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Analysis of small-angle scattering (SAS) data requires intensive modeling to

infer and characterize the structures present in a sample. This iterative

improvement of models is a time-consuming process. Presented here is Scat-

tering Equation Builder (SEB), a C++ library that derives exact analytic

expressions for the form factors of complex composite structures. The user

writes a small program that specifies how the sub-units should be linked to form

a composite structure and calls SEB to obtain an expression for the form factor.

SEB supports e.g. Gaussian polymer chains and loops, thin rods and circles, solid

spheres, spherical shells and cylinders, and many different options for how these

can be linked together. The formalism behind SEB is presented and simple case

studies are given, such as block copolymers with different types of linkage, as

well as more complex examples, such as a random walk model of 100 linked sub-

units, dendrimers, polymers and rods attached to the surfaces of geometric

objects, and finally the scattering from a linear chain of five stars, where each star

is built up of four diblock copolymers. These examples illustrate how SEB can be

used to develop complex models and hence reduce the cost of analyzing SAS

data.

1. Introduction

Small-angle scattering (SAS) is an ideal technique to char-

acterize the size, shape and orientation of nanoscale structures

in a sample (Guinier et al., 1955; Feigin et al., 1987). In order to

infer the structures present in a sample, SAS scattering

profiles are often analyzed by fitting models (Pedersen, 1997).

Thus SAS data analysis is an iterative process where models

for structures are proposed, their corresponding scattering

profiles are mathematically derived and model scattering

profiles are fitted to the experimental scattering profiles. If the

fits are poor, the models have to be improved and the process

is repeated until a good model has been developed. A ‘good’

model is one which provides an acceptable fit to the experi-

mental data and is thus the most likely candidate for the

structures present in the sample.

SAS scattering spectra contain information about the

nanoscale structure but not the detailed atomic scale structure,

and hence relatively simply geometric models are often used

when analyzing SAS data. Fortunately, the scattering from a

large number of models has already been derived [see e.g.

Pedersen (1997)]. In the case where e.g. objects of similar

shape are dispersed in a liquid, the problem of modeling the

scattering from the sample can be split into (i) what the shapes

of the objects are and (ii) what the spatial correlations of the

objects are due to their mutual interactions (Pedersen, 1997).

The first problem is described by the form factor while the

https://doi.org/10.1107/S1600576724001729
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=small-angle%20neutron%20scattering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=SANS&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=small-angle%20X-ray%20scattering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=SAXS&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=computational%20tools&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:zqex@sdu.dk
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724001729&domain=pdf&date_stamp=2024-03-31


latter part is described by the structure factor, and in dilute

samples the scattering is dominated by the form factor.

Here we present Scattering Equation Builder (SEB), which

is a C++ software library that analytically derives symbolic

expressions for the form factor of composite structures built

by linking an arbitrary number of sub-units together. A typical

workflow is shown in Fig. 1. Starting from a model of a

structure (here a four-armed star built up of polymers), a short

C++ program is written to define this structure within SEB. It

typically takes SEB less than a minute to derive analytically a

symbolic expression for the form factor of the structure. What

is outside the scope of SEB is code required for representing

and fitting experimental data or providing a graphical user

interface. Already numerous excellent software tools have

been developed with the specific aim of fitting models to

scattering data. A non-exhaustive list includes e.g. ATSAS

(Konarev et al., 2006; Manalastas-Cantos et al., 2021),

CRYSOL (Svergun et al., 1995), CRYSON (Svergun et al.,

1998), FoXS/MultiFoXS (Schneidman-Duhovny et al., 2016),

GENFIT (Spinozzi et al., 2014), GenApp (Perkins et al., 2016),

IRENA (Ilavsky & Jemian, 2009), SASfit (Breßler et al., 2015;

Kohlbrecher & Breßler, 2022), SASview (Doucet et al., 2021),

Scatter (Förster et al., 2010) and WillItFit (Pedersen et al.,

2013).

Our aim with SEB is to provide a computationally efficient

tool to derive form factor expressions for arbitrary complex

branched structures. The expressions can be exported in a

variety of formats, allowing them to be imported into C, C++

or Python programs for numerical evaluation, into MATLAB

(The MathWorks, Massachusetts, USA) or Mathematica

(Wolfram Research, Illinois, USA) for further analysis, or into

LaTeX documents for publication. Finally, if the user specifies

the length scales of the various sub-units, SEB can also eval-

uate the scattering equations to generate the corresponding

scattering profile.

Fig. 2 illustrates the sub-units that we have implemented in

this initial release. The figure caption states which reference

points we have implemented. These sub-units, together with

the large number of linkage options offered by the reference

computer programs
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Figure 1
The SEB workflow: (a) defining a structure, (b) implementing the structure in SEB, (c) obtaining the analytic form factor equation, and (d) evaluating
and plotting the form factor for given structural parameters.

