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The theory of photon interference x-ray absorption fine structure
(�XAFS) is described. Due to coherent x-ray scattering from atoms,
a spatial variation of the x-ray intensity is produced inside the sam-
ple. The intensity at the x-ray absorbing atom changes according to
the incident energy. Thus�XAFS in extended absorption spectra is
produced. It extends in a wide energy range over absorption edges.
For powders the�XAFS formula has equivalent form as the EXAFS
formula, and the Fourier transform provides distances of neighbor-
ing atoms from the absorbing atom. Due to a long mean free path
of the photon,�XAFS for powders contains sharp structures. They
are explained as a crystal grain orientation averaging of the x-ray
standing wave effect.
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In photoabsorption through the photoionization process, the in-
cident photon is absorbed by a core-level electron, and produces
a pair of photoelectron and core-hole. Both the initial-state pho-
ton and the final-state photoelectron may be coherently scattered
form surrounding atoms of the absorbing atom. The initial state of
photoionization process is therefore the photon interference state,
and the final state is the photoelectron interference state. The pho-
toelectron interference in the final state changes with the incident
energy, and it causes extended x-ray absorption fine structure (EX-
AFS) in x-ray absorption spectra.

In a similar way, the photon interference in the initial state varies
with the incident energy or angle, and accordingly the x-ray in-
tensity at the absorbing atom position changes. The change is ob-
served in x-ray absorption measurements. The effect is especially
strong near the Bragg condition, because a strong x-ray standing
wave (XSW) is formed inside the sample (Batterman & Cole, 1964;
Ohta, 1985). X-ray absorption for a pure single crystal near the
Bragg condition is nowadays widely used for determination of the
absorbing atom position relative to the diffraction plane (Bedzyk
& Materlik, 1985; Zegenhagen, 1993).

The photon interference effect in x-ray absorption is also used
in multiple-energy x-ray holography (MEXH) (Goget al., 1996).
In the MEXH method, the x-ray absorption is measured in a wide
(ideally full 4�) angler and energy ranges. The modulation of
absorption in reciprocal space is considered to be a hologram
(Nishino & Materlik, 1999). It is converted to three-dimensional
image of neighboring atoms in real space by a method like Fourier
transformation. It is clear from the success of MEXH that only one
neighboring atom can produce an observable photon interference
effect on x-ray absorption.

The two effects in x-ray absorption, the final-state photoelec-
tron and initial-state photon interference effects, are consistently

treated in the quantum theory by Nishino & Materlik (1999). It
was shown that in x-ray absorption spectra, in addition to EXAFS
due to the photoelectron interference effect, there is a structure due
to the photon interference effect from neighboring atoms. The new
structure is named photon interference x-ray absorption fine struc-
ture (�XAFS) (Nishino et al., 2000).�XAFS remains also in a
sample without preferred orientation as powders (Nishinoet al.,
2000).�XAFS for powders is also important in a practical appli-
cation, because its Fourier transformation gives radial positions of
the neighboring atoms as in the case of EXAFS. In this paper we
show the theoretical formulation of�XAFS.

The linear absorption coefficient due to the photoionization is
proportional to the total photoionization cross section. The total
photoionization cross section�PI for the non-relativistic photoelec-
tron is defined in terms of the transition matrixTf i as
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h̄3c

Z
dΩk̂e

jTf i j
2
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whereke = kek̂e, me andΩk̂e
are the wave number vector, mass

and solid angle of photoelectron, respectively. We consider three
contributions shown in fig. 1 to the transition matrixTf i . They are
(a) the atomic contribution, (b) the initial-state photon interaction
contribution and (c) the final-state photoelectron interaction con-
tribution. For a sample with a preferred orientation of neighboring
atoms, it is given by
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in the single-scattering plane wave approximation (Nishino &
Materlik, 1999). The approximation is appropriate for, e.g., a small
single crystal.C(Ex) in eq. (2) is a function of the incident pho-
ton energyEx. re denotes the classical electron radius.f x

i is the
atomic form factor of photon scattering,f e

i the scattering ampli-
tude of electron scattering from theith atom. The sums overi run
over all neighboring atoms. Assuming that the second and third
terms of eq.(2) are always smaller than the first term, one obtains

