of the solution space. As opposed to traditional

methods, in order to minimize propagation of errors asso-

ciated with a pre-fitting background removal, the background

is included as part of the evaluation function (in addition to

functions modelling peaks and edges). The switch-like back-

ground model (see Appendix A), whose parameters can be

linked to parameters in one or several edges, is most suitable

as it helps to minimize the number of parameters required for

the evaluation function.

In addition to the inclusion of the background to the fitting

model, two main characteristics are unique to this metho-

dology:

(i) A large number of fits are generated (defined by the

user).

(ii) The start points that lead to these fits are not user-

defined, but instead selected from a Monte Carlo-based search

procedure. This procedure involves an array of 1000 randomly

generated parameter combinations spanned through the

entire solution space, which is delimited by the upper and

lower bounds of every parameter. The sum of squared errors

(SSE) is calculated for each of these combinations and the one

with the smallest SSE value is selected as the starting point.

This start point is then passed as part of the input to a non-

linear least-squares curve-fitting procedure from which a fit

is computed. Importantly, a new array of 1000 parameter

combinations is generated prior to the selection of the start

point used for the computation of the next fit (Fig. 1).

To allow for appropriate estimation of errors, the array of

resulting fits, as well as the corresponding array of start points

that lead to each fit, are saved to the output for further

analysis. Included in this output is a set of goodness-of-fit

parameters for each fit. The computed confidence intervals for

every parameter in each fit are also included in the output.

These confidence intervals, in principle, represent an estima-

tion of the error associated with the computation of each fit.

However, if a large number of fits is generated, the error

associated with the fitting procedure is better represented by

the standard deviation of the coefficients in the whole popu-

lation of fits. (The error associated with each fit is system-

atically removed upon the creation of a large family of them.)

3. Descriptive example: the analysis of a linear pseudo
data set

Fig. 2 illustrates the methodology with the use of a simple

example. The example consists of the fitting of a pseudo data

set using a linear evaluation function with parameters m

(slope) and b (y intercept). The upper and lower bounds for m

are set to 1 � 10�2 and 1 � 10�3, respectively. The corre-

sponding limits for b are set to�25 and�5. Since the example

is simple enough, a surface can be created using a discrete but

large number of combinations of m and b. The z-component of

each point in the obtained mesh grid is defined as the corre-

sponding �log(SSE) value and estimated upon the compar-

ison of the evaluation function with the data using the values

of m and b at each point of the grid. The solution to this

particular problem sits on the maximum of the surface in

Fig. 2(a). From this, it is also evident that there is a strong anti-

correlation relationship between parameters m and b, as

indicated by the belt of maxima sitting at high values of

�log(SSE).
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Figure 1
Computer algorithm for Blueprint XAS based on the methodology
described herein (see text).

Figure 2
Fitting of a straight line (with added random noise) using the
methodology described in the text. (a) Solution via the evaluation of
the fitting model using a discrete number of values of m and b. (b)
Selection of the start point (black triangle) (out of a 1000 randomly
generated points; grey dots) used in the computation of the first fit. (c)
Selected start points used in the computation of 100 fits (grey triangles)
and the final fit in all cases (black circle).



In a regular XAS evaluation function, the creation of an

equivalent surface in order to find the solution (or solutions) is

prohibitive, owing to the large number of fitting parameters.

Figs. 2(b) and 2(c) illustrate the application of the metho-

dology described above to the linear function of this example.

The surface of Fig. 2(a) (seen from the top and projected into

the xy plane) is embedded as a reference. A total of 100 fits are

computed. The 1000 random combinations of values of m and

b for one of the fits [grey dots in Fig. 2(b)] clearly span the

whole solution space. From these combinations, that with the

lowest SSE [highest �log(SSE)] is selected as the starting

point (represented by the black solid triangle) in the compu-

tation of that particular fit. In Fig. 2(c), the selected starting

points for each of the computed fits are represented as hollow

black triangles. The fact that practically all of these starting

points lie on the anti-correlation belt region (with most of

them near the solution) reflects the effectiveness of the Monte

Carlo-based method, and confirms that the evaluation func-

tion is well behaved. Owing to the simplicity of this example,

the solutions for the 100 fits are practically identical and are all

represented by the dark grey solid circle in Fig. 2(c).