Figure 2
Overview of supported sub-units. (a) A solid cylinder (SEB name
SolidCylinder, reference points by which it can be linked to other sub-
units: center, hull, ends, surface), (b) a solid sphere (SolidSphere: center,
surface), (c) a solid spherical shell (SolidSphericalShell: center, surfacei,
surfaceo, surface), (d) a thin spherical shell (ThinSphericalShell: center,
surface), (e) a thin disk (ThinDisk: center, surface, rim), (f ) a linear
polymer (GaussianPolymer: end1, end2, middle, contour), (g) a polymer
loop (GaussianLoop: contour), (h) a thin circle (ThinCircle: center,
contour), (i) a thin rod (ThinRod: end1, end2, middle, contour) and (j) an
invisible point (Point: point).



points, define a large family of structures for which SEB can

analytically derive scattering expressions.

SEB has been written in object-oriented C++, which allows

the expert user to expand SEB, e.g. with additional sub-units

and/or linkage options, with relative ease. This choice also

makes it possible to embed SEB within other software

programs. SEB is open source and is freely available for

download from GitHub at https://github.com/tobionecenobi/

seb, where technical documentation can also be found. SEB

depends on the GiNaC library (Bauer et al., 2002) for

internally representing symbolic expressions, and the GNU

Scientific Library (Gough, 2009) for evaluating certain special

functions.

The paper is structured as follows. In Section 2 we briefly

introduce the formalism and logic behind SEB. The design and

implementation of SEB are presented in Section 3. We present

four advanced examples in Section 4. Section 5 wraps up the

article with a summary and outlook.

2. Formalism

We regard a composite structure as being created by linking

sub-units together. For example, the structure of a semi-

flexible polymer can be built by linking a sequence of rods end

to end to form a linear chain of rods. The structure of a block

copolymer or a star polymer can be built by linking two or

more polymers together at one end. The structure of a diblock

copolymer micelle can be built by linking polymers to the

surface of a solid sphere representing the core; here both the

polymers and the sphere are sub-units. A bottle-brush

polymer structure can be built by linking a number of short

polymers to a random point along a long polymer chain.

Common to these example structures is that they are

composites made of distinct sub-units linked in specific ways.

Sub-units come in two varieties: simple geometric sub-units

such as rods and spheres, and sub-units with internal confor-

mational degrees of freedom such as polymers. In the latter

case, we need to perform conformational averages when

predicting their scattering contributions.

For each type of sub-unit, we define specific reference

points on the sub-unit where links can be made. For instance, a

linear sub-unit such as a polymer or a rod has two distinct

ends. These are points where we can link other sub-units. Each

link represents the constraint that a reference point on one

sub-unit is co-localized with a reference point on another sub-

unit. A sphere can be linked to other sub-units at any random

point on its surface. We could also imagine linking at any

random point along the contour of the polymer or rod. This

illustrates that reference points come in two varieties: specific

geometric reference points such as the ends of a polymer or a

rod, or distributed reference points such as random points on a

geometric surface or along a polymer chain. When predicting

scattering contributions, we also have to perform averages

over distributed reference points. Even with e.g. a polymer

sub-unit, we can link it together in many ways forming many

structures, e.g. block copolymers, star polymers, dendrimers or

bottle-brush structures, or any combination of these.

To calculate the scattering from a composite structure we

utilize the formalism of Svaneborg & Pedersen (2012a,b). The

formalism is based on three assumptions: (i) a structure does

not contain sub-units that are linked into closed loops, (ii) the

links are completely flexible and (iii) the sub-unit pairs are

mutually non-interacting. These three assumptions ensure that

the internal conformation and orientation of all sub-units are

statistically independent. Interactions between different sub-

units (iii) would for instance create conformational correla-

tions, for example in dense polymers the excluded-volume

interactions give rise to correlation hole effects in the scat-

tering (Schweizer & Curro, 1988). When e.g. two rods are

linked (ii), the joint is flexible and can adopt any angle. If this

were not the case, the links would create orientational

correlations between the two rods. Finally, if a structure

contains loops (i), the closure constraint creates long-range

orientational and conformational correlations between all the

sub-units involved in the loop. When the internal conforma-

tion and orientation of all sub-units are statistically indepen-

dent, the scattering from a composite structure can be

factorized in terms of contributions from individual sub-units.

No assumptions are made on the internal structure of the sub-

units and no additional assumptions or approximations are

made. In this sense the formalism is exact. SEB is an imple-

mentation of this formalism in C++. Below we introduce SEB

and the formalism in more detail.

