
Blu-Ice and the Distributed Control System :
software for data acquisition and instrument
control at macromolecular crystallography
beamlines

Timothy M. McPhillips,a Scott E. McPhillips,a Hsiu-Ju
Chiu,a² Aina E. Cohen,a Ashley M. Deacon,a Paul J.
Ellis,a Elspeth Garman,b Ana Gonzalez,a Nicholas K.
Sauter,a³ R. Paul Phizackerley,a S. Michael Soltisa and
Peter Kuhna*

aStanford Synchrotron Radiation Laboratory, 2575 Sand Hill
Road, MS 69, Menlo Park, CA 94025, USA, and bLaboratory of
Molecular Biophysics, Rex Richards Building, South Parks
Road, Oxford OX1 3QU, UK. E-mail: pkuhn@stanford.edu

The Blu-Ice and Distributed Control System (DCS) software packages

were developed to provide uni®ed control over the disparate

hardware resources available at a macromolecular crystallography

beamline. Blu-Ice is a user interface that provides scienti®c

experimenters and beamline support staff with intuitive graphical

tools for collecting diffraction data and con®guring beamlines for

experiments. Blu-Ice communicates with the hardware at a beamline

via DCS, an instrument-control and data-acquisition package

designed to integrate hardware resources in a highly heterogeneous

networked computing environment. Together, Blu-Ice and DCS

provide a ¯exible platform for increasing the ease of use, the level of

automation and the remote accessibility of beamlines. Blu-Ice and

DCS are currently installed on four Stanford Synchrotron Radiation

Laboratory crystallographic beamlines and are being implemented at

sister light sources.

Keywords: macromolecular crystallography; data acquisition;
instrument control; graphical user interface; remote access;
beamline automation.

1. Introduction

The increasing demand for macromolecular crystallography beamline

capacity at synchrotron light sources requires that the utilization of

these resources be maximized (Mitchell et al., 1999). Current

approaches to improving ef®ciency include the development of

software for enabling turnkey operation (Skinner & Sweet, 1998),

increasing automation (Abola et al., 2000) and providing remote

access (Chiu et al., 2002). A signi®cant hurdle to developing such

software is the heterogeneity of the computing and instrument-

control infrastructure associated with the beamline. For example,

beamline 9-2 at the Stanford Synchrotron Radiation Laboratory

(SSRL), which was the original test bed for Blu-Ice and the

Distributed Control System (DCS), comprises over 50 motors asso-

ciated with the beamline optics and experimental apparatus,

numerous attenuation and elemental foils, three ion chambers, an

X-ray ¯uorescence detector, a multichannel analyzer, and a fast-

readout large-area CCD detector. Owing to distinct operating

constraints of the individual instruments, the low-level software

controlling this hardware is not executed on a single computer;

rather, a total of six computers running ®ve different operating

systems are currently required at this beamline. Thus, a compre-

hensive software approach is needed to unify the control over

hardware resources scattered across a heterogeneous network of

computer systems. The Blu-Ice and DCS software packages solve this

problem and provide an effective architecture for developing intui-

tive graphical user interfaces, automating beamlines and enabling

remote beamline operation.

2. Blu-Ice

Blu-Ice is a graphical user interface that provides beamline experi-

menters and support staff with uni®ed control over all instrumenta-

tion at a particular beamline. Blu-Ice allows researchers to ef®ciently

con®gure a beamline for their experiment, determine optimal data-

collection parameters and carry out the data collection itself. It also

enables support staff to operate and con®gure all the software-

controlled elements of a beamline. Blu-Ice hides the underlying

complexity of the beamline instrumentation and places the interfaces

to key automation features within a single intuitive graphical envir-

onment. Blu-Ice also provides collaborative and remote-access

capabilities that allow multiple users to run their own instances

(independent executions) of Blu-Ice to view a single beamline from

either local or remote locations. Experimenters run multiple

instances of Blu-Ice in order to work together over the network and

control data-collection experiments from offsite. Support staff run

Blu-Ice from local and home of®ces to provide assistance to users and

troubleshoot problems remotely.