4. Analysis of experimental XAS data sets

The following examples show the applicability of the metho-

dology described in the previous section, by using several real

examples. Throughout these examples, the following issues are

explored: (i) the number of fits required to ensure statistically

meaningful solutions; (ii) the reproducibility and errors asso-

ciated with the fitting procedure; (iii) the effects of concen-

tration in solid samples and its implications; (iv) the possible

propagation of errors upon background subtraction prior to

the fitting procedure; and (v) the implementation of the

methodology in multiple-edge XAS data.

The first four of these issues were investigated using the

XAS data collected on several samples of tetragonal

(NEt4)2CuCl4 . The last issue was investigated using the Ru L-

edge XAS spectrum of the chlorine-free compound 1 (Fig. 3),

which has been used previously in our group as a reference for

the development of the methodology used in the analysis of

the Cl K- and Ru L2,3-edges XAS data of ruthenium-based

carbene catalysts (Delgado-Jaime et al., 2006).

4.1. Data collection and sample preparation

Tetragonal CuCl4
2� (i.e. with D2d local symmetry) has

become a commonly used compound to calibrate and extract

covalency on chlorine-containing metal complexes. Copper

chloride compounds have been subjected to several studies

over the years (e.g. Glaser et al., 2000; Shadle et al., 1994) and

therefore represents a good reference for the applicability of

our methodology. We fitted and analyzed several data sets of

solid (NEt4)2CuCl4 collected at different times over a five-year

period. The first data set corresponds to two long-range scans,

in the energy region from 2720 to 3150 eV, collected at

beamline 6-2 of Stanford Synchrotron Radiation Lightsource

(SSRL). The rest of the data, obtained from 14 different

samples, correspond to shorter scans (two per sample)

obtained more recently at beamline 4-3 of SSRL, in the energy

range 2750–2900 eV. The data for compound 1 were also

collected in the energy range from 2720 to 3150 eV at beam-

line 6-2. In all cases, fluorescence data were collected using a

Lytle detector (filled with N2).

Samples were finely ground and diluted prior to data

collection to reduce distortion effects. A common vehicle to

dilute the solid samples to reduce self-absorption is boron

nitride (BN), a highly dense material with little absorption in

the relevant scanning region. In the case of (NEt4)2CuCl4 , the

sample used to collect the long-range scans was not diluted.

However, the 14 samples used to collect the short-range

scans were diluted using different approximate ratios

BN:(NEt4)2CuCl4 (v :v), as indicated in Table 2. The sample

used to scan the Ru L-edge XAS of compound 1 was finely

ground but undiluted.

4.2. How many computed fits per job?

The possibility of having multiple good solutions to a

particular fitting problem makes the generation of multiple

independent fits a necessity. To investigate how many fits

should be generally obtained when running a job in Blueprint

XAS, the two long-range scans of (NEt4)2CuCl4 were aver-

aged and the resulting data were fitted, using the evaluation

function described in Fig. 1 of the supplementary informa-

tion1. This evaluation function consisted of two pseudo-Voigt

peaks to model the pre-edge and near-edge features, one

cumulative pseudo-Voigt function to model the edge jump and

a switch-like function to model the background. An internal

normalization of the peaks was accomplished by defining the

intensity of the pre-edge peak as a function of the edge jump

intensity directly within the evaluation function (Delgado-

Jaime et al., 2010).

A total of 10, 100, 1000 and 10000 fits were computed for the

Cl K-edge XAS long-range data set on (NEt4)2CuCl4 , in four

separate jobs.

Table 1 lists the average and the standard deviation of

relevant fitted parameters obtained from these fit jobs. Fig. 4
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Figure 3
Structure of compound 1 (Conrad, Camm & Fogg, 2006; Conrad,
Snelgrove et al., 2006).

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: OT5602). Services for accessing these data are described
at the back of the journal.



shows the distribution of the start points and the fits according

to their �log(SSE) value for the last three fit jobs.