2.1. Links

A sub-unit can have any number of specific and distributed

reference points depending on its geometry. To keep track of

them SEB has hard-coded labels for each reference point. For
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Figure 3
Illustration of a polymer sub-unit. (a) The three different reference
points. (b)–(d) The three ways two polymers can be linked. (e) The
scattering form factors for the different linkage options.
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example, a polymer sub-unit has two specific reference points

labeled ‘end1’ and ‘end2’, while it has one distributed refer-

ence point labeled ‘contour’ [Fig. 3(a)]. Hence with just two

polymers P1 and P2, we can create three different structures

by linking P1.end2 to P2.end1 which produces a linear struc-

ture, P1.end2 to P2.contour which produces a random three-

functional star structure, or P1.contour to P2.contour which

produces a random four-armed star structure. Figs. 3(b)–3(d)

illustrate these structures.

When calculating scattering from structures with distributed

reference points, we need to perform an average over random

realizations of the link. Hence we will obtain slightly different

scattering profiles for these structures. Fig. 3(e) shows the

scattering form factor for these structures. In the Guinier

regime observe that the radius of gyration is largest for the

linear structure and smallest for the four-armed star. At small

q values [q = (4�/�)sin�, where � is half the scattering angle

and � is the wavelength of the incident radiation] the struc-

tures produce the same scattering since they have the same

scattering lengths, whereas for large q values we observe

power-law scattering due to the internal random walk struc-

ture of the polymer, which is the same for all three structures.

2.2. Sub-units

A sub-unit is the building block of a structure. It is typically

composed of many individual scatterers grouped together. We

make no assumptions about the internal structure of a sub-

unit. Here and below we use capital Latin letters to denote

sub-units.

The scattering contributions of the sub-unit are character-

ized by the following factors. The form factor is defined as

FIðqÞ ¼
X

i

�i

 !� 2
X

i;j

�i�j

sinðqrijÞ

qrij

� �

; ð1Þ

where rij = |Ri � Rj| is the spatial distance between the two

scatterers and �i denotes the excess scattering length of the ith

scatterer. The form factor describes the interference contri-

bution from all pairs of scatterers within the Ith sub-unit. Here

and below we will use Greek symbols to denote reference

points.

For each reference point �, the sub-unit has a corresponding

form factor amplitude defined as

AI�ðqÞ ¼
X

j

�j

 !� 1
X

j

�j

sinðqrj�Þ

qrj�

� �

; ð2Þ

where rj� = |Rj � R�| is the spatial distance between the jth

scatterer and the reference point. The amplitude describes the

phase difference introduced by the spatial distance between

the scatterers in the sub-unit and the reference point.

For each pair of reference points �, !, the sub-unit has a

corresponding phase factor defined as

�I�!ðqÞ ¼
sinðqr�!Þ

qr�!

� �

; ð3Þ

where r�! = |R� � R!| is the spatial distance between the two

reference points. The phase factor describes the phase differ-

ence between two specified reference points.

In these expressions we have already performed the

orientational average, but an additional average has poten-

tially to be made over internal conformations and/or distrib-

uted reference points, for example for a polymer described by

Gaussian chain statistics. For the end1 form factor amplitude,

one has to perform an average over the distribution of

distances between end1 and any scatterer along the chain. For

the end1 to end2 phase factor, one has to perform an average

of the polymer chain connecting the two ends. For the contour

form factor amplitude of a polymer, one has to perform a

double average over random positions of the reference point

along the chain and any scatterer along the chain. Finally, for

the contour to contour phase factor, one has to average over

two random positions of the reference point along the chain as

well as the Gaussian statistics of the polymer.

In the special case where distributed reference points (e.g.

contour) and scatterers are characterized by the same distri-

bution, such as a homogeneous distribution along the polymer,

then the average expressions for the form factor amplitude

and phase factor result in the same expression: the Debye

expression for the form factor (Debye, 1947). We refer the

reader to Svaneborg & Pedersen (2012a,b) for the specific

expressions.

2.3. Diagrammatic interpretation

A formal derivation of the general scattering expressions

for a composite structure has been provided by Svaneborg &

Pedersen (2012a,b). Before stating the general equations, we

first motivate the formalism with a diagrammatic derivation of

the scattering from an example.

To abstract from the concrete internal details of different

sub-units, we illustrate all sub-units as ellipses as shown in

Fig. 4. Specific reference points are illustrated as dots on the

circumference of the ellipse. Distributed reference points are

illustrated as a thick line segment on the circumference of the

ellipse to indicate that many points contribute. Fig. 4(a) shows

a polymer and its diagrammatic representation. To illustrate

links, the reference points on two sub-unit ellipses are shown

computer programs

590 Jarrett and Svaneborg � SEB J. Appl. Cryst. (2024). 57, 587–601

Figure 4
Illustrations of (a) how a polymer and its reference points can be
represented diagrammatically, and (b)–(d) how the different linkage
options shown in Fig. 3 are represented.



as touching circumferences. The three linkage options shown

in Figs. 3(b)–3(d) are illustrated in Figs. 4(b)–4(d), respec-

tively. For simplicity, often herein we will only show and label

the reference points of interest when showing structures.

