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Here, a machine-learning method based on a kinetically informed neural

network (NN) is introduced. The proposed method is designed to analyze a time

series of difference electron-density maps from a time-resolved X-ray crystal-

lographic experiment. The method is named KINNTREX (kinetics-informed

NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple

realistic scenarios were simulated with increasing levels of complexity. For the

simulations, time-resolved X-ray data were generated that mimic data collected

from the photocycle of the photoactive yellow protein. KINNTREX only

requires the number of intermediates and approximate relaxation times (both

obtained from a singular valued decomposition) and does not require an

assumption of a candidate mechanism. It successfully predicts a consistent

chemical kinetic mechanism, together with difference electron-density maps of

the intermediates that appear during the reaction. These features make

KINNTREX attractive for tackling a wide range of biomolecular questions. In

addition, the versatility of KINNTREX can inspire more NN-based applications

to time-resolved data from biological macromolecules obtained by other

methods.

1. Introduction

Biological macromolecules perform essential functions in

living organisms. One class of these molecules, proteins, is of

particular importance. Proteins are involved in all functions of

life, spanning from light perception to the catalysis of essential

reactions. To perform their function, proteins must undergo

structural (conformational) changes. For example, a catalyti-

cally active protein, an enzyme, changes its conformation upon

binding of a substrate, during the catalytic conversion of the

substrate to product, and when the product leaves (Cornish-

Bowden, 2004). Distinct conformational states along the

reaction pathway are called intermediates. The sequence of

transitions between intermediates is described by a scheme

referred to as a chemical kinetic mechanism (Steinfeld et al.,

1999). Fig. 1 shows several examples of these mechanisms.

Mechanisms may include irreversible processes indicated by

single arrows (see Fig. 1) or reversible processes (arrows

pointing in both directions) where an equilibrium between two

intermediates is established.

Multiple methods have been developed to determine

protein structures with near atomic resolution. X-ray crystal-

lography (Blake et al., 1965), cryogenic electron microscopy

(Yip et al., 2020) and nuclear magnetic resonance (Wüthrich,

1990), all offer static snapshots of the protein structure. As a

protein changes its structure along the reaction pathway, a

single structure is not sufficient to comprehensively describe
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its function. Time-resolved X-ray crystallography (TRX) aims

at determining structure and dynamics at the same time

(Moffat, 2001). TRX captures X-ray diffraction patterns

(DPs) during the time the protein performs its function. These

DPs are then processed to yield time-dependent electron-

density maps (Schmidt, 2019).

Typically, only a small fraction of molecules in a crystal

participates in a reaction because methods to initiate a reac-

tion can be quite ineffective (Srajer & Schmidt, 2017). As a

result, the extent of reaction initiation can be small and of the

order of <10%. Conventional electron-density maps are

insensitive to the presence of a small admixture of reacting

molecules in the presence of a large amount of protein at rest.

However, with difference electron density (DED) maps even

small amounts of reacting molecules can be detected. A DED

map is obtained by subtracting a reference electron density,

where all molecules are at rest, from the time-dependent

electron density (Henderson & Moffat, 1971). The DED map

has positive and negative features. The negative features are

found at locations in the reference structure where an atom

has moved away. Positive features are found at positions

where the atoms have moved to, or when additional atoms, e.g.

those of a ligand, bind. The biomolecular reaction is then

probed by a time series of difference maps calculated from

TRX data, best collected at equidistant time points along

logarithmic time (Moffat, 2001; Schmidt et al., 2003, 2013;

Rajagopal et al., 2004; Ihee et al., 2005; Schotte et al., 2012).

The DED map at each measured time point is a sum of all

intermediate states, each multiplied by a concentration value

at that time point (Moffat, 2001; Schmidt et al., 2003; Schmidt,

2023). The time-dependent concentrations of the inter-

mediates are determined by the chemical kinetic mechanism

and the rate coefficients that characterize the transitions

between the intermediates (Moffat, 1989, 2001). The time

evolution of the concentrations of an intermediate during a

reaction is called a concentration profile. Fig. 2 shows such

concentration profiles calculated from two mechanisms: the

sequential [Fig. 1(b)] and dead-end [Fig. 1(c)] mechanisms.

Two sets of reaction-rate coefficients (RRCs) are used for

each case. It is evident that at almost all time points the signal

is generated by a mixture of species at different concentra-

tions. The concentration profiles are calculated by solving the

coupled differential equations of the kinetic mechanism

(Steinfeld et al., 1999).

To separate the electron density of pure species from a

measured time series of electron-density maps, methods from

linear algebra are utilized, such as singular value decomposi-

tion (SVD) (Schmidt et al., 2003). SVD has been successfully

applied to various time-resolved crystallographic data to (i)

determine intermediates structures and (ii) gain information

on the chemical kinetic mechanism that involves transforma-

tion between intermediates. However, SVD analysis requires

expert input. In particular, the chemical kinetic mechanism

needs to be estimated. Concentration profiles that are

obtained by solving the coupled differential equations of the

mechanism are used to obtain the pure intermediate states by

using a multi-step procedure (Schmidt et al., 2003). This

procedure (also known as a projection algorithm) is (i) diffi-

cult to grasp for the non-expert, (ii) not very user friendly, and

(iii) ignores the direct relationship between concentration and

(difference) electron density. A neural network (NN) (see Fig.

3) addresses these challenges since it allows one to restore the

relationship between concentration and electron density, and

it is user friendly as it does not require the user to understand

the mathematics of the projection algorithm.

NNs are artificial-intelligence data-processing algorithms.

Inspired by the human brain, NNs are layered structures of

artificial ‘neurons’ connected to each other. Each connection

is established with a different strength. The variation of the

connectivity level across the network provides the ability to

learn and establish a reliable output signal. To mimic a neuron

in the brain, the artificial neuron is affected by a non-linear

activation function. The most commonly used activation

function is the so-called rectified linear unit (ReLU) (Zeiler et

al., 2013). NNs are constructed with different architectures:

recurrent (recursive) NNs (RNNs) (Medsker & Jain, 2000),

convolutional NNs (CNNs) (Fukushima, 1980; Gu et al., 2018),

and physically informed NNs (PINNs) and their derivatives

(Zaverkin & Kästner, 2020; Karniadakis et al., 2021; Ji &

Deng, 2021; Meuwly, 2021; Westermayr & Marquetand, 2021;

Gusmao et al., 2023), to name a few. Recently, X-ray crystal-

lography has seen a growth in the use of machine-learning

methods and, in particular, NN algorithms for data analysis

(Vollmar & Evans, 2021). Here, an NN as a member of the
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Figure 1
Chemical kinetic mechanisms with three intermediates for (a) the general
case, (b) an irreversible sequential mechanism and (c) a dead-end
mechanism for a bio-macromolecular reaction initiated by light (wavy
arrows). Circles represent intermediate states. The straight arrows labeled
with RRCs denote transitions between intermediates.



PINN family of networks is proposed with the goal of

extracting DED maps of the intermediates and the corre-

sponding concentration profiles from the time-resolved X-ray

data alone. The NN is informed by a system of linear coupled

differential equations that describe the kinetic mechanism

(Steinfeld et al., 1999).

2. Background and methods

The primary objective is to retrieve structural (conforma-

tional) changes in a protein during a reaction. In a time-

resolved crystallographic experiment, X-ray DPs are collected

at a time �t after the reaction has been initiated (Moffat, 1989;

Srajer & Schmidt, 2017). Reflection intensities are extracted

from the DPs (Ren et al., 1999; Schmidt, 2019), from which

structure-factor amplitudes (|Ft|) are calculated. Reference

structure-factor amplitudes (|Fref|) are obtained from X-ray

data collected on crystals where the molecules are at rest. The

structure-factor phases �ref are derived from a well deter-

mined reference model. By subtracting the |Fref| from the |Ft|,

difference structure-factor amplitudes �|F|t are calculated.

With the help of the phases �ref, time-dependent DED maps

are obtained (Moffat, 1989; Schmidt, 2023). The goal is to

extract the kinetics from a time series of DED maps. Once this

is achieved, time-independent DED maps and ultimately the

corresponding structures of the intermediates can be deter-

mined. This article introduces a new analysis method to

recover the chemical kinetic mechanism and the DED maps of

the intermediates. The new analysis utilizes a kinetically

informed NN (KINN) specifically designed to work with TRX

data. This proposed NN is henceforth named KINNTREX.