As is evident from Table 1, the average values for the

parameters corresponding to more resolved features in the

spectrum, such as the pre-edge intensity and the pre-edge

energy position, are well defined when only ten fits are

obtained. However, this sample size is not large enough to

estimate errors in these parameters. The results in this table

indicate that performing 100 fits gives rise to better defined

average values in all the parameters as well as good estimates

in their associated errors when compared with the more time-

and resource-demanding jobs (c) and (d). Furthermore, Fig. 4

indicates that increasing the total number of fits improves the

distribution profile of the start points when going from 100 to

10000 fits; yet it does little to change the statistical results in

the actual fits. Therefore, the amount of time spent to compute

10000 fits in this case (8.5 days) is completely unnecessary. The

results obtained from computing only 100 fits, which took only

2 h in this particular case, represent well the solution for this

problem. We conclude from this that, in general, 100 fits

should be sufficient in most relatively straightforward data sets

to statistically explore the solution space of a fitting problem

in XAS. However, we caution that more complex cases may

require users to perform additional fits.

4.3. Reproducibility of fit jobs

The two scans collected for each of the 14 (NEt4)2CuCl4
samples were averaged and the resulting data sets were cali-

brated by adjusting the maximum in the pre-edge peak to

2820.2 eV (Glaser et al., 2000; Shadle et al., 1994). The cali-

brated data sets are illustrated in Fig. 5. As indicated in Table 2,

samples 1–5 were diluted with �50% of BN, samples 6–7 with

�75% of BN, samples 8–9 with�90% and samples 10–14 with

more than 90% of BN by volume. It is evident from this figure

that the intensity of the spectral features correlates well with

the concentration of chlorine in each sample.

The evaluation function used to fit these data sets was the

same in all cases, but different to the one used to fit the long-

research papers

122 Mario Ulises Delgado-Jaime et al. � New XAS data fitting and analysis methodology J. Synchrotron Rad. (2010). 17, 119–128

Table 1
Results for fit jobs involving (a) 10, (b) 100, (c) 1000 and (d) 10000 independent fits in the Cl K-edge XAS long-range data set of (NEt4)2CuCl4.

(a) 10 fits (b) 100 fits (c) 1000 fits (d) 10000 fits

Coefficient parameter† Average Std dev Average Std dev Average Std dev Average Std dev

Edge
Intensity, I1 0.246 0.001 0.245 0.001 0.245 0.001 0.245 0.001
Energy position (eV), O1 2824.90 0.74 2825.29 1.04 2825.24 1.00 2825.27 1.02

Peak 1
Normalized intensity, I2 0.577 0.004 0.578 0.008 0.579 0.008 0.579 0.009
Energy position (eV), O2 2820.16 <0.01 2820.16 < 0.01 2820.16 < 0.01 2820.16 < 0.01

Peak 2
Normalized intensity, I3 2.57 0.83 3.02 1.16 2.96 1.12 2.99 1.14
Energy position (eV), O3 2826.40 0.13 2826.29 0.18 2826.30 0.18 2826.29 0.18

† Parameter identifiers are as described in the corresponding evaluation function (Fig. S1).

Figure 5
Calibrated data sets corresponding to the Cl K-edge XAS spectra for
samples 1–14 of (NEt4)2CuCl4 in (a) the entire scanned region and (b) the
pre-edge region. Data sets corresponding to samples with 50% of BN are
displayed as solid lines in different shades of red (darker to lighter on
going from 1 to 5 in Table 2); data sets corresponding to samples with
75% of BN are displayed in different shades of orange plus signs (darker
to lighter on going from 6–7 in Table 2); data sets corresponding to
samples with 90% of BN are displayed as hollow circles in different
shades of grey (darker to lighter on going from 8–9 in Table 2); and data
sets corresponding to samples with more than 90% of BN are displayed as
dashed lines in different shades of blue (darker to lighter on going from
10–14 in Table 2).

Figure 4
Distribution of start points (top) and fits (bottom) for fit jobs with (a) 100,
(b) 1000 and (c) 10000 independent fits for the Cl K-edge XAS long-range
data set of (NEt4)2CuCl4 .



range data set discussed in the previous section. The simplified

model used in this case excludes the data around the tip of

the second peak (2825–2828.5 eV; Fig. S3 of supplementary

information) and removes the corresponding peak function

from the evaluation function, f (Fig. S2 of supplementary

information). Under these circumstances the results from the

corresponding fit jobs are inadequate for estimating the edge

position, as the removal of the second peak from the model

has the effect of moving the edge to lower energies. Further-

more, the edge intensity is inherently more inaccurate for

these data sets, given the fact that the data scans do not go

beyond 2900 eV, which otherwise would allow a better defi-

nition of the overall structure of the edge jump. In other

words, the results for the edge jump parameters, although

consistent among all data sets, are unimportant and not the

main focus in this section. Instead, the obtained results were

used exclusively to compare the normalized intensity of the

pre-edge feature between the different data sets.