�PI(Ex; k̂x; �) = �0(Ex)
�
1+ �

x(Ex; k̂x; �) + �
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�
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by neglecting modulo-square of the second and third term of
eq. (2).�0(Ex) is the total photoionization cross section for an iso-
lated atom.�x and�e are oscillating functions in energy due to
the interference of photons and photoelectrons, respectively. The
explicit expressions are given by
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2ke in the argument off e
i denotes the backscattering geometry. The

photon interference contribution�x of eq. (4) is a known formula
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for MEXH (Nishino & Materlik, 1999; Adamset al., 1998). The
photoelectron interference contribution�e of eq. (5) is the single-
scattering contribution to EXAFS. Although the photon interfer-
ence effect�x is typically small, it gives a non-negligible con-
tribution to x-ray absorption spectra at energies far from absorp-
tion edges. Similarly, the photoelectron interference contribution
�e should be taken into account in MEXH analysis.
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Figure 1
Feynmann diagrams of photoionization process. Wavy lines are pho-

tons with wave number vectorkx = kxk̂x and polarization�. Straight
lines are electrons. Photoelectrons are shown with momentumke. Elec-
trons with arrows to the left are core-holes. (a) The atomic contribution.
The incident photon scatters a core-level electron in the atom atX0 and
creates the photoelectron and core-hole. (b) The scattering of photon in
the initial state. The photon is scattered by an electron of theith neigh-
boring atom atXi (r i = ri r̂ = Xi � X0). The circle with hatch contains
all photon-electron interaction diagrams. The Thomson scattering cor-
responding to the seagull diagram gives a dominant contribution. (c)
The Coulomb scattering of photoelectron in the final state.

If the sample does not have preferred orientation of neighboring
atoms, as powders, the total photoionization cross section needs to
be averaged over the neighbor orientations ˆr i . The neighbor orien-
tation random average ¯�e of the photoelectron interference contri-
bution�e is simply given by eq. (5) with replacing the factor(��r̂ i)
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The r̂ i random average of�x is obtained with a similar calculation
procedure as in the EXAFS case (Lee, 1976). By using the partial
wave expansion,
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and the orthogonal relation of Legendre functions,Z 1
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Assuming that the inter-atomic distance is longer than 1=kx, we
employ the asymptotic form of spherical Bessel functionsj l ,
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and obtain
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f x
i (0) term is non-oscillating. The contribution of Thomson scat-

tering to f x
i (0) term cancels exactly with the term arising from the

modulo-square of the second term of eq. (2). The cancellation is
proven by using the optical theorem
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Eq. (14) is obtained by applying the general form of the optical
theorem
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to the transition matrix of Thomson scattering
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The final result for�XAFS (oscillation contribution) for a random
orientation sample is thus given by
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�XAFS �̄x of eq. (17) and EXAFS ¯�e of eq. (6) are of equivalent
form. It is important to note that the�XAFS oscillation�̄x is peri-
odic in the photon wavenumberkx, whereas the EXAFS oscillation
�̄e is periodic in the photoelectron wavenumberke. Therefore the
Fourier transform of�XAFS with respect to 2kx gives peaks cor-
responding to distances of neighboring atoms from the absorbing
atom. Information of short range order of the sample is thus ob-
tained in the same manner as in the EXAFS case. The frequency
of �̄x depends on the distance. The slowest oscillation is obtained
for the nearest neighbor distance (e.g. the energy periodicity of
2:4 keV for a typical bond length of 2:6 Å). Relative amplitude
of �XAFS to EXAFS measured at identicalk is �̄x=�̄e = re f x= f e.
For example, for Pt the ratio is 1:0� 10�3 at k � 12 Å�1.