2.1. Neural-network architecture

The laws of physics are deduced from experimental obser-

vations. These laws are described by mathematical formula-

tions that provide predictions for the outcome of experiments

not yet conducted. In many cases, the data are so complex that

an explicit prediction cannot be obtained. NNs can be

employed to resolve such situations. Even though a straight-

forward theory or mathematical model cannot be constructed,

an NN can use existing observations to predict the outcome of

experiments yet to be performed.

An elementary unit (a building block) of an NN is a

perceptron (also named neuron) (Rosenblatt, 1958). A

perceptron can be expressed mathematically as

nj;kþ1 ¼ f
P

i

wi;j;kni;k

� �

þ bj;k

� �

; ð1Þ

where ni, k is the value in the ith perceptron in layer k, wi, j, k is

the weight of the connection between perceptrons nj, k+1 and

ni, k, and bj, k is a bias added before executing the activation

function f. The activation function is used for changing the

perceptron value in a non-linear manner, mimicking a biolo-

gical neuron (Rosenblatt, 1958, Block, 1962). A common NN

algorithm starts at the input layer (first layer), propagates

through the following layers according to equation (1), and

ends at the output layer. This process is called forward

propagation. The output of an NN provides the essential
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Figure 2
Concentration profiles derived from simulations that mimic the reaction of the blue-light photoreceptor PYP. Fractional concentrations C/C0 are plotted
as a function of log t. Concentrations of intermediates I1 to I3 are represented by blue, green and yellow lines, respectively. The concentration of the dark
state is represented by the red line. (a) The irreversible sequential mechanism with well separated profile peaks. (b) The irreversible sequential
mechanism with overlapping concentration profiles. (c) The dead-end mechanism with separated profile peaks. (d) The dead-end mechanism with
overlapping concentration profiles. The RRCs for each simulation are summarized in Table 2. A schematic representation of the irreversible sequential
mechanism is shown in Fig. 1(b), and the dead-end mechanism is presented in Fig. 1(c).



missing information, such as the classification of input data (in

cases where classification is desired). When an NN is initiated

and executed for the first time, the output provides a non-

useful relation to the input. This necessitates an iterative

training process. Training involves providing inputs along with

values that should be predicted by the NN (referred to as

ground truths or labels). The output can be compared with the

labels using a loss (cost) function, which calculates a loss value.

This loss value is utilized to update the weights and biases of

the NN, enabling them to be adjusted for improved perfor-

mance in subsequent iterations. The updating process, known

as backpropagation, employs an optimization function such as

stochastic gradient descent (Jain et al., 1996; LeCun et al.,

1988). Such a training procedure is called supervised training.

When the training is unsupervised the ground truth is not

known. This forces the NN to extract patterns from the input

or classify inputs based on differences between them (Hinton

et al., 1995; Chen et al., 2016). KINNTREX, as introduced

here, is an unsupervised NN, which does, however, impose

physically meaningful constraints on the data analysis.

2.1.1. Data preparation for KINNTREX. Suppose a time

series of DED maps is available from a TRX experiment.

Each DED map has been determined at a specific time point

�t after reaction initiation. A DED map consists of a large

number of data points (voxels) sampled on a three-

dimensional grid, which typically covers one crystallographic

unit cell. Each voxel contains a DED value. Structural changes

are typically concentrated at a chromophore of a photoactive

protein or at the active site of an enzyme where strong DED

features are located. Therefore, most parts of the DED maps

are free of signal. This allows us to identify a region of interest

(ROI) where a strong signal persists. The ROI is carved out

from all difference maps in the time series [see Schmidt et al.

(2003) for details]. Consequently, the time series contains

much less voxels than the original DED maps. The mask used

for the selection of the ROI is presented in Fig. S1 of the

supporting information, with the atomic structure used for the

generation of the mask shown in the inset.

Prior to analysis with the KINNTREX algorithm, the time-

dependent ROIs are assembled and organized chronologically

based on their acquisition time. Each voxel value of the ROIs

is assigned to an element of a column vector. For N voxels in

the ROI, the column vector is N dimensional. This rearran-

gement is called flattening. The vectors are organized as an

N � P matrix, EM (E stands for difference electron density

and M for measured), where P is the number of time points.

2.1.2. Singular value decomposition of the matrix EM. The

matrix EM is decomposed into three matrices by SVD:

EM ¼ U � S � VT: ð2Þ

The matrix U (N � P) contains the left singular vectors (lSVs)

and the matrix V (P � P) contains the right singular vectors

(rSVs). The diagonal matrix S (P � P) includes the singular

values along its main diagonal. VT is the transpose of matrix V.

Matrices U and V contain significant and insignificant singular

vectors, indicated by the diagonal elements of S. The insig-

nificant lSVs are discarded and the truncated matrix is used as

input to the NN. For time-resolved X-ray data, the selection of

significant singular vectors has been discussed in detail in the

literature (Schmidt et al., 2003).

The SVD also allows one to extract relaxation rates. These

values are used to constrain the NN, as explained in the

following subsections. The relaxation rates are obtained by

fitting a sum of exponential functions to the rSVs (Henry &

Hofrichter, 1992; Schmidt et al., 2003). This can be formulated

as follows:

s2
i vi ¼

PM

j¼1

Bi;jexpð� �jtÞ; ð3Þ

where si and vi are the ith singular value and the corre-

sponding rSV, respectively. Bi, j is the amplitude of the jth

process (observed in the ith rSV), which must be obtained by a

fitting procedure. �j is the jth relaxation rate, also calculated in

the same fitting procedure, and t represents time. Note that �j

is globally observed in all significant rSVs. All significant rSVs

are fitted simultaneously according to equation (3), using the

non-linear least-square fitting Levenberg–Marquardt algo-

rithm (Levenberg, 1944; Marquardt, 1963). The minimum

number of exponential functions that would be fitted deter-

mines the number of distinguishable processes in the reaction,

and the minimum number of intermediates, M (Rajagopal et

al., 2005; Ihee et al., 2005).

Once the relaxation rates are obtained, they can be used to

define limits for the magnitudes of the RRCs. The RRCs are

positive values; therefore, 0 is considered as the lower limit.

The upper limit, however, is a multiple of the largest relaxa-

tion rate �i, throughout this article. An example implementing

these constraints is provided in Section 3.4.

2.1.3. Architecture outline. The architecture of

KINNTREX is described in Fig. 3. It consists of two sub-

networks, each serving a distinct purpose, as described below.

Subsequently, a series of steps are implemented to solve the

coupled differential equations that govern the kinetic

mechanism of the protein under investigation. These steps

inform the NN about the physics of the underlying protein

dynamics. The calculation through the NN is repeated for

multiple iterations. For each iteration, the loss function is

evaluated. The resulting loss value is used to monitor the

progress of the calculation. The architecture is outlined by

pseudo-code in Appendix A.

2.1.4. First iteration. In the initial iteration, the significant

lSVs are loaded into the input layer of the first sub-network,

referred to as the projection NN (see Fig. 3). The projection

NN is a so-called partially connected feedforward NN (Kang

& Isik, 2005), as described in Section S2 of the supporting

information. In addition to the input layer, the projection NN

incorporates a middle layer with perceptrons holding the

calculated time-independent DED maps of the intermediates,

I. The calculation of the intermediates is performed using

I ¼ U �A; ð4Þ

where the matrix A contains the weights with which the

significant lSVs are multiplied. A third layer within the
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projection NN is dedicated to the determination of time-

dependent DED maps, labeled as EC1, as calculated according

to

EC1 ¼ I � CNN; ð5Þ

where CNN contains the concentrations of the intermediates.

The CNN elements act as weights for the middle-layer

perceptrons when calculating the values at the output layer. I,

CNN and EC1 are poorly predicted at this stage as only one

iteration has gone through the NN.