For each data set, a fit job consisting of 100 fits was

computed, using the same lower and upper bounds in all cases.

The numerical results for the parameters of the pre-edge

feature are listed in Table 2.

To check for reproducibility, four additional fit jobs (with

100 fits each) were obtained for samples 1 and 3 and the results

for the parameters on the pre-edge feature are reported in

Table S4 (of the supplementary information). The behaviour

of the variability of these results among the different fit jobs is

illustrated in Fig. S5 (of the supplementary information)

indicating that the methodology described here is robust and

reproducible.

4.4. Concentration effects

To graphically compare the results obtained from the 14

data sets on (NEt4)2CuCl4 , the background subtraction and

normalization of each data set is accomplished within Blue-

print XAS by using the post-fitting toolbox (Delgado-Jaime et

al., 2010). From Fig. 6, it is evident that by diluting the sample

with BN the intensity of the pre-edge peak decreases while the

near-edge peak feature increases.

The numerical results directly obtained for the pre-edge

normalized intensity indicate the same trend (Table 2). Along

the series of data sets 1–14, a clear decrease in the normalized

intensity of the pre-edge is observed (Fig. 7). Additionally, the

width seems to remain constant with a small tendency to

decrease, whereas the shape of the peak becomes slightly

more Gaussian.

Interestingly, as the concentration of BN becomes higher,

the uncertainty in the four coefficients increases. Specifically,
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Figure 6
Background subtraction and normalization of data sets 1–14 in (a) the
entire scanned region and (b) the pre-edge region. Colour and line style
coding are as indicated in Fig. 5.

Table 2
Results for pre-edge parameters from the fitting of Cl K-edge XAS data sets 1–14 of (NEt4)2CuCl4.

Normalized intensity Energy position (eV) Width (HWHM) (eV) Shape (% Gaussian)

Lower Upper Lower Upper Lower Upper Lower Upper

0.2 1.5 2820 2821 0.1 4 0 100

Sample Normalized intensity Energy position (eV) Width (HWHM) (eV) Shape (% Gaussian)

# % BN Average Std dev Average Std dev Average Std dev Average Std dev

1 50 0.846 0.007 2820.20 <0.01 0.508 0.006 18.8 0.9
2 50 0.846 0.010 2820.20 <0.01 0.512 0.006 19.2 1.7
3 50 0.918 0.018 2820.20 <0.01 0.535 0.004 20.0 0.4
4 50 0.768 0.004 2820.20 <0.01 0.497 0.001 22.9 0.3
5 50 0.762 0.007 2820.19 <0.01 0.499 0.006 23.5 1.2
6 75 0.701 0.009 2820.20 <0.01 0.499 <0.001 27.1 0.1
7 75 0.715 0.045 2820.21 <0.01 0.496 0.003 26.3 7.9
8 90 0.614 0.069 2820.20 <0.01 0.485 0.017 32.2 11.7
9 90 0.630 0.058 2820.19 <0.01 0.487 0.013 30.0 8.6

10 >90 0.650 0.067 2820.21 0.07 0.512 0.224 30.9 12.1
11 >90 0.596 0.074 2820.21 0.08 0.506 0.122 34.9 12.3
12 >90 0.569 0.060 2820.22 0.11 0.557 0.495 46.7 13.0
13 >90 0.702 0.030 2820.22 0.03 0.497 0.014 27.6 7.9
14 >90 0.565 0.067 2820.22 0.08 0.525 0.222 47.9 14.4



in the most dilute samples (from 8 to 14), the uncertainty on

the peak position is significantly increased. This is due to the

fact that as the samples becomes more diluted the influence of

the background becomes more important, as suggested also by

Fig. S6 (of the supplementary information), particularly in the

case of the most dilute samples 10–14, for which the pre-edge

region of the background increases its steepness significantly.

These results imply that background subtraction and

normalization procedures prior to fitting, especially for spectra

of dilute samples, may introduce important errors in the fit

parameters.