Fig. 2 shows a simulation of�XAFS for a platinum power ob-
tained from the�XAFS formula eq. (17). The Debye-Waller fac-
tor exp(�2�2k2

x) and the attenuation factor exp(�2ri=lx(Ex)) were
also taken into consideration. Here�2 is the mean-square relative
displacement of atoms, andlx(Ex) is the photon mean free path. For
simplicity, correlated atomic motions were neglected in the estima-
tion of �2, and twice the value in x-ray diffraction was assumed.
The cluster for the simulation had a radius of 150Å.
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Figure 2
Simulation of�XAFS for a Pt powder.�XAFS extends in a wide en-

ergy range over absorption edges. Pt absorption edges are at 5.86Å�1

(LIII ), 6.73Å�1 (LII ) and 7.03Å�1 (LI ). In the normalized absorption
(���0)=�0 measured in experiments, there is an additional contribution
of EXAFS. In the hatched region (within a few keV above absorption
edges) the EXAFS signal is larger than the�XAFS signal. Here� is the
linear absorption coefficient, and�0 is its atomic contribution.

Although the formulae of EXAFS and�XAFS are of equivalent
form, the�XAFS signal in fig. 2 looks differently form the EXAFS
signal. The�XAFS signal contains sharp and negative structures.
They are made up of many frequency modes: low frequencies from
near coordination shells, and high frequencies from far coordina-
tion shells. On the other hand, the EXAFS signal is of low fre-
quency. The difference stems from longer mean free path of pho-
tons than that of photoelectrons.

Information on long range order is also obtained from the
�XAFS signal for powders. Because the characteristic sharp struc-
ture appears at the incident wavelength where the corresponding
Bragg angle�B is �=2 (backward diffraction), the diffraction plane
separation is determined. The origin of this structure is explained in
fig. 3. The top plot of fig. 3 shows the Du Mond diagram, where the
wavelength of a sharp structure position is denoted by��=2. If the
incident wavelength is equal or shorter than�

�=2, powder diffrac-
tion occurs, and diffracted photons form the Debye-Scherrer cone
with the half apex angle of 2�B. The bottom two plots of fig. 3 show
the dependence of�x on the incident angle (the orientation of a
crystal grain in powders). For powders�x should be averaged over
the incident angle. If the incident angle for a crystal grain is close to
the Bragg angle, a strong XSW field is formed inside the grain, and
it produces a large dependence of absorption on the grain orienta-
tion. At the incident wavelength where the corresponding Bragg
angle�B is not close to�=2, e.g. at the incident wavelength�0 in
fig. 3, stronger (weaker) absorption than�0 is observed for grains
with higher (lower) incident angle than�B (the bottom left plot of
fig. 3). Thus contributions of grains with higher and lower incident
angles than�B cancel to produce an averaged absorption. In differ-
ence to this case, if the incident wavelength is close to��=2, the in-
cident angles larger than�B and, consequently, lattice planes with
higher absorption than�0 do not exist. Therefore only near��=2

the XSW effect does not cancel by the grain orientation averaging.
Moreover the Bragg reflection width is wide for�B = �=2, (Kohra
& Matsushita, 1972; Graeff & Materlik, 1982; Caticha & Caticha-
Ellis, 1982), and it makes the�XAFS sharp structure large.
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Figure 3
Explanation of sharp and negative structure in�XAFS for powders.

The top plot is the Du Mond diagram. The bottom two plots show the
dependence of�x on the incident angle. Two different incident wave-
lengths are considered. The bottom left is in the case that the Bragg
angle is not close to�=2. The bottom right is in the case that it is�=2.

It should be noted that the total elastic scattering cross section of
photons also exhibits a structure at��=2. A positive step structure is
expected, because the Bragg diffraction channel opens at this wave-
length. In absorption measurements in transmission mode, both the
true absorption (photoionization) and scattering contribute, there-
fore a careful treatment of scattering is necessary. The extinction
effect will also be important in all detection modes of x-ray absorp-
tion, if the crystal grain size is large. In this case, consideration of
multiple scattering or a treatment in the dynamical diffraction the-
ory will be necessary even for powders.
�XAFS provides a fundamental understanding of a structure

in x-ray absorption spectra far from absorption edges. A study of
�XAFS in the XAFS energy range is also interesting for a detail
analysis of XAFS related effects. X-ray absorption spectra mea-
sured far above and blow the Pt L absorption edges showed a good
agreement with the�XAFS simulation (Nishino, 2000; Tr¨oger,
2000). Thus�XAFS can be used to study short and long range
order complementary to EXAFS and diffraction techniques.
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