Upon passing through the projection NN, the output, EC1, is

not utilized in the subsequent sub-network. Instead, the CNN

modified by the ReLU activation function is loaded into the

second sub-network, known as the conversion NN. EC1 will be

used later to determine a loss value (see below). The

conversion NN includes an additional hidden layer, as can be

seen in Fig. 3. This sub-network outputs the RRCs of the

chemical kinetic mechanism (see Appendix D). The number

of perceptrons in the hidden layer, H, is calculated according

to

H ¼ ceil QRð Þ
1=2

� �
; ð6Þ

where Q = MP, M is the number of intermediates, P is the

number of time points and R is the total number of RRCs

within the general mechanism. The term ceil[] rounds the

argument to the larger closest integer. The dimensions of

required matrices in Fig. 3 are shown in Table 3 below.

After the two sequential sub-NNs, the coupled differential

equations of the chemical kinetic mechanism are solved:

dCCDE

dt
¼ K � CCDE; ð7Þ

where CCDE represents the time-dependent concentrations

(the concentration profiles) of the intermediates and K is the

coefficient matrix assembled from the RRCs (see Appendix

C). Equation (7) is solved by diagonalizing matrix K. The

solution of equation (7) is outlined in Appendix B. Accord-

ingly, the NN is informed by a general chemical kinetic

mechanism containing three intermediates plus the reference

state. Initial conditions of CCDE
ini = (1, 0, 0, 0) are applied.

Hence, the first intermediate concentration at t = 0 was set to

1, while the other two intermediates and the dark-state

concentrations were set to 0. The concentrations were

normalized to the total number of excited molecules. All these

molecules at t = 0 can be assumed to be in their first inter-

mediate state. If the non-excited molecules are disregarded,

the concentration of the other intermediates as well as the

dark state must be 0. The last step that concludes the first

iteration through the network recalculates the time-dependent

DED maps, EC2, using CCDE and I calculated in the middle

layer of the projection NN, i.e.

EC2 ¼ I � ReLU1 CCDE
� �

: ð8Þ

ReLU1 is similar to ReLU with the addition of having an

upper limit of 1. Hence, values above the limit are set to the

limit value. At this point, EC2 and CCDE are poorly predicted

as only one iteration has been executed.

2.1.5. Iterations through the NN. To monitor the progress

of the KINNTREX algorithm, a loss function is used. Only a

portion of the resulting loss value is attributed to the
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Figure 3
A schematic representation of the analysis method for TRX measurements using KINNTREX. The NN consists of two sub-networks. The first network
is called the projection NN. It aims to predict the input, EM (M for measured), as accurately as possible by generating time-dependent DED maps (EC1, C
for calculated) from significant lSVs (U) along with the DED maps of the intermediates (I) and the concentrations (CNN). The second sub-network called
conversion NN takes the CNN as input and predicts RRCs, k. CNN is flattened before being applied to the conversion NN. After passing through both sub-
networks, KINNTREX solves the differential equation governing the kinetic mechanism of the protein photocycle (red dashed box), resulting in the
concentrations CCDE. In a subsequent step, prior to the calculation of the loss function, the time-dependent DED maps, EC2, are predicted a second time
using the DED maps of the intermediates I from the projection NN and the CCDE [equation (4)]. The loss function (purple dashed box) evaluates the
discrepancies between measured and predicted time-dependent DED maps as well as the differences between the calculated concentrations (CNN and
CCDE). The user can constrain the adjustable range of the RRCs to further inform the loss function. A backpropagation procedure concludes the NN.
The arrows form a loop that iterates multiple times.



comparison between the output of the NN and its input. The

loss function is described in detail in Section 2.2. After the loss

value is determined, backpropagation is used to minimize the

loss by adjusting the weights. Here we choose adaptive

moment estimation (AdaM) for optimization of the weights

(Kingma & Ba, 2014). The input to the optimization includes a

learning rate that determines how much the weights of the NN

are allowed to change. A large learning rate will result in

larger change. The computation might converge faster but

might converge to a less accurate prediction. For a small

learning rate, the opposite is true. Thus, there is an optimal

learning rate that can both converge within a reasonable time

and provide a correct prediction of the desired information

(Bengio, 2012). Once the loss function has converged to a

constant value, the intermediate DED maps, I, are obtained

along with the RRCs of the chemical kinetic mechanism. This

iterative process is both a training procedure and it provides

the desired information (concentrations and DED maps of the

intermediates).

2.2. The loss function

The loss function consists of four parts. These are (1) the

time-dependent DED-map loss, LE; (2) the RRC-related loss,

LK; (3) the intermediate-concentration related loss, LC; and

(4) the intermediate DED-maps related loss, LI. The various

parts are described in detail below. The total loss value is

calculated as

L ¼ cELE þ cKLK þ cCLC þ cILI; ð9Þ

where cE, cK, cC and cI are the user-specified amplifying factors

for the LE, LK, LC and LI losses, respectively.

2.2.1. Time-dependent DED-map related loss, LE. The first

part, LE, calculates the differences between the input time-

dependent DED maps and the two time-dependent DED

maps predicted by the NN:

LE ¼ EM � EC1
� �2
D E

þ EM � EC2
� �2
D E

; ð10Þ

where EM represents the input time-dependent DED maps,

and EC1 and EC2 represent time-dependent DED maps as

determined by the NN. The pointed brackets hi denote aver-

aging over all matrix elements.

2.2.2. Reaction-rate-coefficient related loss, LK. The second

part of the loss function, LK, constrains the magnitudes of the

RRCs (ki) by allowing them to be within a user-specified

range. The loss function penalizes an RRC if it is found

outside of the range as follows:

LK ¼
P

i

min ln kið Þ; ln BL
ið Þ

� �
� ln BL

ið Þ
� �2

þ
P

i

max ln kið Þ; ln BH
ið Þ

� �
� ln BH

ið Þ
� �2

: ð11Þ

The logarithm has been used because the processes within the

chemical kinetic mechanism occur at vastly different rates.

This way, fast and slow processes are placed within the same

order of magnitude. The min and max functions determine the

minimum and maximum values between ln(ki) and the

corresponding lower and upper limits, ln BL
i

� �
and ln BH

i

� �
,

respectively. An example is shown in Table 1. When k1 is

between the boundaries, nothing is added to the loss value.

When k1 is out of the range, the loss value will increase.

Enforcing the RRCs to stay within the boundaries will

decrease Lk. This helps the NN to converge.

2.2.3. Intermediate-concentration related loss, LC. LC is

determined by the difference between the time-dependent

concentration profiles CNN (from the projection NN) and

CCDE (from the solution of the coupled differential equations,

equation (7)]:

LC ¼ CNN � CCDE
� �2
D E

: ð12Þ

Inclusion of concentration-based loss is imperative for the

method to work. This calculation forces the NN towards a self-

consistent solution, as will be shown in Section 3.1.

2.2.4. Intermediate DED-maps related loss, LI. This loss

consists of two parts [equation (13)]. The first part (DEDref)

forces the reference-state DED map to become zero. This part

will not be calculated when the DED maps of the inter-

mediates in the projection NN do not include the dark state. If

the reference state is included, the target is zero, as the

reference DED map (which is featureless) is subtracted by its

own prediction. The second (optional) part of this loss value

demands that the DED maps of the intermediates be as

different as possible from each other. This can be achieved by

projecting these DED maps onto each other. The LI loss value

is calculated as

LI ¼ hDEDref
2i þ cP

XM

i¼1

Xi

j¼1

DEDi �DEDj

kDEDikkDEDjk

 !2

; ð13Þ

where M is the number of intermediates and cP is a user-

selectable amplification factor that weighs the contribution of

the projection relative to the rest of the loss value. The simi-

larity (or dissimilarity) is calculated by the dot product

between flattened vectors DEDj and DEDi, where DEDj and

DEDi represent time-independent DED maps of different

intermediates predicted by KINNTREX. If the maps are

similar, the dot product is large. This increases the loss value,

which the NN intends to minimize. As a result, the NN favors

DED maps that are as dissimilar as possible. The double

vertical lines (e.g. kDEDik) denote the length of the vector. In

this article, cP has been set to 0, as KINNTREX has converged
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Table 1
Illustration of the loss value LK.