The total library of possible steps and the factors they

contribute are shown in Fig. 5. Diagrammatically, form factors

are derived from distances between pairs of scatterers within

the same sub-unit, and hence they are illustrated as a line

inside the ellipse. The form factor is also scaled by the square

excess scattering length of the sub-unit. Form factor ampli-

tudes are derived from distances between scatterers and a

reference point, and they are illustrated by a line that starts

inside the ellipse and ends on the circumference on the

reference point. Form factor amplitudes are scaled by the

excess scattering length of the sub-unit. Phase factors describe

the phase introduced by the distance between two reference

points, and hence are illustrated by a line between the two

reference points. Since no scatterers are involved, phase

factors do not depend on any excess scattering lengths. Finally,

when summing over all pairs of sub-units we note that form

factors are counted only once, but all interference contribu-

tions are counted twice, since both the I, J and J, I paths

contribute.

2.4. Algorithm

To calculate the form factor of a composite structure, SEB

has to account for interference contributions between pairs of

scatterers, while also keeping in mind that scatterers are

grouped into linked sub-units. Fig. 6 shows three illustrative

cases, (i) the l, k scatterers belong to the same sub-unit D, (ii)

the n, m scatterers belong to directly linked sub-units A, C,

and (iii) scatterers i, j belong to sub-units BD, that are indir-

ectly connected via sub-unit A.

The first case of internal interference contributions between

all scatterers within the same sub-unit is described by the form

factor of the sub-unit FD; here and below we suppress the

dependency on q for the sake of brevity.

In the second case, the interference contribution between A

and C depends on (the average of) the vector �R = Rn � Rm,

although stepping through the structure we note that �R =

(Rn � R�) + (R� � Rm) = �Rn� + �R�m, where each pair of

parentheses corresponds to an intra-sub-unit step. Since we

have assumed that the sub-units are uncorrelated, the spatial

probability distribution of pair distances between scatterers

PAC(Rn�, R�m) can be written as a convolution of the two

intra-sub-unit pair-distance distributions relative to the

common reference point, PA(�Rn�)*PC(�R�m). In Fourier

space, that convolution turns into the product of two sub-unit

form factor amplitudes AA�AC�, both of which are evaluated

relative to the common reference point �. This is the resulting

interference contribution for case (ii).

Finally, the third case generalizes this logic. The inter-

ference contribution between scatterers i, j depends on (the

average of) the vector �R = Ri � Rj. We note again that we

can use reference points as stepping stones to write �R =

(Ri � R�) + (R� + R�) + (R� � Rj) = �Ri� + �R�� + �R�j.

Each of the three pairs of parentheses describes an intra-sub-

unit step. The distribution PBAD is a convolution of individual

sub-unit contributions which factorizes into a product of three

terms. However, since the middle step involves two reference

points, the corresponding contribution is a phase factor. Thus

the interference contribution becomes AB��D��AD� for case

(iii).

Hence the algorithm used by SEB for obtaining the scat-

tering from a composite structure is to analyze all possible

computer programs
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Figure 5
Library of all the possible diagrams and the corresponding factors to use
when deriving scattering equations.

Figure 6
Example structure showing one sub-unit (A) with three pendant sub-units
(BCD). The sub-units are linked at three reference points (�, � and �).
Some scatterers within the sub-units are illustrated as well (lowercase
letters). A few distances between scatterers are illustrated (colored
dashed lines), together with their representations in terms of paths going
through the structure (colored solid lines).



pairs of scatterers in the same or different sub-units. The form

factor is thus a double sum over all sub-units where we

encounter three possible types of contributions: The first is a

form factor for scattering pairs belonging to the same sub-unit.

Each pair of sub-units is either directly or indirectly

connected. If they are directly connected, they contribute the

product of their form factor amplitudes relative to the

common reference point by which they are linked. If they are

indirectly connected, we find the unique path through the

structure connecting the two sub-units. This path uses refer-

ence points as stepping stones. The path is unique since the

structure is assumed to be acyclic. The path contributes a form

factor amplitude for the first and final sub-units relative to the

first and final reference points in the path, respectively.

Furthermore, each sub-unit along the path contributes a phase

factor, which is to be calculated relative to the two reference

points used to step across that sub-unit.

2.5. Example

Fig. 7 shows an example of a block-copolymer micelle

modeled as three polymers linked to the surface of a spherical

core (Pedersen & Gerstenberg, 1996). The figure also shows

an example of three spheres linked by their centers to random

positions along the contour of a polymer chain. This could be a

beads-on-a-string model of a surfactant-denatured protein

(Giehm et al., 2010). In the center of the figure, we show the

diagrammatic representation where three sub-units are linked

to a central sub-unit. We note that the generic diagram

emphasizes the connectivity of the structure and allows us to

write down a generic equation for the form factor independent

of the specific sub-units involved. In the figure, � denotes the

distributed reference point to which the other sub-units are

linked.