Blu-Ice runs within a single window on the workstation desktop

(Fig. 1). Graphical widgets common to all Blu-Ice tasks are located in

the menu bar at the top or in the status bar at the bottom of the Blu-

Ice window. The status bar indicates the current status of the beam-

line including the energy of the X-ray beam, the state of the high-

speed shutter and the activity of the detector. A scrolling log window

displays a time-stamped record of all operations carried out on the

beamline since that instance of Blu-Ice was started. Interfaces for

carrying out distinct experimental or beamline control tasks are

divided among the tabs of a notebook-style widget located between

the menu bar and the log window. These specialized interfaces are

described below.

2.1. Hutch tab

The Hutch tab provides the experimental user with views of the

most relevant beamline hardware and allows the user to con®gure the

beamline for an experiment (Fig. 1). The names of hardware devices

and their current positions are arranged around still photographs,

drawings or animated cartoons of the beam-conditioning system, the

goniometer and the detector, so that users may easily associate the

device names with the actual instruments they see in the experimental

hutch. Drop-down menus for each moveable device provide

suggested positions spanning the allowable range of motion. The user

can specify the positions of the goniometer axes, the position of the

detector, the distance between the sample and beam stop, the beam

energy, the beam size, and the percent beam attenuation in this

fashion. Entering new values for one or more device positions and

pressing the `Start' button begins the movement of the devices to the

new positions.

The Hutch tab indicates the current status of these devices on all

instances of Blu-Ice associated with the particular beamline. The

names of moving devices are highlighted and the positions of the

J. Synchrotron Rad. (2002). 9, 401±406 # 2002 International Union of Crystallography � Printed in Great Britain ± all rights reserved 401

computer programs

² Present address: Tularik Inc., Two Corporate Drive, South San Francisco,
CA 94080, USA.
³ Present address: Lawrence Berkeley National Laboratory, One Cyclotron
Road, Mail Stop 4-230, Berkeley, CA 94720, USA.



computer programs

402 Timothy M. McPhillips et al. � Blu-Ice and the Distributed Control System J. Synchrotron Rad. (2002). 9, 401±406

moving devices are updated in real time.

The X-ray beam is indicated graphically

when the shutter is open.

The resolution predictor graphically

indicates the position of the direct beam

and the d-spacing of diffraction spots

expected on different parts of the

detector face. The resolution predictor

updates dynamically as the detector

position and beam energy devices

change in value. This update also occurs

as the user types trial values into the

device-position windows, allowing the

user to visualize the effect of changing

these parameters without moving any

motors. Conversely, the user may click

on the resolution predictor to indicate

the desired position of the direct beam

with respect to the detector; new values

for the horizontal and vertical detector

positions are entered automatically into

the corresponding entry boxes.

A small tabbed interface allows one of

two video streams to be selected. The

®rst video stream shows a live image of

the sample on the goniometer and

provides a click-to-center system;

clicking on the image of the sample

causes the clicked point to move to the

rotation center of the goniometer.

Buttons are provided for rotating the

goniometer ' axis, for changing the

sample camera-zoom level and for ®ne positioning of the sample. The

second video stream presents a view from a pan-tilt-zoom camera

mounted in the experimental hutch. Buttons are provided to move

the camera to prede®ned orientations. These video streams greatly

simplify the operation of the beamline from outside the hutch, allow

the beamline to be operated safely from remote locations and enable

remote observers to watch the motion of the instrumentation during

an experiment.

2.2. Collect tab

The Collect tab is used to specify, control and monitor single-

wavelength and multiwavelength diffraction data-collection experi-

ments. At the right side of the window is a tabbed notebook

containing up to 16 individual run de®nitions. A run is a sequence of

exposures taken on a single sample with varying exposure settings.

For each run, the user may specify parameters that apply to all images

in the run including a pre®x from which image ®le names will be

generated, a directory in which to store the images, the detector

readout mode, the detector distance and the axis of the � goniometer

to rotate during an exposure (either ' or !). Additional parameters

specify the sequence of images to be collected, including the starting

and ending rotation axis positions and the corresponding frame

numbers; the rotational angle spanned by each exposure; and the

requested exposure time for each exposure. The user may specify up

to ®ve different energies at which to collect each frame of data. When

using the ' axis, the user may request that the inverse-beam

equivalent of each exposure (an exposure starting 180� away) be

collected as well. A ®nal parameter speci®es the size of the wedge of

data to be collected between energy changes and switches between

the two halves of an inverse-beam experiment.