A case where one of the RRCs, k1, is within the boundaries and another where
k1 is outside the boundary are shown. SumL and SumH equal the left and right

summation terms in equation (11), respectively. The LK value for k1 is
calculated in the fourth column. The lower and upper limits, BL

1 and BH
1 , are

set close to 0 [0 is excluded because ln(0) is not defined] and 1000 s� 1,
respectively.

k1 (s� 1) SumL SumH Total

900 0 0 0
2000 0 0.48 0.48



to a reasonable result. However, in case KINNTREX does not

converge, or it converges to a result with undesirable overlap

of electron density between intermediates, setting cP to a value

different from 0 might force KINNTREX to output results

that are more reliable.

2.3. Implementation of KINNTREX

The NN was implemented in Python, with the PyTorch

package (Paszke et al., 2019) providing all the necessary tools

for the implementation. Unless indicated otherwise, the

configuration of the NN was set up as follows: (i) the

maximum number of iterations was set to 3 � 105, (ii) the

weights and biases were initiated with random numbers (see

details in Sections 4.3 and S3), (iii) the learning rate was set to

10� 4, (iv) the amplifying factors (cE, cK and cI) (Section 2.2)

were set to 1 and the factor cC was set to 0.1, and (v) the

(optional) amplifying factor for the projection potion of the

intermediate-based loss (cP) was set to 0. The factor cP may

become useful in future applications of KINNTREX.

KINNTREX reads the ROIs extracted from a time series of

crystallographic DED maps. The ROIs are stored in ASCII

format in a text file with multiple columns separated by a tab.

The first column contains the voxels indexes of the ROI from

the crystallographic DED maps. Subsequent columns repre-

sent the electron densities of the ROI at subsequent time

points.

Apart from the time-dependent DED maps, KINNTREX

also requires a model matrix to specify the general kinetic

mechanism. An example of this matrix can be found in

Appendix C. Additional inputs include the number of inter-

mediates and a text file with the NN parameters. The critical

parameters included in the parameters file are: (i) the standard

deviation (STD) of the distribution from which the initial

weights are drawn, (ii) the learning rate, (iii) the maximum

number of iterations, (iv) the amplifying factors for the

different loss-value portions, (v) the loss tolerance and (vi) the

boundaries for the RRC ranges. If the loss value is equal to or

smaller than the loss tolerance for n consecutive iterations, the

program finishes. In the case where the loss tolerance is not

reached, the algorithm finishes after the maximum number of

iterations is reached.

KINNTREX generates the following output files, formatted

as text: (i) a list of DED maps of the intermediates after each

iteration, (ii) a list of RRCs after each iteration, (iii) the loss

value after each iteration and (iv) the predicted concentration

profiles of the intermediates after the last iteration. The file

containing the DED maps of the intermediates has MNi

columns, where M is the number of intermediates and Ni is the

number of iterations. The file contains N lines, where N is the

number of voxels within the selected ROI. The file containing

the RRCs has R columns and Ni lines, where R is the number

of RRCs. The file containing the loss value has a single column

with Ni lines. The file containing the concentrations has M + 1

columns and P lines, where P is the number of time points. The

concentrations are calculated by solving equation (7) using the

RRCs obtained after the last iteration. In this article, the

concentration profiles typically contain about 400 time points,

to ensure that the plots appear smooth over the entire time

range.

In a separate module, crystallographic DED maps of the

intermediates are reconstructed by mapping the resulting

voxel values back to the ROI of the unit cell. An additional

module calculates the residual and weighted residual values

for each predicted concentration or time-dependent DED

maps and the corresponding ground truth (see Section 2.6).

The operations performed by KINNTREX are specified by

the pseudo-code listed in Appendices A–C.

2.3.1. Computational performance analysis. The time it

takes to analyze DED maps using KINNTREX of course

depends on the size of the input data, which can be controlled

by the choice of the ROI. However, with resources available

nowadays, such as computer clusters, advanced graphical

processing units and large amounts of memory, we can miti-

gate processing-time concerns. For instance, with input data

containing 21 time points, about 2500 grid points of DED

values (i.e. a matrix of 21 � 2500) and 300 000 iterations, the

algorithm needed less than an hour to complete, using an Intel

Core i7 with 3.4 GHz speed and 7.6 GB RAM. When multiple

runs of KINNTREX were required, for example for testing

100 different initial values, a cluster with 100 central proces-

sing units was used. Runtime for the complete analysis was

again less than an hour.

2.4. Ground-truth simulations

The photoactive yellow protein (PYP) has been chosen as a

model system in the simulations to test the algorithm. PYP is a

photoreceptor found in halophilic bacteria (Meyer et al., 1987)

and it reacts to illumination by blue light (Sprenger et al., 1993;

Hoff et al., 1994). Once it is excited it undergoes a reversible

photocycle. DED maps for 21 different time points were

generated by an algorithm published earlier (Schmidt et al.,

2003). Three different intermediates and the dark/reference

state were included. The structures of the intermediates were

similar but not identical to intermediates IT, pR1 and pB

determined by TRX (Ihee et al., 2005; Jung et al., 2013). Water

molecules were removed. Structure factors (SFs) for the dark

state, Fd, and the intermediate states, F1 to F3, were calculated

using the structures of the reference state and the inter-

mediates, respectively.

The difference SFs (DSFs) of the pure intermediate states

have been obtained by subtracting the SFs of the reference

state from those of the intermediate states. The three time-

independent DED maps shown in Fig. 4 were calculated from

these DSFs. Time-dependent (time resolved) DED maps were

calculated from the time-independent maps as shown below.

Both simulated time-independent and time-dependent DED

maps were taken as the ground truth and could be directly

compared to those obtained by KINNTREX.

Two kinetic mechanisms have been tested: the irreversible

sequential mechanism [Fig. 1(b)] and the dead-end mechanism

[Fig. 1(c)]. Each mechanism was simulated with two different

sets of RRCs (see Table 2). The concentrations of the inter-
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mediates at different time points were obtained by solving

equation (7) with the selected RRCs as inputs and the initial

condition mentioned in Section 2.1.4. The concentration

profiles for each simulation are shown in Fig. 2. The two

sequential mechanisms are denoted as SS and SO. The

concentration profiles for SS (‘S’ for separated) are well

separated in time [Fig. 2(a)]. For SO (‘O’ for overlapping), the

concentration profile of intermediate I2 is buried within that of

intermediate I1 [Fig. 2(b)]. Two other concentration profiles,

DES and DEO, were generated representing the dead-end

mechanism. Again, in DES, the intermediate concentrations

are separated [Fig. 2(c)]. For DEO, the I3 concentration profile

is fully buried within the I2 concentration profile [Fig. 2(d)].

2.5. Time-dependent difference maps

The time-dependent SFs were calculated from the SFs of

the intermediates F1, F2 and F3 and the dark-state Fd as

follows:

F h; tð Þ ¼
PJ

j¼1

cj tð ÞFj hð Þ þ 1 �
PJ

j¼1

cj tð Þ

" #

Fd hð Þ; ð14Þ

where cj(t) is the concentration of the j intermediate at time t.

Noise was added to the amplitudes of the SFs. The noise was

estimated from the experimental STDs found in a Laue

dataset collected from a PYP dark-state crystal [for details, see

Schmidt et al. (2003)]. DSF amplitudes were calculated by

subtracting reference state (dark state) SF amplitudes with

noise from the noisy time-dependent SF amplitudes. A weight

factor calculating the weighted DSF amplitudes has been

implemented for the purpose of reducing very large differ-

ences resulting from experimental noise (Ren et al., 2001).

With the weighted amplitudes and the phases calculated from

the dark-state structural model, time-dependent DED maps

were obtained by Fourier transformation using the CCP4

program ‘FFT’ (Winn et al., 2011). DED features were

pronounced near the chromophore region. Accordingly, this

region was chosen as the ROI. The ROIs from different time

points were assembled into matrix EM and decomposed by

SVD. The significant lSVs (columns of matrix U) were taken

as the input for KINNTREX (Fig. 3). Table 3 shows the

dimensions of the matrices used by KINNTREX in this study.