For the simple example in Fig. 7 we can enumerate all the

possible scattering contributions from pairs of scatterers. This

is illustrated in Fig. 8, where the top row shows scattering pairs

within the same sub-unit and the bottom row displays scat-

tering pairs within directly and indirectly linked sub-units. We

note again that all interference terms are counted twice since

I, J and J, I interferences contribute the same terms. Form

factors only contribute twice. The reason is that, while both rij

and rji vectors between two scatterers i, j contribute to the

form factor, this is already accounted for by equation (1).

Summing all the scattering terms we get the (unnormalized)

form factor of the structure.

To derive the final expression for a block-copolymer

micelle, we have to substitute the concrete polymer expres-

sions for sub-units BCD and the sphere expressions for sub-

unit A. To derive the final expression for the beads-on-a-string

model, we instead substitute the concrete sphere expressions

for sub-units BCD and the polymer expressions for sub-unit

A. These expressions are given by Svaneborg & Pedersen

(2012b).

When requesting the form factor of a structure in SEB,

either the user obtains a generic structural equation, like the

one in Fig. 8, or the default is for SEB to perform all the sub-

unit substitutions and return a form factor equation for the

specific choice of sub-units. For more complex structures,

enumerating all the potential scattering contributions by hand

is a very tedious and error-prone process. SEB automates the

computer programs
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Figure 7
Example structures built up of (top) three polymers linked to the surface
of a sphere and (bottom) three spheres linked by their centers to the
contour of a polymer, and (center) a generic diagram with the same
connectivity.

Figure 8
Diagrams of all the contributions to the form factor of an ABCD structure where sub-units BCD are linked to sub-unit A.



process of identifying paths and tallying the corresponding

factors.

2.6. Generic equations

Just as a sub-unit has form factor amplitudes and phase

factors, so does a composite structure that we have built out of

sub-units. Using the diagrammatic logic above, we can also

draw the diagrams for the form factor amplitudes of a struc-

ture relative to a reference point (not shown). In this case we

have to sum over all sub-units in the structure. We find a path

from the reference point to the sub-unit. The path contributes

a product of phase factors for each sub-unit it traverses, and a

form factor amplitude for the last sub-unit along the path

relative to the last reference point. To calculate the phase

factor of a structure relative to two reference points, we find

the path through the structure connecting the reference

points. The phase factor of the structure is the product of all

the phase factors of sub-units along that path.

Generalizing the logic above, we can state the general

expression for the form factor of a structure of sub-units. For

each sub-unit pair I, J we identify the first and final reference

points � and ! and the path P(�, !) through the composite

structure that connects them. The scattering interference

contribution is then the product of the form factor amplitudes

of the first and final sub-units and of all the phase factors of

sub-units along the path. The form factor of the composite

structure is given by (Svaneborg & Pedersen, 2012a,b)

FSðqÞ ¼ �
� 2
S

"
X

I

�2
I FIðqÞ

þ
X

I 6¼J

�I�JAI�ðqÞAJ!ðqÞ
Y

ðK;�;�Þ2Pð�;!Þ

�K��ðqÞ

#

: ð4Þ

Having derived the form factor, it is straightforward to

apply the same logic to state the equivalent form factor

amplitude of a structure relative to any reference point it

contains, as well as the phase factor of a structure relative to

any reference point pair. These are given by (Svaneborg &

Pedersen, 2012a,b)

AS�ðqÞ ¼ �
� 1
S

X

I

�IAI!ðqÞ
Y

ðK;�;�Þ2Pð�;!Þ

�K��ðqÞ

" #

ð5Þ

and

�S�! ¼
Y

ðK;�;�Þ2Pð�;!Þ

�K��ðqÞ: ð6Þ

Usually the focus is on deriving form factors for different

structures, and phase factors and form factor amplitudes are

just intermediate expressions in the derivation. However,

having all three scattering expressions for a structure allows us

to use it as a sub-unit. In terms of mathematics, this corre-

sponds to recursively inserting the left-hand sides of equations

(4)–(6) into the right-hand sides of the equations. In terms of

SEB, the code for generating scattering expressions makes

recursive calls to itself until terminating at the sub-unit level.

This hierarchical view of building structures using simpler sub-

structures and sub-units as building blocks is a cornerstone of

SEB’s design.

The logic is illustrated in Figs. 9(a)–9(c), where the ABCD

structure is wrapped into a single structure of type ‘star’. In

this case, we can think of e.g. P1.end2 and S.surface as being

the labels of reference points inside a star structure. In

Fig. 9(d) four instances of a star structure (named star1 to

star4) are linked P3.end1 to S.surface. The resulting structure,

a linear chain of stars, is shown in Fig. 9(e). With SEB, we

would write code to link sub-units as in Fig 9(a), write a line to

name the structure ‘star’ thus realizing Fig. 9(c), and proceed

to write code to build the structure shown in Fig. 9(d) using

stars. Finally, with a line of code we obtain the form factor of

the structure in Fig. 9(e). Towards the end of this paper we give

an example where we build a diblock copolymer by joining

two polymers. We then build a star by linking four diblock

copolymers by one end, and proceed to build a chain where

five stars are linked tip to tip. This takes just 13 lines of code to

do with SEB. Building hierarchical structures from more basic

sub-structures vastly accelerates the time it takes to derive the

scattering expressions.