The observed differences in the normalized intensity of the

pre-edge through the series are attributed to self-absorption

effects. In relatively concentrated samples, the edge jump is so

intense that it becomes saturated in relation to the less-intense

pre-edge feature. As observed, this effect becomes less

important once the sample becomes significantly diluted. This

has been discussed in detail previously for the case of S

K-edge XAS of S8 (George et al., 2008). Samples with an

inherently high concentration of the absorbing element [100%

of sulfur in S8; and �30% of Cl in (NEt4)2CuCl4 by mass] are

prone to important distortion effects when the data sets come

from solid samples that are concentrated and whose particle

size is relatively large. For the case of (NEt4)2CuCl4 , the

somewhat asymptotic behaviour of the plot for the normalized

intensity at high proportions of BN (>90%) in Fig. 7 indicates

that self-absorption effects are attenuated at this level of

dilution.

Previous studies on the Cl K-edge XAS spectrum of tetra-

gonal CuCl4
2� have provided an estimate on the covalency of

Cu—Cl (Shadle et al., 1994; Glaser et al., 2000). In these

studies, no sample dilution was performed, although a some-

what equivalent procedure was carried out to minimize

possible self-absorption and anisotropic effects. This proce-

dure was based on the analysis of the raw data obtained from

several samples that were spread out over Mylar tape with

increasingly thinner sample thickness. Furthermore, their

fitting analysis was based on a few manually performed

independent fits using traditional background subtraction and

normalization procedures. An intensity of 0.57 was found for

the pre-edge feature (dash-dotted grey line in Fig. 7), which

generally agrees with our data from diluted samples within

error. However, we note that the inherent uncertainty in the

fitting procedure leads to a relatively large, and heretofore

unaccounted for, error in the reference value. The importance

of this factor requires further investigation.

5. Multi-edge fitting

The fitting of the Ru L2,3 XAS data for compound 1 is used (i)

to demonstrate the applicability and robustness of the switch-

like background model (see Appendix A) and (ii) to show the

application of the methodology when fitting multiple-edge

spectra with several shared parameters.

In recent years, the exploration of L-edge XAS in second-

row transition metal complexes has grown significantly (e.g.

Boysen & Szilagyi, 2008; Harris et al., 2009). While having a

complicated background in these cases is generally perceived

as a challenge, the double-edge spectrum under almost jj-

coupling conditions can also be beneficial in the fitting of this

and other similar data.

A previous study using a different function to model the

background, and a traditional approach to analyse the data set

of compound 1 (Delgado-Jaime et al., 2006), suggested that the

branching ratio between the L3 and L2 edges differs markedly

from the statistical 2:1 ratio.

As a starting procedure, Fig. 8 illustrates a rough graphical

manipulation of the Ru L2,3 XAS data of compound 1 used in

these studies. The proportion between the two edge jumps and

between the total intensity of the pre-edge and near edge

features in the two edges obeys a branching ratio of�1.7. This
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Figure 7
Variation of pre-edge parameters according to the fit results on the Cl K-
edge XAS data sets 1–14 of (NEt4)2CuCl4 .

Figure 8
Rough graphical manipulation of the raw Ru L2,3 XAS spectra for
compound 1. The energy scale is relative to the maximum of the pre-edge
feature in L3 (black plus signs centred at�2842 eV) and to the maximum
of the pre-edge feature in L2 (red hollow circles centred at �2842 +
128.7 eV). The intensity of the L2 edge is rescaled using a factor of 1.7.



is not exclusive of compound 1, but rather a more general

observation for other second-row transition-metal complexes

(Hu et al., 2000).

The formulation of an evaluation function for the fitting of

this and similar data becomes simpler when considering these

observations. A unique parameter (B1, Fig. 9) that relates the

intensity of the two edge jump functions as well as the

intensity of the two clusters of peaks in the two edges can be

used. It is therefore extremely useful for the evaluation

function to make use of global and shared parameters, which is

straightforward in our implementation.

Based on these considerations, a relatively simple evalua-

tion function (see Fig. S7 in the supplementary information for

details) is constructed. In this case the sharing of parameters

within the evaluation function imposes significant a priori

constraints that simplify the overall fitting procedure even

more than would generally be anticipated from simply

decreasing the total number of parameters in the non-linear

least-squares fitting procedure. To further simplify the

evaluation function, the shape and width of the duplicate

functions of the L2 edge were set to be identical to those in the

L3 edge. This last simplification may not always be suitable in

the fitting of such spectra, although it seems to be a generally

reasonable starting point when first developing the fit model.