2.6. Accuracies of KINNTREX

The loss value LE indicates how close the output time-

dependent DED maps are to the input data. The accuracies of

the concentrations and those of the time-independent DED

maps of the intermediates cannot be estimated, since in an

experiment these ground truths are unknown. Optimization of

the critical parameters (such as learning rate, maximum

number of iterations, boundaries of RRC ranges, etc.) can be

carried out by using simulated data. In addition, suitable

parameters can be found by observing the reproducibility for

multiple runs of the NN (see results in Section 4.3). Once the

network parameters are found, KINNTREX is primed to

work with DED maps of the measured protein of interest.

To compare the concentrations with the ground truth, the

weighted residual (Rw) was chosen. Rw was calculated by using

the predicted concentrations and the ground truth (simulated)

concentrations as follows:

Rw ¼
XM

m¼1

XT

p¼1

CCDE
m;p � CGT

m;p

� �2

CCDE
m;p

; ð15Þ

where CCDE
m;p and CGT

m;p are the predicted and ground-truth

concentrations for the intermediate m at the time point p,

respectively. The first summation in equation (15) includes the
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Figure 4
The ground truth. The simulated DED maps are overlaid onto an atomic representation of the (a) IT, (b) pR1 and (c) pB intermediate states. Negative
electron density is colored red and positive is colored blue. Markings label features in the DED maps. ‘�’ indicates positive DED and ‘�’ indicates
negative DED.

Table 2
RRCs, with units of per second [1/s], used to generate the concentration
profiles in Fig. 2.

The mechanisms and RRCs are also used to simulate ground-truth data for the
NN. Based on the mechanism employed and the extent of overlap of the
concentrations, the simulations are referred to as SS and SO for sequential

separated and sequential overlapped, and DES and DEO for dead-end sepa-
rated and dead-end overlapped, respectively.

RRC SS SO DES DEO

k1 40000 2000 9500 15000
k3 1000 3000 330 2000
k4 – – 400 100
k5 100 900 – –
k� 3 – – 210 2000



reference state. Zero values of CCDE
m;p were ignored to avoid

making Rw infinite.

For experimental data, a residual (Rs) can be calculated for

the measured and predicted time-dependent DED maps. Rs is

similar to the DED-map loss-value portion, LE. To calculate

Rs, we use

Rs ¼
XP

p¼1

XN

n¼1

EC2
p;n � EM

p;n

� �2

PN
; ð16Þ

where EC2
p;n and EM

p;n are the predicted and measured time-

dependent DED maps, respectively, N is the voxel count, and

P is the number of time points.

To evaluate the reliability of the results, KINNTREX must

be executed at least ten times. Each attempt is executed with

different random initial values for the weights and biases. The

predicted concentrations are extracted from the last iteration

at each execution. Once the concentrations are obtained, Rw

and Rs values are calculated using equations (15) and (16),

respectively. Following the residual calculations, the values are

assembled into histograms. The goodness-of-fit estimation for

the data in this article is discussed below (Section 4.3) and

elaborated in Section S3.

To assess the accuracy of the DED-map prediction, the

Pearson correlation factor (PCF) was determined (Pearson,

1895). The PCF is calculated as

PCF ¼
PN

i¼1

DEDM
i � DED

M
� �

DEDGT
i � DED

GT
� �

,
PN

i¼1

DEDM
i � DED

M
� �2

� �1=2
(

�
PN

i¼1

DEDGT
i � DED

GT
� �2

� �1=2
)

; ð17Þ

where DEDM
i and DEDGT

i represent the content of the ith

voxel within the extracted DED map and the ground-truth

DED map, respectively, DED
M

and DED
GT

are determined

as the average of all voxel values of the corresponding maps,

and N is the number of voxels common to both maps.

3. Results

The performance of KINNTREX was tested with a variety of

experimentally realistic scenarios, simulating protein trans-

formation through various chemical kinetic mechanisms. In

the first scenario, the NN was tested with data generated by

the irreversible sequential mechanism SS. In this case,

concentration profiles of the intermediates exhibit well sepa-

rated maximum values [Fig. 2(a)]. For that, KINNTREX was

given the following a priori information: (i) the number of

intermediates obtained after the initial SVD analysis; (ii) a

general mechanism containing three intermediates with ten

rate coefficients [Fig. 1(a)]; (iii) at t = 0, only the first inter-

mediate is populated, all other concentrations are zero; and

(iv) all weights and biases of the NN were initialized by

drawing random values from a Gaussian distribution with 0

mean and an STD of 0.02. No additional restrictions on rate

coefficients were imposed.

In the second scenario, a more challenging irreversible

sequential mechanism with overlapping intermediate

concentration profiles (SO) was tested [see Fig. 2(b)]. To

overcome this challenge, the NN was subjected to constraints

by limiting values of the RRCs to a certain range [equation

(11)]. Relaxation rates obtained from the rSVs were used to

determine the limits (see Section 2). The maximum values of

all RRCs were set to multiples of the fastest relaxation rate

and the minimum values were set to essentially zero. See

equation (11) and Table 1 for examples of their effect on the

loss function. This constraint was added to the a priori infor-

mation provided for the former scenario. In fact, this infor-

mation was provided to KINNTREX when executed for all

the scenarios.

In Scenario 3, data simulated from a dead-end mechanism

were investigated. This mechanism includes an equilibrium

between two intermediates. Such an equilibrium is not present

in the irreversible sequential mechanism. The dead-end

mechanism is depicted in Fig. 1(c). It introduces another

complication as individual concentration profiles can exhibit

multiple transient features. Consequently, the multi-featured

concentration profile can be misinterpreted as a relaxation of

two different intermediates instead of the transition of a single
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Table 3
Dimensions of matrices and vectors in KINNTREX required for the simulated data.

Upper part: dimensions of matrices E, U, A and C in the projection NN of KINNTREX (see Fig. 3). In the simulations, M = 3 processes are predicted from P = 21
time points measured during a reaction, and N = 2291 voxels are in the ROI of each DED map. For each matrix, the first subscript denotes the number of rows and

the second denotes the number of columns. Lower part: vectors and matrices in the conversion NN. The vector CNN is determined by assembling the rows of matrix
CNN

(m,p), from the projection NN, into a vector. Matrices EM, EC1 and EC2, as well as CNN and CCDE, are comparable and contribute to the loss value.

Projection NN
EM
ðn;pÞ U(n,m) A(m,m) I(n,m) CNN

ðm;pÞ

Rows N = 2291 N = 2291 M = 3 N = 2291 M = 3
Columns P = 21 M = 3 M = 3 M = 3 P = 21

Conversion NN
CNN† W1(h,q) H W2(r,h) k

Rows Q = MP = 63 H = 25‡ H = 25 R = 10 R = 10
Columns 1 Q = 63 1 H = 25‡ 1

† Converted from CNN
(m,p) by subsequently lining up the three rows. ‡ H must be greater than R [see equation (6)].

http://doi.org/10.1107/S2052252524002392


intermediate towards two other intermediates. As an addi-

tional challenge to KINNTREX, a severe overlap of two

concentration profiles was also introduced in this scenario.

In Scenario 4, a concentration profile with a hardly visible

second transient feature was generated [Fig. 2(d)]. This

scenario may constitute a significant challenge as the second

(weak) transient feature may not be recoverable by

KINNTREX.

3.1. Scenario 1: the SS mechanism

To test the first scenario (SS), KINNTREX was executed

with no restrictions imposed upon all ten RRCs of the general

mechanism [Fig. 1(a)] (for practical reasons the low and high

limits of all RRCs were set to essentially 0 and 1010 s� 1,

respectively). Fig. 5 summarizes the prediction along with the

ground truth for the SS simulation. The predicted RRCs [Fig.

5(b) – solid lines] closely align with the ground-truth curves

[Fig. 5(b) – dashed lines]. Additionally, the predicted

concentrations [Fig. 5(c) – solid lines] exhibit a strong corre-

lation with the ground-truth values [Fig. 5(c) – circles]. The

loss value converged close to 7 � 10� 5 [Fig. 5(a)]

In addition to fully recovering the chemically kinetic

mechanism and RRCs, the DED maps of the intermediates

[Fig. 5(d)] are very close to the ground-truth DED maps, as

shown in Fig. 4. Both sets of DED maps [from Fig. 4, and from

Figs. 5(d), 5(e) and 5( f)] display negative and positive electron

densities at corresponding positions.