Expressions for form factor amplitudes are also useful for

modeling structure factor effects. If a structure has a reference

point that could be regarded as the ‘center’ of the structure,

then SEB can also calculate the form factor amplitude relative

to the center point AC. In that case, an approximate model for

the scattering including structure factor effects would be IðqÞ =

FðqÞ þ A2
CðqÞ ½SCCðqÞ � 1�, where SCC is a structure factor that

describes the distribution of center to center distances

between different structures (Pedersen, 2001; Pedersen et al.,

2003). This is analogous to the decoupling approximation

(Kotlarchyk & Chen, 1983) for polydisperse or anisotropic

particles. The structure factor could for example be modeled
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Figure 9
Examples of hierarchical descriptions. (a)–(c) A bottom-up description:
(a) a specific star structure made up of sub-units linked to a core, (b) a
diagrammatic representation of sub-units in the star structure and (c) a
diagrammatic representation of a star sub-unit. (d)–(e) A top-down
description: (d) four linked star sub-units and (e) the detailed structure
when inserting the internal structure.



as that of a hard-sphere liquid (Wertheim, 1963; Thiele, 1963)

or a hard-sphere liquid augmented with a Yukawa tail

(Herrera et al., 1999; Cruz-Vera & Herrera, 2008). Structure

factor effects can also described using e.g. the RPA approx-

imation (Benoit & Benmouna, 1984) or using integral equa-

tion theory, e.g. in the form of PRISM theory (Schweizer &

Curro, 1987; Curro & Schweizer, 1987; Schweizer & Curro,

1994; David & Schweizer, 1994; Yethiraj & Schweizer, 1992).

pyPRISM is a software package for numerically solving the

PRISM equations (Martin et al., 2018). We note that liquid-

state theories require the form factor of a structure as an

input, which can be derived with SEB.

2.7. Estimating sizes

While predicting scattering profiles is the main focus of

SEB, we can also use analytic Guinier expansions of the

scattering expressions to provide expressions for the size of

composite structures. The size of a structure or a sub-unit can

be gauged by three different measures. The radius of gyration

hR2
gi which describes the apparent mean-square distance

between unique pairs of scatterers is obtained when

expanding the form factor. The (apparent) mean-square

distance between a given reference point and any scatterer

hR2
I�i is obtained when expanding a form factor amplitude.

Finally, the mean-square distance between a pair of reference

points hR2
I�!i is obtained when expanding a phase factor. We

define the three Guinier expansions for a sub-unit I as

FIðqÞ ’ 1 �
q2
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Here the right-hand side of the expressions defines the three

size measures in terms of the expression in the middle. On the

basis of the generic equations (4)–(6), we can derive three

similar generic expressions for the size of any composite

structure expressed in terms of the sizes of sub-units and paths

through the structure. However, for simplicity we have directly

implemented the Guinier expanded scattering terms for all

sub-units in SEB, such that SEB explicitly calculates the

Guinier expansion above (middle equations) and derives the

size from the q2 term in the expansion (right-hand side).

Extra care has to be taken with regard to double counting of

distances. The form factor includes the distance between any

pair of scatterers twice, since both rij and rji contribute to the

form factor. We have made this double counting explicit by the

prefactor of two in equation (7). This has the effect of defining

the radius of gyration from the unique set of distances between

pairs of scatterers. For the form factor amplitude and phase

factor, we occasionally have to account for a double counting.

This done by introducing the double counting factors �I�

and �I�!.

In cases with specific reference points, pair distances

between scatterers and reference points are unique by

construction and the double counting factor is unity. For

instance, for the Guinier expansion of the form factor ampli-

tude of a polymer relative to end1, distances between end1

and scatterers along the polymer are only summed once, and

hence �polymer, end1 = 1. Similarly, for the Guinier expansion of

the phase factor between end1 and end2 of the polymer, the

distance between the two ends of the polymer is summed only

once, and hence �polymer, end1, end2 = 1.

In cases involving distributed reference points, double

counting can occur due to the additional average that has to be

performed. For instance, Guinier expansion of the form factor

amplitude of a polymer relative to a contour reference point

sums every distance between random points and scatterers

twice, because both scatterers and reference points are

uniformly distributed along the contour of the polymer. Hence

�polymer, contour = 2. Similarly, for the Guinier expansion of the

phase factor between a pair of random contour points, we

encounter every distance twice. Hence �polymer, contour, contour =

2 in this case as well. In fact, the set of distances between a

random point on a polymer and a scatterer, or between two

random points on a polymer, is exactly the same as the set of

distances between pairs of scatterers, i.e. the mean-square

distance from contour to scatterer and between two contour

points is exactly the radius of gyration of the polymer. If we

did not account for double counting in this case, we would

have an inconsistency where e.g. the distance between

randomly chosen points on a polymer would be twice the

radius of gyration of the polymer. Note that SEB is not able to

deduce whether double counting occurs in a given structure.