The evaluation function can also be further simplified by

noting that the energy separation between the inflection

points of the two edges should, in principle, be the same as the

separation of equivalent peak features between the two edges,

as shown in Fig. 9. In general, this is a very likely simplification

of the problem under near jj-coupling conditions in which the

atomic, the ligand field and the bonding interactions that occur

in one edge, or the other, are of the same magnitude provided

the interaction of the 2p core hole with the 4d shell is negli-

gible. As suggested by Fig. 8, this should be the case for

compound 1.

The final evaluation function used for the fitting of the

Ru L2,3-edges XAS spectrum of compound 1 thus resulted

in a model with a total of 18 parameters (see Fig. S8 in the

supplementary information). Equivalent features in each of

the edges were linked using a global energy splitting (� = W2

in Fig. 9). Using this evaluation function, three fit jobs (to

check for reproducibility) with 100 fits each were computed.

The results for relevant parameters are listed in Table 3.

The variability of W2 is minimal and practically the same as

in ruthenium metal (�129 eV) (Williams, 2001). This implies

that possible interactions of the valence shell with the 2p core

hole in the ruthenium metal, or in other words that of the

spin–orbit coupling of the 2p shell of ruthenium (II) in

compound 1, is essentially the same as for ruthenium metal.

Conversely, a large variability is observed for the parameters

of the three peak functions in the fits of the three jobs,

particularly the intensity, as evidenced by the results in Table 3

and Fig. 10. In situations like this, in which a pre-edge or near-

edge feature is not well resolved, the data set is not good

enough to yield a simple solution based on a unique or even a

few independent fits.
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Figure 9
Energy correlation between the position of the edges and the peak
features in L2,3-edges XAS under almost jj-coupling conditions, for which
the dominant interaction is the 2p spin–orbit coupling. The remaining
interactions can be considered as perturbations of the same magnitude
for each edge.

Figure 10
Variability of relevant parameters in the fitting of Ru L2,3-edges XAS
data of compound 1, among the three fit jobs performed using the
evaluation function of Fig. S7.



In a previous manuscript, we reported, based on a broad set

of fits performed manually using a traditional fitting metho-

dology, the branching ratio between the intensities of the two

edges as Ru L3 /L2 = 1.74 (Delgado-Jaime et al., 2006). Herein,

the value for this parameter, which was also used to correlate

the intensities of equivalent peak features in the two edges, is

in close agreement with B1 = 1.73 � 0.05.

The same methodology discussed in this section can be

easily employed to explore more complicated cases, allowing

for a robust and methodical approach to identify whether

meaningful chemical information may be effectively extracted

from a specific data set. For example, we point to the overlap

between Ru L2,3-edges and Cl K-edges as a cause of concern

for the investigation of ruthenium-based olefin metathesis

catalysts (Delgado-Jaime et al., 2006; Getty et al., 2007) as well

as in ruthenium-containing anti-cancer targets (Harris et al.,

2009; Sriskandakumar et al., 2009). Furthermore, this model

can be also used to check for possible distortions in the data,

in the sense that if the evaluation function does not seem to fit

a particular set properly it might very well be due to the

presence of important distortions in one or more features, or

else due to the presence of impurities.

6. Conclusions

A new methodology for the fitting of XAS data has been

introduced and tested using several examples. The metho-

dology differs from existing approaches in that it allows for

simultaneous fitting of the background and spectroscopic

features. To minimize parameters, we also propose a new

edge-coupled background function that minimizes the number

of fit parameters. Lastly, a Monte Carlo subroutine allows the

XAS user to generate any number of independent fits with the

introduction of minimal user bias. This methodology is used to

explore a number of examples specifically addressing (i) the

need to explore a broad solution space when evaluating

a fit model (evaluation function); (ii) the potential effect of

sequential background subtraction, normalization and peak

fitting on the estimation of normalized intensities; (iii) the

nature of the uncertainty in XAS near-edge data analysis; (iv)

the exploration of possible distortions effects; and (v) the

exploration of the reproducibility of fit jobs and robustness of

the evaluation function. Our results suggest that fitting (rather

than subtracting in a preliminary step) the background is

necessary to avoid biased solutions and propagation of errors

in the analysis of near-edge XAS data. Furthermore, in many

cases, the information contained in XAS data may not be as

easily deconvoluted as our own bias may suggest. In such

cases, large uncertainties should be anticipated and can be

addressed more explicitly. In our newly developed approach,

uncertainties in the fitting of a data set are immediately

apparent and provide the user with detailed information

regarding the limitations of the fitting procedure.