This result is truly remarkable as KINNTREX has retrieved

the kinetic mechanism along with the intermediate DED maps

without any underlying assumptions guiding the analysis. This

accomplishment can be attributed to two pivotal factors. First,

the concentration values are intricately embedded in the time

evolution of the DED maps. The NN capitalizes on its ability

to recognize patterns. The pattern recognition is performed by

comparing two sets of time-dependent DED maps in the NN:

one from the projection NN (EC1) and the other calculated by

equation (8), following the solution of the coupled differential

equations (EC2). Both sets of DED maps are compared against

the input DED maps (EM) and their differences are minimized

iteratively. Second, informing the NN by a chemical kinetic

mechanism, through coupled differential equations, forces the

NN to converge towards the correct answer.

3.2. Scenario 2: the SO mechanism

The second scenario involves a more complex irreversible

sequential mechanism where two of the concentration profiles

overlap [Fig. 2(b)]. The concentration profile of I2 is buried in

that of I1. When the NN is executed with the same constraints

as applied in Scenario 1, the prediction is unsatisfactory, as

evident in Figs. 6(a) and 6(d). None of the predicted RRCs

follow the ground truths at any iteration [Fig. 6(a)]. Apart

from the dark-state concentration, none of the intermediate

concentrations follow the ground truths. The concentration for

the first intermediate is 0 for all time points [Fig. 6(d)]. To

improve the prediction, the RRCs were restricted to a range of

reasonable values. The upper limit (3 � 104 s� 1) was set about

ten times the highest relaxation-rate value (�M
max = 2588 s� 1),

the lower limit is essentially zero.

Figs. 6(b) and 6(e) show a significant improvement of the

prediction for the RRCs and the concentration profiles,
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Figure 5
RRCs, concentration profiles and DED maps of the intermediates, as obtained by KINNTREX from time-dependent DED maps generated by the SS

mechanism. (a) Loss value versus iteration number. (b) Predicted RRCs versus iteration number (solid lines), along with the ground-truth values
(dashed line). (c) Temporal evolution of the relative concentrations of the intermediates at the last iteration (solid lines), along with ground truths
(circles). The concentration profiles of intermediates I1 to I3 are shown by blue, green and yellow lines, respectively, whereas that of the reference-state Id

is shown in red. (d)–( f ) DED maps of the intermediates (I1, I2 and I3, as marked in the figure) overlaid on top of their ground-truth atomic structure as
well as the reference atomic structure (light brown). Negative electron density is colored red and positive is colored blue.



respectively. The RRCs and the concentration profiles (solid

lines) coincide well with the ground truths (circles). Further

tightening the ranges of the RRCs by a factor of 5 only led to

incremental improvement, as illustrated in Figs. 6(c) and 6( f).

In Fig. 6( f) the concentration profiles for I2 (green) and I3

(yellow) are interchanged. Inspection of the mechanism [Fig.

1(a)] reveals that the reaction path from I1 to I3 and I2 is a

valid representation of the same sequential mechanism as

used for the ground truth.

Using ten adjustable RRCs, the DED maps of the inter-

mediates and the kinetic mechanisms can be predicted

correctly without prior knowledge of the exact mechanism.

Hence, unlike in the SVD analysis (Schmidt et al., 2003),

where a specific mechanism had to be imposed, KINNTREX

eliminates the need for such an assumption.

3.3. Scenario 3: the dead-end mechanism

The dead-end mechanism adds another level of complexity

due to its reversible process between intermediates I2 and I3.

This mechanism is depicted in Fig. 1(c). DEO exhibits over-

lapping concentration profiles, as indicated in Fig. 7(c) by the

green and yellow points.

The adjustable range limits for all ten RRCs were set to

essentially 0 and 1.5 � 105 s� 1 for the lower and upper limits,

respectively. The upper limit is about ten times the value of the

largest identifiable relaxation rate (�M
max = 14 005 s� 1).

The lightly restricted NN retrieved both the RRCs [Fig.

7(b)] and the concentrations [Fig. 7(c)], as evident by the

overlap of the predicted concentration profiles with those of

the ground truths [dashed lines in Fig. 7(b) and circles in Fig.

7(c)]. Again, the loosely restricted NN with no assumptions on

the mechanism produced results remarkably close to the

ground truth of the mechanism presented in Fig. 9(b), despite

the complications imposed by the reversible process. The

degeneracy between the mechanisms presented in Figs. 9(b)

and 1(c) (the simulated mechanism) is discussed in Section 4.2.

3.4. Scenario 4: the dead-end mechanism – with a small

second transient feature along the concentration profile

Scenario 4 considers data simulated with the DES

mechanism. In this scenario, two complications were intro-

duced: (i) a reversible process between two intermediates, I2

and I3; and (ii) the second transient feature in the concen-

tration profile of I2 buried when substantial noise is added to

the simulated data. The results from KINNTREX are

summarized in Fig. 8. The first attempt uses a constrained NN

with lower and upper limits set to essentially 0 and 9500 s� 1

for all ten RRCs [Figs. 8(a) and 8(d)]. The upper limit equals

the sum of the relaxation rates obtained from the SVD

analysis. This is more restricted than the loose limit of ten

times the highest relaxation rate used for Scenarios 2 and 3. As

can be seen from Fig. 8(a), a dead-end-like mechanism was not

recovered. However, the four RRCs with the most significant

magnitudes (k1, k3, k4 and k5) produced concentration profiles

very close to the ground truths. The second transient feature

of the I2 concentration profile was not recovered [Fig. 8(d),

green line and arrow]. In addition, concentrations predicted

for intermediate I3 are slightly higher than the ground truth

[Fig. 8(d), yellow line].

To recover more accurate concentrations, additional

constraints were imposed. Five out of the ten RRCs were

forced to zero [Figs. 8(b) and 8(e)]. Upper and lower limits of

the other five RRCs (k1, k3, k4, k5 and k� 3) were set close to 0

and 9500 s� 1, respectively. Still, the obtained concentration
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Figure 6
KINNTREX retrieval of the RRCs and the concentration profiles of the intermediates from time-dependent DED maps constrained by three different
sets of RRC range limits. (a)–(c) RRCs versus iteration number for the SO simulation with lower and upper range limits of (a) 0 and 1010, (b) 0 and
3 � 104, and (c) 0 and 6000, respectively. The ranges were the same for all ten RRCs. (d)–( f ) Relative concentration profiles of the intermediates for the
various simulations as predicted by the NN (solid lines), along with ground truths (circles). Each bottom-panel graph [(d), (e) and ( f )] is calculated with
the RRCs extracted at the last iteration, as presented in (a), (b) and (c), respectively.



profile for intermediate I2 did not reveal the second transient

feature [see arrow in Fig. 8(e)], but the concentration profile

for I3 has improved.

In a third attempt, six RRCs were set to zero, with the

remaining four RRCs (k1, k3, k4 and k� 3) constrained between

84 and 9500 s� 1 [Figs. 8(c) and 8( f)], where the lower bound
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Figure 8
KINNTREX retrieval of the RRCs and the concentration profiles of the intermediates from time-dependent DED maps constrained by three different
sets of RRC range limits. (a)–(c) RRCs versus iteration number for the DES simulation with lower and upper limits of (a) essentially 0 and 9500 for all
ten RRCs, (b) essentially 0 and 9500 for five RRCs (k1, k3, k4, k5 and k� 3), and (c) 84 and 9500 for four RRCs (k1, k3, k4 and k� 3), respectively. (d)–( f )
Relative concentration profiles of the intermediates for the various simulations as predicted by the NN (solid lines), along with ground truths (circles).
Each bottom-panel graph is calculated with the RRCs extracted at the last iteration, as presented in the panels above. The upper limits for the RRCs are
in all cases [(a)–(c)] equal to the sum of the observed relaxation rates, while the lower limit for (c) equals the smallest of the relaxation rates. The arrows
indicate the weak second transient feature in the concentration profile of I2.