Hence SEB returns �I� R2
I�

� �
and �I�! R2

I�!

� �
to the user, and it

is up to the user to divide the result by two in the rare cases

where double counting has occurred.

3. SEB

In the preceding section, we have illustrated the formalism.

While it is entirely possible to use the formalism to write down

scattering expressions for complex structures by hand, this

rapidly becomes tedious and error prone when many paths

through a complex structure have to be enumerated, the

various expressions for sub-unit factors have to be inserted

and the resulting expression implemented in SAS analysis

software.

Scattering Equation Builder, SEB, is an object-oriented C++

library that automates the process. SEB calculates the form

factor of a structure by identifying and traversing all the paths

between unique sub-unit or sub-structure pairs. SEB can also

calculate the form factor amplitude for a given reference point

by exploring all the paths connecting that reference point to

every other sub-unit or sub-structure. Similarly, the phase

factor between any two reference points is obtained by

identifying the path between the reference points. In the

case of hierarchical structures, the algorithm generates ‘hori-

zontal’ paths at a given structural level, and then evaluates

scattering expressions by recursively exploring paths through
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sub-structures until the level of individual sub-units is reached.

Internally, we have designed SEB to store a hierarchical graph

representation of the structures efficiently, and it uses efficient

recursive algorithms to generate paths through the hyper-

graphs at a specified depth into the structure.

SEB uses the GiNaC library (Bauer et al., 2002) for repre-

senting symbolic expressions. SEB depends on the GNU

Scientific Library (Gough, 2009) for evaluating sine integrals,

Bessel functions and Dawson functions. SEB also includes

code from Moreau (2014) for evaluating Struve functions.

The core functionality of SEB is to allow the user to write a

short program that (i) builds structures by linking specific

uniquely named sub-units, (ii) names a composite structure

built up by sub-units, such that it can be used as another sub-

unit, (iii) builds hierarchical structures by linking simpler

structures together, (iv) obtains analytic expressions char-

acterizing the scattering and sizes of those structures, and/or

(v) saves a file with a scattering profile for a chosen set of

parameters.

From the user’s perspective, SEB exposes a very lean

interface. Just four methods are available for building struc-

tures. The user can choose to obtain generic structural scat-

tering expressions with all sub-unit scattering terms inserted,

yielding an equation that depends explicitly on q and a set of

structural parameters. The user can also obtain an inter-

mediate representation where scattering terms are inserted

but expressed with dimensionless variables, all structural

length scales being scaled by q. Lastly, if the user defines the

structural parameters and a vector of q values, SEB can

evaluate the scattering expressions to provide a vector of

scattering intensities that can be saved to a file for plotting.

Before going into detail with the implementation and

design choices, we start with two simple illustrative examples:

a diblock copolymer and a micelle/decorated polymer. These

and more examples can be downloaded along with the SEB

code from https://github.com/tobionecenobi/seb.

3.1. Diblock copolymer

Creating a structure similar to the one seen in Fig. 3(b)

involves a space (termed a ‘world’) to host the sub-units, and

then creating two polymers and specifying how they are to be

linked. The following complete C++ program does this.

The first line includes the SEB header file, which declares

what functions SEB provides. Lines 2, 3 and 10 set up the

function main, which is executed when a program is run. Line

4 in the program creates an instance w of the World class.

This instance provides all SEB’s functionality to the user.

To create a structure in the world, we must first add and link

the two polymers. In the fifth line, the user uses the w.Add()

method to add a polymer to the world. ”Gaussian-

Polymer” refers to a type of polymer described by Gaussian

chain statistics. With the second argument, the user assigns the

unique name ”A” to this sub-unit. The world returns a

GraphID to the user in response to adding the sub-unit. The

GraphID is a common identity shared by all sub-units linked

together to form a graph.

In the sixth line, the user uses the w.Link() method to

add and link a second GaussianPolymer sub-unit. With the

second argument the user names this new sub-unit ”B”. With

the second and third arguments the user defines that the new

”B” should be linked by the end1 reference point to end2 on

the already existing ”A” sub-unit. To calculate the form factor

and print it out, we must first wrap the graph formed by these

two polymers into a structure. This is done in the seventh line

with w.Add(), but this time it is called with a GraphID of the

structure we want to name and the string ”DiBlock-

Copolymer”. Note that all sub-unit and structure names are

case sensitive and unique. Types of sub-units and their refer-

ence point names are hard coded in SEB (see Fig 2). Refer-

ence point names are also case sensitive.