APPENDIX A
The switch-like background model

Previously, we reported a methodology to fit and/or subtract

the background from multiple-edged XAS spectra (Delgado-

Jaime et al., 2006). This method was based on an energy-

weighting sum of parent functions, each fitting certain regions

of the background model. Herein, we introduce an alternative

model that uses fewer parameters and links some of these

parameters to those of an edge.

The functional form of this new model (referred to here as

the switch-like background model) is given by

fb ¼
Pn
i¼1

fiu x� b1;i;wi

� �
u b2;i � x;wi

� �
: ð1Þ

Like in the case of the previously developed model, each term

in this summation is constituted by the parent function ( fi)
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Table 3
Relevant parameters in the fitting of the Ru L2,3-edges XAS spectrum of compound 1.

Limits Fit job #1 Fit job #2 Fit job #3

Coefficient parameter† Lower Upper Average Std dev Average Std dev Average Std dev

Branching ratio, B1 1.3 2.5 1.73 0.01 1.73 0.02 1.73 0.05
W2 128 130 128.7 <0.1 128.7 <0.1 128.7 <0.1
L3-edge

Inflection point, O1 2837 2843 2841.7 0.8 2841.7 0.6 2841.7 0.7
Shape, G1 0 100 33.0 20.4 34.7 21.0 30.8 17.4
Width, W1 0.1 3 1.79 0.61 1.70 0.73 1.78 0.67

Peaks
Shape, G2 0 100 18.4 8.8 19.4 7.5 18.1 5.8
Width, W3 0.05 3 1.28 0.10 1.30 0.12 1.28 0.10

fp1

Relative position, O6‡ �2.5 �0.5 �1.3 0.4 �1.3 0.5 �1.3 0.4
Relative intensity, B2§ 0 1 0.236 0.206 0.209 0.169 0.224 0.166

fp2

Position, O4 2841 2843 2842.0 0.1 2842.0 0.1 2842.0 0.1
Normalized intensity, I2 2 20 12.7 1.9 13.2 1.7 13.1 1.6

fp3

Relative position, O7‡ 0.5 3 1.6 0.5 1.6 0.5 1.6 0.4
Relative intensity, B3‡ 0 1 0.185 0.196 0.165 0.171 0.151 0.132

† Parameter identifiers are as described in the corresponding evaluation function (Fig. S8 of supplementary information). ‡ Energy position relative to energy position of
fp2 (O4). § Intensity relative and defined as a of of the normalized intensity of fp2 (I2).



corresponding to a particular quasi-linear region (with

adjusted Y intercept) and by a factor, which in this case is a set

of two unit step functions that act as switches. The first unit

step function switches ‘on’ the parent function at a given value

of energy b1,i, whereas the second one switches ‘off’ the

function above a second higher value of energy, b2,i . Each of

these switches uses an approximation to the Heaviside’s unit

step function.

The Heaviside’s unit step function is defined by

u x� b1ð Þ ¼

1; x > b1;
0; x < b1;
?; x ¼ b1:

8<
: ð2Þ

To provide a smoother change between background functions,

the formal definition of the unit step function is not used in

our model. Instead the Fermi–Dirac–Boltzmann cumulative

distribution function is employed as a close approximation.

The smoothness of the switch is provided by an additional

width parameter (w). The functional form of this approxima-

tion to the unit step function is thus written as

u x� b1;wð Þ ¼
1

1þ exp b1 � xð Þ=w
� � : ð3Þ

According to the demonstration given in Fig. 11, this

approximation can be expressed in terms of the half width (�)

at half-maximum (HWHM), as follows,

u x� b1; �ð Þ ¼
1

1þ exp ln 3 b1 � xð Þ=�
� � : ð4Þ

Given that the functional form of the edge jump can also be

modelled with a parameter related to the HWHM, using a

single parameter to describe the smoothness of the transition

between parent functions in the background and the width of

an edge jump is extremely appealing. Moreover, and assuming

that the change in the background in XAS is effected by an

edge jump, the inflection point of an edge jump can be further

linked to the transition energies between parent functions in

the background, as shown in Fig. 12.
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