Figure 7
RRCs, concentration profiles and DED maps of the intermediates, as predicted by KINNTREX from time-dependent DED maps for the DEO

mechanism. The loss-value calculation includes a comparison between the two calculated concentration profiles, CNN and CCDE (i.e. Lc). (a) Loss value
versus iteration number. (b) Predicted RRCs versus iteration number (solid lines), along with the ground-truth values (dashed line). (c) Temporal
evolution of the relative concentrations of the intermediates as predicted by the NN at the last iteration (solid lines), along with ground truths (circles).
The concentration profiles of intermediates I1 to I3 are shown by blue, green and yellow lines, respectively, whereas that of the reference-state Id is shown
in red. (d)–( f ) DED maps of the intermediates (I1, I2 and I3, as marked in the figure) overlaid on top of their atomic structure as well as the reference
atomic structure (light brown). Negative electron density is colored red and positive is colored blue. The RRC boundaries were set to essentially 0 and
1.5 � 105 s� 1 for the lower and upper limits, respectively.



was set to the magnitude of the lowest relaxation rate obtained

from the SVD analysis (see Section 2.1.2). The four adjustable

RRCs corresponded to those of the dead-end mechanism

depicted in Fig. 1(c). This time, the predicted concentration

profile for the I2 intermediate reveals the second transient

feature [arrow in Fig. 8( f)], and all the other predicted

concentration profiles agree well with the ground truths.

However, in this case, KINNTREX was informed by the

underlying mechanism. Unless the mechanism can be identi-

fied by other means, small admixtures of I2 into I3 are

unavoidable. In practice, these admixtures may be so small

that they remain undetectable in the DED maps and do not

affect the recovery of the DED maps of the intermediates in a

significant manner.

4. Discussion

The RRCs in the KINNTREX algorithm required constraints

to provide accurate results. It can be argued that for the

simplest scenario involving the irreversible sequential

mechanism SS, no constraints are needed. For all other

scenarios, adding constraints on the ks was necessary for

accurate results. This is demonstrated below.

4.1. KINNTREX overcoming protein kinetics challenges

Several challenges were introduced into the kinetic

mechanisms by simulation of different scenarios. These added

challenges included: (i) overlapping concentration profiles of

the intermediates, (ii) reversible processes and (iii) transient

features within a concentration profile that are difficult to

detect. While the first two complications were tackled by

constraining the RRC ranges relatively relaxed (about ten

times the value of the largest relaxation rate), the third

complication required a more restrictive approach. Informing

KINNTREX with a dead-end mechanism, albeit with

unknown reaction rates, was demonstrated in Section 3.4. The

dead-end mechanism was informed by forcing six of the ten

RRCs to zero. The other four RRCs, which participate in the

dead-end mechanism, were constrained to a range.

Constraining KINNTREX by informing it with the mechanism

is discussed in the following subsection.

4.1.1. Effect of small second transient features on

KINNTREX. As shown for Scenario 4 in Section 3, the

concentration profile for the I2 intermediate contains a second

small transient feature (Fig. 8). Even restricted constraints

could not retrieve the concentration profile accurately.

Accordingly, several kinetic mechanisms have been selected

and tested. A comparison between the attempt to retrieve

data by informing KINNTREX with the dead-end and

sequential mechanisms is presented in Figs. 8 and S5, respec-

tively. The sequential mechanism forced seven RRCs to zero,

with the remaining three (k1, k3 and k5) constrained between

84 and 9500 s� 1. Informing KINNTREX with the dead-end

mechanism resulted in acceptable predictions. Fig. 8(c) shows

overlap between the retrieved RRCs (solid lines) and the

ground truths (dashed lines). Fig. 8( f) shows that the

predicted concentrations agree closely with the ground truths.

However, informing KINNTREX with the irreversible

sequential mechanism [Fig. 1(b)] resulted in a failed predic-

tion. As evident in Fig. S5(a), only two of the three RRCs in

the sequential mechanism were found to be significantly larger

than zero. Furthermore, a total mismatch between the

retrieved concentration profile (Fig. S5(b) solid line) and the

ground truth [Fig. S5(b) circles] is evident. The loss values

calculated for both informed mechanisms can be compared for

choosing the appropriate kinetic mechanism. A lower loss

value indicates better accuracy. KINNTREX converges to a

loss value of 6.4 � 10� 5 for the dead-end mechanism and

12.9 � 10� 5 for the sequential mechanism. These values agree

with the conclusion from Figs. 8 and S5 that the dead-end

mechanism is the favored one. Furthermore, Rw for the dead-

end mechanism is 0.1 and that for the sequential mechanism is

496 (see Section 2.5 for the estimation of Rw), which clearly

favors the dead-end mechanism.

4.2. Degenerate chemical kinetic mechanisms

Typically (except for the SS mechanism), KINNTREX may

retrieve a mechanism that differs from the underlying

mechanism used in the simulation. One such example is shown

in the results presented in Figs. 7(b) and 7(c). In this case,

KINNTREX predicts a mechanism that resembles a sequen-

tial mechanism with a reversible process between I2 and I3 as

shown in Fig. 9(b), while the data were simulated with the

dead-end mechanism depicted in Fig. 1(c). In such a case, the

concentration profiles of the intermediates and the corre-

sponding DED maps are essentially identical for both

mechanisms. This degeneracy is impossible to break with data
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Figure 9
Chemical kinetic mechanisms with three intermediates for (a) an irre-
versible sequential mechanism and (b) a sequential mechanism with a
reversible process. The wavy arrows represent the light excitation of the
protein. Circles represent intermediate states and straight arrows repre-
sent transformation between intermediates. The labels on the arrows
represent the RRCs.
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collected at a single temperature. Potentially, by varying the

temperature as suggested earlier (Schmidt et al., 2010, 2013),

the degeneracy can be lifted. It is very appealing to implement

changes to KINNTREX that can analyze this type of 5D

crystallographic data.

4.3. Testing the accuracy of the predictions

There is some concern that initiating the NN weights and

biases may affect the prediction significantly. To assess this, the

NN is randomly initialized with different values for its weights

and biases while keeping the rest of the parameters the same.

KINNTREX was executed 100 times for each scenario. To

speed up the analysis, a computer cluster was utilized with

parallel executions. Using the cluster reduced the computa-

tional time by two orders of magnitude.

The distributions of the weighted residuals [Rw, equation

(15)] of the concentrations are narrow (Fig. 10) no matter how

the weights and biases are initiated. The Rw peak values show

that the more complex the data become the higher the peak

values (Fig. 10, blue, green, red and yellow lines for the

different scenarios), but the distributions still remain narrow

(Fig. 10). In conclusion, weights and biases do not affect the

prediction.

To further assess the accuracy of the prediction, the DED

maps extracted by KINNTREX were compared with the

ground truth. The PCF was utilized for that comparison (see

Section 2.6). The calculated PCF along with the loss values for

all the scenarios are summarized in Table S2 of the supporting

information. Notably, when the loss value is low (DED shown

in Figs. 5 and 7) the PCF is higher than 0.97, which indicates

high correlation. Conversely, when the loss value is high (DED

presented in Fig. S4), the PCF is lower than 0.53 and even

becomes negative, indicating low correlation or even anti-

correlation with the ground truth.

In a real-world experiment, the ground truths for the

concentration profiles are not known. Therefore, the residual,

Rs, as introduced in Section 2.5, is used. The distributions of

the Rs values are, like the Rw values, also very narrow.

Furthermore, the peak values are all �3.4 � 10� 5 (electrons

Å� 3), independent of the complexity of the simulated data.

The Rs peak values are comparable to the noise in the input

data, which was extracted by reconstructing the data matrix

EM without the significant singular vectors and values [equa-

tion (2)]. For all scenarios, KINNTREX predicted correct

time-dependent DED maps. If the residual is significantly

larger than the noise level, KINNTREX’s predictions are most

likely inaccurate; see Section S3 for an example.

5. Conclusions

Successes of NNs have been demonstrated recently by the

popular AlphaFold2 (Jumper et al., 2021) and GPT-3 algo-

rithms (Vaswani et al., 2017). However, GPT-3 and

AlphaFold2 are trained with an enormous amount of data. In

contrast, KINNTREX needs only the data from a time-

resolved experiment and physically and chemically reasonable

constraints. Such physics-informed NNs have been proven to

be data efficient, as discussed in the literature (Raissi et al.,

2019).