The central portion of the Collect tab provides widgets for

controlling the progress of the experiment. Pressing the `Start' button

initiates data collection on the currently selected run tab. Pressing

`Pause' while data collection is in progress stops data collection after

completion of the current image. Data collection may be resumed at

the next frame of a paused run simply by pressing `Start'. A run-

sequence preview window lists the exposures de®ned by the currently

selected run in the order in which the system will collect them. The

name of the image ®le, the starting ' or ! angle, and the energy

corresponding to each image are displayed. The next image to be

collected is highlighted. Double-clicking on a different image causes

the system to jump to that point in the run, either skipping forward or

backward in the sequence. The run sequence updates dynamically as

the user modi®es run de®nitions, providing rapid feedback about how

the run-de®nition parameters affect the sequence. A dose-mode

checkbox allows the user to indicate whether exposure times should

be corrected dynamically for variations in beam intensity.

The left side of the Collect tab is occupied by a view of the last

collected diffraction image. The user may adjust the centering, zoom

level and contrast level of the image. Overloaded pixels are indicated

graphically. At high zoom levels the pixel values are displayed.

2.3. Scan tab

The Scan tab allows the user to perform X-ray ¯uorescence scans

of samples mounted on the goniometer. A two-tabbed notebook

occupies the right side of the window. The ®rst tab displays a periodic

table that allows the user to select any of the X-ray absorption edges

Figure 1
The Blu-Ice graphical user interface. The Hutch tab is shown.



accessible at the beamline. Clicking on one of the edges automatically

generates optimal experimental parameters for the scan. A ¯uores-

cence scan of the sample may then be performed by pressing the

`Start Scan' button.

Blu-Ice automatically runs a modi®ed version of the program

Chooch (Evans & Pettifer, 2001) on newly collected ¯uorescence

data and displays the resulting f 0 and f 0 0 curves. Based on these

curves, Blu-Ice automatically selects three energies for a multi-

wavelength anomalous diffraction (MAD) experiment: the in¯ection

point of the absorption edge, the peak of the absorption edge and a

remote energy (Hendrickson, 1991). These three energies are

displayed below the plot and may be adjusted by dragging cursors on

the plot. They may then be loaded into a run de®nition on the Collect

tab with a single button click.

2.4. Setup tab

The Setup tab, accessible only to beamline support staff, provides a

more comprehensive version of the Hutch tab. It presents an inte-

grated view of all the instrumentation at the beamline and enables

beamline scientists to ef®ciently commission, con®gure and trouble-

shoot the beamline. Cartoons of the beamline components allow the

staff to manipulate beamline hardware elements such as mono-

chromators, slits and goniometers without needing to remember

numerous motor names, sign conventions and relative orientations of

devices. Floating windows within the Setup tab allow multiple devices

to be viewed. Motor-con®guration parameters such as speeds,

accelerations, scale factors and software limits, as well as other

beamline hardware parameters, may be viewed or modi®ed within the

Setup tab. Both one- and two-dimensional scans of motor position

versus ion-chamber readings may be performed. Finally, a command

line allows all beamline control opera-

tions to be performed via typed

commands or scripts written in the Tcl

language. Such scripts greatly simplify

troubleshooting of hardware.

3. Distributed Control System (DCS)

The capabilities of Blu-Ice depend

heavily on the underlying DCS

package. DCS is an instrument-control

and data-acquisition system designed

for highly heterogeneous networked

computing environments. DCS uses a

simple message-passing protocol for

communication between low-level

hardware control systems and

graphical user interfaces. The DCS

protocol is easy to port to any network-

capable computing platform, including

recent operating systems such as Linux

and Microsoft Windows, legacy plat-

forms such as OpenVMS, and even

embedded systems with no operating-

system support at all. Thus, DCS allows

all hardware resources at a beamline to

be placed under the control of a single

control system, regardless of the

computing platforms associated with

those resources. Furthermore, DCS

provides server-side scripting

capability for implementing complex

procedures spanning all of the hardware resources at a beamline.

DCS is consequently a powerful platform for implementing sophis-

ticated beamline automation features.

3.1. DCS architecture

DCS is characterized by a three-tier message-passing architecture

(Fig. 2). The top tier of DCS consists of graphical user interfaces.

Interactive tools for carrying out experiments and otherwise oper-

ating the beamline are implemented at this level. For the remainder

of this paper, it will be assumed that the graphical user interface to

DCS is Blu-Ice and that beamlines using DCS are dedicated to

macromolecular crystallography. In principle, however, a wide variety

of user interfaces could be developed for use with DCS on beamlines

designed for other disciplines.

The bottom tier of the DCS architecture is composed of DCS

hardware server (DHS) programs. A DHS program encapsulates low-

level control of one or more physical devices such as motors, shutters,

detectors etc. DHS programs are typically run on computers dedi-

cated to hardware control. These computers are in turn located on a

dedicated network isolated from the public network at the light

source.

The central tier contains the DCS server, DCSS. One instance of

DCSS runs at a particular beamline, routing requests from Blu-Ice to

the appropriate hardware servers and broadcasting replies from the

hardware servers back to Blu-Ice. DCSS is normally run on a multi-

homed machine with network addresses on both the public network

where Blu-Ice is run and the hardware-control network where DHS

programs are executed.

J. Synchrotron Rad. (2002). 9, 401±406 Timothy M. McPhillips et al. � Blu-Ice and the Distributed Control System 403

computer programs

Figure 2
The three-tiered architecture of DCS as currently implemented at SSRL beamline 9-2. The instances of Blu-Ice
shown are examples. Not all DHS programs are shown. Hardware supported natively include the ADSC Q4 and
Q315 CCD systems; the Mar Research mar345 imaging-plate system; the Canberra DSA-2000 multichannel
analyzer; and the Galil DMC-1000 and DMC-2100 series motion controllers. CAMAC modules supported via the
ICS control system (George, 2000) include the DSP E500 motion controller, the DSP RTC018 real-time clock,
the Kinetic Systems 3610 hex scalar, the Joerger D/A16 analog output module and the Joerger QOR quad output
register.



computer programs

404 Timothy M. McPhillips et al. � Blu-Ice and the Distributed Control System J. Synchrotron Rad. (2002). 9, 401±406

3.2. DCS messaging protocol

All communication between the programs in the DCS architecture

uses a message-passing protocol that runs on top of TCP/IP. Each

DCS message consists of a variable-length text payload, a variable-

length binary payload and a ®xed-length ASCII header that lists the

lengths of the payload sections. The binary payload is currently used

only for passing authentication information between Blu-Ice and

DCSS. All other communication in DCS uses the text portion of the

DCS messages exclusively.

The text payload of each DCS message consists of a string

composed of white-space-separated tokens. The ®rst token in each

message is the command; all remaining tokens are arguments to the

command. For example, the following is a command from Blu-Ice to

DCSS requesting that the motor table_vert_1 be moved to the

absolute position of 10.0 mm:

gtos_start_motor_move table_vert_1 10.0.

The DCS protocol is completely asynchronous (i.e. not strict client/

server). This asynchronous message-passing architecture allows for

simultaneous operation of any number of different devices at the

beamline. Any number of different motor moves may be started

independently without having to wait for previous moves to complete

and without needing to de®ne aggregates of devices that move

together. For example, users of Blu-Ice may start to move the

detector positioner and then begin centering a crystal on the

motorized sample stage while the detector is still moving. Similarly,

any number of distinct automation tasks may be performed simul-

taneously.

The DCS protocol eliminates the need for polling devices from

within Blu-Ice. A DCS hardware server is responsible for reporting

autonomously when a motor motion or other operation is complete.