6. Outlook

This article presents the first results employing an NN to

analyze time-resolved X-ray data. The NN successfully

extracts kinetic mechanisms, time-dependent concentrations

and DED maps of intermediate states for several challenging

scenarios. More details can be added to improve the perfor-

mance of KINNTREX, such as forcing the DED maps of the

intermediates to be as different from each other as possible

(see Section 2.2.4). For example, more hidden layers can be

added to the conversion NN shown in Fig. 3. Furthermore, the

linear coupled differential equation solver (shown by the red

dashed box in Fig. 3) can be replaced by a non-linear type. In

this way, processes that include higher-order reactions or

processes involving diffusion of substrates or ligands (Malla et

al., 2023; Olmos et al., 2018; Pandey et al., 2021) could be

analyzed as well.

Now, KINNTREX needs to be applied to experimental

data. For the benefit of the wider user community,

KINNTREX must be equipped with an intuitive graphical

user interface. In addition, KINNTREX needs to be extended

for reconstruction of the entire unit cell with the predicted

DED maps. This requires applying the symmetry operations

and periodic boundary conditions, similar to what has been

done previously for the application of SVD to TRX data

(Schmidt et al., 2003). The reconstructed content of the unit

cell will then be subject to a Fourier transform to obtain DSFs.

By extrapolating these DSFs, conventional electron-density

maps can be obtained that enables modeling of a structure for

each intermediate (Schmidt, 2023). The implementation will

be a formidable challenge for scientists in the years to come.
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Figure 10
A goodness-of-fit distribution for the SS (blue solid line), SO (green dash-
dotted line), DES (yellow dashed line) and DEO (red dotted line)
scenarios described in Section 3. This forms a weighted residual (Rw)
histogram calculated between ground-truth and predicted concentrations
[equation (15)]. The distributions were assembled from 100 executions of
KINNTREX for each scenario, with different initial weights for each
execution (see Section 2.5 for the goodness-of-fit description).
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With some modifications, the proposed method can also be

applied to different types of experimental data, such as those

obtained by time-resolved small- or wide-angle X-ray scat-

tering (Cammarata et al., 2008; Cho et al., 2010; Dmitri &

Michel, 2003; Putnam et al., 2007), or data obtained by time-

resolved absorption spectroscopy. Analyzing time-resolved

absorption spectra could be beneficial as measurements are

performed on less costly and more accessible instruments.

Additionally, such results can be complementary to those

obtained from TRX (Zimányi, 2004; Nagle et al., 1995).

7. Related literature

The following references are only cited in the supporting

information for this article: Abraham & Chain (1940).

APPENDIX A

Pseudo-code for KINNTREX

This pseudo-code describes the KINNTREX algorithm with

the architecture shown in Fig. 3 (see Section 2.1):

(1) Decompose matrix EM by SVD and estimate the

number of significant singular values.

(2) Estimate the relaxation times from the significant rSVs

(see Section 2.1.2).

(3) Construct the ‘projection NN’ with an input layer, U, a

middle layer for intermediate DED maps, I, and an output

layer for the recalculation of time-dependent DED maps, EC1

(see Section S2), with the CNN values as entries of a weight

matrix.

(4) Initiate weights matrices between the input and middle

layers (A), and between the middle and output layers (CNN).

(5) Construct the ‘conversion NN’ with a hidden layer, and

initiate the weights and biases.

(6) Set constraints for the RRCs using the relaxation times

from step (2).

(7) For iteration, i � Ni.

(8) Calculate EC1 along with I and CNN using forward

propagation of the projection NN.

(9) Calculate the RRC vector, k, using forward propagation

of the conversion NN with CNN from step (8).

(10) Calculate matrix K using the RRC vector according to

equations (C3.4) and (C3.5).

(11) Obtain CCDE by solving equation (7) from matrix K

and the initial condition Cini using the pseudo-code from

Appendix B.

(12) Calculate EC2 using equation (8), with I from step (8)

and CCDE from step (11).

(13) Calculate the loss function according to equation (9).

(14) Calculate backpropagation using the optimization

method AdaM.

(15) After every mth iteration step, save I, the RRCs and

the loss value. To store the respective values at each iteration,

set m equal to 1.

(16) End loop.

APPENDIX B

Pseudo-code for solving differential equations by diag-

onalization of the K matrix

The pseudo-code is as follows:

(1) Diagonalize K and find the eigenvalues � along with

corresponding eigenvectors K.

(2) Calculate expð�itjÞ, where �i is the ith eigenvalue and tj is

the jth time point.

(3) Calculate Y(t = 0) = K� 1 · Cini, where Cini denotes the

initial concentrations and Y(t = 0) is the corresponding value

in the diagonalized space.

(4) Calculate yi tj

� �
¼ yi t ¼ 0ð Þexpð�itjÞ.

(5) Finally, calculate CCDE(t) = S · Y(t).

APPENDIX C

Calculating the K matrix from RRCs

The dimensions of the matrix K are D � D, with nI + 1, where

nI is the number of intermediates. The addition of 1 accounts

for the dark state. To calculate the coefficient matrix K, the

RRC vector k is multiplied by the so-called ‘model matrix’ M,

a ¼ M � k; ðC3:1Þ

where the vector a is later reshaped into the K matrix. The

vertical dimension, Dv, of the model matrix is calculated as

Dv ¼ nI þ 1ð Þ
2
: ðC3:2Þ

The horizontal length, Dh, equals the dimension of the RRC

vector, which is also a function of the number of intermediate

states, and is calculated as

Dh ¼ nI þ 1ð ÞnI: ðC3:3Þ

In the specific model employed here, it is assumed that

intermediate state 1 does not relax directly to the dark state.

Vice versa, once the molecules arrive in the dark state, they

cannot return to intermediate state 1 without illumination.

Consequently, the number Dh is smaller by two compared with

the number calculated from equation (C3.3). If nI equals 3, the

number of relevant RRCs is equal to 10 [and not 12 as

expected from equation (C3.3)]. Dh = 10 is used here

throughout [Fig. 1(a)]. The model matrix M used for the

simulations on PYP in this article is given by
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� k1 � k2

k� 1

k� 2

0

k1

� k3 � k4 � k� 1

k� 3

k� 4

k2

k3

� k5 � k� 2 � k� 3

k� 5

0

k4

k5

� k� 4 � k� 5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

� 1 � 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 � 1 � 1 0 � 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 � 1 0 � 1 � 1 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 � 1 � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�

k1

k2

k3

k4

k5

k� 1

k� 2

k� 3

k� 4

k� 5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ðC3:4Þ

Finally, the coefficient matrix K is obtained by reshaping the

vector on the left-hand side of equation (C3.4) [which is vector

a in equation (C3.1)], into matrix K (equation C3.5),

K ¼

� k1 � k2 k� 1

k1 � k3 � k4 � k� 1

k2 k3

0 k4

2

6
6
6
4

k� 2 0

k� 3 k� 4

� k5 � k� 2 � k� 3 k� 5

k5 � k� 4 � k� 5

3

7
7
7
5
: ðC3:5Þ

The column sums of matrix K are zero. This guarantees that

the sum of all concentrations remains constant for all time

points. In some cases, certain rate coefficients are constrained

to be zero.

APPENDIX D

Converting from concentrations to RRCs using KINNTREX

The concentration profiles of the intermediates are calculated

twice for each iteration. First, they are extracted from the

weights in the projection NN. Second, the concentrations are

obtained by solving the coupled differential equations of the

chemical kinetic mechanism [equation (7)] by diagonalization.

The RRCs are contained in the coefficient matrix K. To

retrieve the RRCs, a simple fully connected NN is used. This

network has an input layer that is the flattened concentration

vector determined from the projection NN, a hidden layer, and

an output layer containing the resulting RRC values. The

hidden-layer perceptrons hold the weighted sum of the input

values followed by application of an activation function called

Leaky-ReLU (Maas et al., 2013). The output-layer percep-

trons hold the weighted sum of the hidden-layer perceptron

values, but this time no activation function is applied. This sub-

network is part of a larger NN and thus its output is not

compared with ground-truth values but instead is used as an

input to the calculation of the coupled differential equations.

The reason for using Leaky-ReLU is to avoid zero values.
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