An instance of Blu-Ice need only wait for the completion message to

arrive. Similarly, hardware servers provide updates of motor positions

several times a second whenever motors are moving. All instances of

Blu-Ice are able to display the current positions of all motors simply

by processing all incoming motor-status messages as they arrive and

updating the graphical user interfaces accordingly.

3.3. Distributed hardware servers (DHS )

Any program that supports the DCS messaging protocol can act as

a hardware server in a beamline controlled by DCS. A DHS program

works as a protocol translator. The generic DCS messages are

translated by a DHS into the control protocol speci®c to a particular

type of device. This allows Blu-Ice, DCSS and the DCS protocol to

remain entirely generic. All hardware-speci®c code is encapsulated

within the hardware server dedicated to a particular device. A typical

beamline will run several DHS programs on different computers, and

those computers may run different operating systems. This allows

operating-system-speci®c device libraries to be exploited by a DHS.

A DHS may also wrap another control system. For example, more

than half of the motors at each SSRL beamline are controlled at a low

level by the standard SSRL control system, ICS (George, 2000). A

DHS is used to wrap ICS so that these devices may be controlled via

the DCS protocol. This type of DHS allows Blu-Ice to seamlessly

integrate multiple low-level control systems at the same beamline.

Furthermore, this approach allows beamline developers to deploy

Blu-Ice rapidly on beamlines with different hardware systems than

those used at SSRL, as long as some basic control system is already in

place at those beamlines.

3.4. DCS server (DCSS )

The DCS server is the central component of DCS and provides a

number of critical services. First, DCSS stores the state of the

beamline, including the positions of all motors. Second, DCSS is a

message router, facilitating controlled communication between

instances of Blu-Ice and the hardware servers. DCSS examines

incoming messages from Blu-Ice and forwards messages that refer to

particular devices to the appropriate hardware servers. Conversely,

responses from hardware servers are forwarded by DCSS to all

instances of Blu-Ice. In this way, DCSS provides all graphical user

interfaces with the same status information, allowing them to remain

synchronized at all times.

By controlling the ¯ow of instructions to the hardware servers,

DCSS prevents damage to the beamline hardware due to con¯icting

instructions from different instances of Blu-Ice. DCSS allows only

one Blu-Ice instance to control the beamline hardware at one time.

This instance is referred to as the active client. All other instances of

Blu-Ice, the passive clients, may monitor all beamline operations and

use passive features such as the resolution predictor, but they cannot

issue commands to control the beamline without ®rst becoming the

active client. Thus, two users of Blu-Ice can never inadvertently

request the control system to perform contradictory operations.

DCSS also enforces authentication of users of Blu-Ice and uses an

access-control list to determine which users are allowed to perform

what operations. A connecting Blu-Ice instance must respond

correctly to a challenge sent by DCSS before being allowed to access

the beamline. At SSRL, the challenge±response sequence is based on

a per-user private key known to both DCSS and Blu-Ice. This allows

users of Blu-Ice to authenticate automatically without typing in a

password. The access-control list restricts different users to distinct

levels of access to the beamline hardware. At the lowest level of

access, a Blu-Ice user is able to monitor operations at the beamline

but cannot become the active client or affect the beamline in any way.

At the highest level, all devices can be operated and con®gured.

These features of DCSS greatly simplify the implementation of

DHS programs. A designer of a DHS program does not need to take

into account the existence of multiple user interfaces, active and

passive clients, security and privilege issues, or the nature and activity

of other DHS programs at the same beamline. Each DHS must simply

respond to a single coherent stream of instructions that are guaran-

teed to be safe to carry out. Similarly, DCSS hides the nature and

location of the various DCS hardware servers from the user-interface

tier, allowing Blu-Ice to view and make use of a uniform pool of

hardware resources at the beamline.

3.5. Scripting engine

A fully automated, ef®cient and optimized MAD experiment

requires the sequenced and synchronized operation of a large

number of devices. Differences between beamlines require that the

procedures that control diffraction data collection, automatic beam

optimization, ¯uorescence scans etc. be easy to design, understand,

customize and test. DCS provides a powerful server-side scripting

interface, the scripting engine, for implementing such beamline

automation procedures.

The scripting engine is implemented as a Tcl interpreter executing

within the process context of DCSS. Locating the interpreter at this

level allows scripts to access all hardware resources at a beamline

uniformly. It also allows these procedures to execute independently

of any graphical user interface. Users may close all copies of Blu-Ice

after starting a data collection and the scripting engine will complete

the entire experiment.



Two types of scripts may be de®ned and executed within the

scripting engine: scripted devices and scripted operations. Both types

of scripts are written in the Tcl scripting language and may be added

to the system or modi®ed without recompiling any part of DCS. A

scripted device is a virtual motor that may be composed of any

number of real motors or other virtual motors. A scripted device may

be moved like a real motor from Blu-Ice or from other scripts. Simple

examples of scripted devices on SSRL beamlines are the table_vert

and table_pitch devices, both of which move the real motors

table_vert_1 and table_vert_2 according to equations included within

the scripts. Scripted devices may be nested inde®nitely.

A scripted operation is a more general construct that allows

beamline automation procedures to be implemented. For example,

the procedure to automatically maximize the intensity of the beam by

adjusting the table position on an SSRL beamline is implemented as a

scripted operation. As such, it can be initiated from Blu-Ice or from

within other scripted operations and scripted devices. In particular,

the scripted operation that performs data collection also executes this

beam-optimization script periodically to compensate for beam

motion that may occur.

Multiple scripted devices and operations may run simultaneously,

with scripts automatically and safely yielding control to each other

when waiting for asynchronous events such as completion of motor

moves or other operations. Concurrency in the scripting engine is

based on an event model rather than a more complex multi-threading

model (Ousterhout, 1998). DCS script writers may largely ignore the

complexities associated with thread-based concurrent programming,

such as the need to protect shared data and avoid deadlock. Conse-

quently, beamline scientists with minimal software-development

experience may describe the behavior of the beamline in simple

linear scripts that are easy to write, debug and understand. Example

scripts that illustrate how differences between beamlines can be

managed using scripted devices and operations may be found in the

online DCS administrator's manual (McPhillips, 2002a).

4. Software portability and availability

The large number of operating systems already in use at synchrotron

radiation beamlines, combined with the new computing platforms

likely to be exploited by future hardware vendors, necessitates a truly

cross-platform approach to beamline software development.

Furthermore, there are signi®cant performance constraints on many

of the software subsystems within Blu-Ice/DCS. High-performance

multi-threaded compiled code is required when the overriding goal is

to collect as many diffraction images as quickly as possible. There-

fore, the development strategy for DCS and Blu-Ice was to use

existing cross-platform tools such as Tcl/Tk for graphical user inter-

face development and scripting but to use multi-threaded C and C++

programs for high-performance server software. The simple text-

based DCS communication protocol was developed to minimize

operating-system dependencies related to network communication as

described above, and a custom library (XOS) was written in C to

provide cross-platform compatibility wherever compiled C/C++ code

was required.

4.1. Cross-operating-system library (XOS)

The XOS library provides a portable application programming

interface (API) for system calls that are otherwise highly platform

dependent. Designed speci®cally for multi-threaded distributed

applications, the library supports threads, mutexes, semaphores,

message queues, Win32-style messages (even on non-Windows plat-

forms), memory mapped ®les and TCP/IP network communication.

The library is written in C and uses the preprocessor to compile

different code depending on the target platform so that there is no

run-time overhead.

XOS currently allows the programmer to write high-performance

code that runs on Linux, Irix, Tru64 Unix, OpenVMS and Win32

platforms without modi®cation. Support for additional operating

systems is easy to add, since code common to different platforms is

shared. For example, the XOS code supporting threads, mutexes and

semaphores is shared between the Unix-like platforms and

OpenVMS, since these platforms support the POSIX threads API,

whereas the underlying XOS code supporting threads on Win32 is

distinct. The XOS API for managing threads is, nevertheless, iden-

tical on every platform. Not only does the XOS library hide system

differences from the application programmer, it also simpli®es the

function calls and hides the complexities of the particular operating

system APIs.

4.2. Graphical user interface development using Tcl/Tk

Although the high performance of compiled C/C++ is required for

DCSS and some DHS programs, Tcl/Tk provides a rapid-develop-

ment environment for implementing graphical user interfaces

(Ousterhout, 1994). In addition, Tcl/Tk achieves a very high level of

cross-platform compatibility, since a single distribution of source code

underlies all Tcl/Tk distributions running on Unix-like platforms,

32-bit Windows and MacOS. Blu-Ice is written using the [Incr Tcl/Tk]

extension to Tcl/Tk, which adds true object-oriented programming

features to Tcl (McLennan, 1995).

4.3. Availability

Blu-Ice/DCS is open source software distributed under an MIT-

style free software license (McPhillips, 2002b). Online access to the

Blu-Ice/DCS software distribution at SSRL has been provided to

collaborators at the Advanced Light Source (California), the

Advanced Photon Source (Illinois), Brookhaven National Labora-

tory (New York), the Synchrotron Radiation Research Center

(Taiwan) and ELETTRA (Italy). The Concurrent Versions System

(Cederqvist, 1992) is used for version control, software distribution,

and incorporation of software components and patches contributed

by the collaborators. Bugzilla (Mozilla Organization, 2002) is used for

managing feature requests and bug reports. The Blu-Ice/DCS soft-

ware distribution includes extensive online documentation of instal-

lation and administration procedures. Additional information about

the software distribution may be found at the Blu-Ice/DCS distri-

bution web site. (McPhillips, 2002b).

The authors would like to thank the entire Structural Molecular

Biology group at SSRL for their support and efforts with this project.

In addition, we would like to thank the many external users of the

macromolecular beamlines at SSRL who all gave us invaluable

feedback on the functionality of the software. This project was carried

out at SSRL and supported by the US National Institutes of Health,

National Center for Research Resource, Biomedical Technology

Program (P41-RR-01209), the National Institutes of General Medical

Sciences, and the Department of Energy, Of®ce of Biological and

Environmental Research. SSRL is operated by Stanford University

on behalf of the US Department of Energy, Of®ce of Basic Energy

Sciences.

References

Abola, E., Kuhn, P., Earnest, T. & Stevens, R. C. (2000). Nat. Struct. Biol. 7,
973±977.

Cederqvist, P. (1992). Version Management with CVS, http://www.cvshome.org/
docs/manual/.

J. Synchrotron Rad. (2002). 9, 401±406 Timothy M. McPhillips et al. � Blu-Ice and the Distributed Control System 405

computer programs



computer programs

406 Received 5 July 2002 � Accepted 22 August 2002 J. Synchrotron Rad. (2002). 9, 401±406

Chiu, H.-J., McPhillips, T., McPhillips, S., Sharp, K., Eriksson, T., Sauter, N.,
Soltis, M. & Kuhn, P. (2002). Networked Learning, pp. 128±134. NAISO
Academic Press.

Evans, G. & Pettifer, R. F. (2001). J. Appl. Cryst. 34, 82±86.
George, M. J. (2000). J. Synchrotron Rad. 7, 283±286.
Hendrickson, W. A. (1991). Science, 254, 51±58.
McLennan, M. J. (1995). Proceedings of the USENIX Third Annual Tcl/Tk

Workshop, Toronto, Ontario, Canada, July 1995. Berkeley, CA: USENIX
Association. (http://www.usenix.org/publications/library/proceedings/tcl95/
mclennan.html.)

McPhillips, S. E. (2002a). Blu-Ice/DCS Administrator's Manual, http://
smb.slac.stanford.edu/blu-ice/dcsAdmin/.

McPhillips, S. E. (2002b). The Blu-Ice/DCS Software Distribution, http://
smb.slac.stanford.edu/blu-ice/.

Mitchell, E., Kuhn, P. & Garman, E. (1999). Structure, 7, 111±121.
Mozilla Organization (2002). mozilla.org, http://www.mozilla.org/.
Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Reading, MA: Addison

Wesley.
Ousterhout, J. K. (1998). IEEE Comput. 31, 23±20.
Skinner, J. M. & Sweet, R. M. (1998). Acta Cryst. D54, 718±725.