Having defined a structure in lines 5–7, we now want to

print out the equation for its form factor. The eighth line

specifies that we want the expression to be printed in the form

of a LaTeX expression. With the command w.Form-

Factor(”DiBlockCopolymer”) in the ninth line, the

user requests the symbolic expression for the form factor. This

is printed to the screen (cout <<). The form factor equation

will be expressed in terms of the magnitude of the momentum

transfer q, the structural parameters RgA, RgB, and the excess

scattering lengths �A, �B. The names of the sub-units are used

as subscripts in the parameters used in the scattering expres-

sions.

Here we have chosen LaTeX-formatted output (latex),

but we could also have output the equation in formats

compatible with C/C++ (csrc), Python (python) or the

default GiNaC format (dflt). The resulting equations are

similar, although they use different syntax for powers. The

default format uses the ‘^’ operator and Python uses the ‘**’

operator, while the C/C++ format uses the pow() function for

fractional powers and expands small integer powers into

products of terms. The default format is compatible with most

CAS systems such as MATLAB, Octave and Mathematica,

while SymPy (https://www.sympy.org) can simplify expressions

generated with the Python style. The user can in principle

extend GiNaC with custom routines for printing equations in

other formats. A disadvantage of GiNaC is that it does not

attempt to simplify expressions or sort terms, so the equations

it produces are lengthy. Most often we would export scattering

expressions to a symbolic mathematics program for simplifi-

cation. The resulting expression can then be used e.g. in a

fitting program, although expressions can also be evaluated

directly in SEB as shown below.

To change the diblock from end2 to end1 linking to random

linking, such as in Fig. 3(c), we need to link A.end2 to a
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randomly chosen point on B.contour. Replacing line 6 with

the following code snippet achieves this.

Here, simultaneously with specifying the distributed refer-

ence point ”contour” on the ”B” sub-unit, we also label

that (now specific) reference point with the arbitrary string

”r1”. If we instead want to create the structure of Fig. 3(d),

we need to link one random reference point on

”B.contour#r2” to a random reference point on

”A.contour#r3”. Replacing line 6 with the following code

snippet achieves this

The scattering profile corresponding to Figs. 3(b)–3(d) is

shown in Fig. 3(e). The difference is not large, but illustrates

the point that even with the same sub-units different linkage

options affect the scattering profile. The reference point name

”contour” is hard coded in SEB, but the user is free to

choose the labels (here ”r1”, ”r2”, ”r3”). Having a unique

name for each reference point allows us to add more sub-units

to the same random point. Having both options for linking

allows the user to develop well defined arbitrarily complex

branched structures of end-to-end linked polymers, or bottle

brush structures where many side chains are randomly

attached to a main polymer.

As the default, SEB expresses scattering expressions in

terms of an explicit q value and a set of structural parameters

and excess scattering lengths. The default option is also to

output normalized scattering expressions such that they

converge to unity in the limit of small q values. Replacing

w.FormFactor(”DiBlockCopolymer”) by w.Form-

FactorAmplitude(”DiBlockCopolymer:A.end1”)

would generate the form factor amplitude expression for the

whole DiBlockCopolymer, but expressed relative to the

specified reference point. With w.PhaseFactor(”Di-

BlockCopolymer:A.end1”, ”DiBlockCopolymer:

B.end2”) SEB would instead generate the phase factor of

the DiBlockCopolymer relative to the two specified refer-

ence points. With w.FormFactorGeneric(”DiBlock-

Copolymer”) we would get the generic form factor of a

structure of two connected sub-units without the specific

scattering expressions inserted, and this is often useful for

debugging. Finally, with w.RadiusOfGyration2(”Di-

BlockCopolymer”) SEB would generate the expression

for the radius of gyration.

3.2. Diblock copolymer micelle

SEB is not limited to using one type of sub-unit – we can use

and link all types of sub-unit to each other. We can, for

instance, model a diblock copolymer micelle as a number of

polymer chains attached to the surface of a spherical core

(Pedersen & Gerstenberg, 1996). Here we limit the number of

polymers to three for the sake of simplicity. To generate the

micelle shown in Fig. 7 (top), we need to create a solid sphere

(”A”) and add three polymers (”B”, ”C” and ”D”) to its

surface. The following code snippet does this.

A polymer sub-unit (type GaussianPolymer) has end1, end2

and contour as reference points, while a solid sphere sub-unit

(type SolidSphere) has center and surface as reference points.

Just as we need to add labels for random points on the contour

of the polymer above, we also add labels for the random points

on the surface of the sphere. If we used the same label in all

three Link commands, the three polymers would be linked to

the same random point. This would influence the scattering

interference between the polymers and is not the structure we

are aiming to create.

We also introduce tags in the example, which are an

optional parameter of w.Add() / w.Link(). We tag all

polymers as ”p” and the spherical core as ”s”. The result is

that the scattering expressions are not stated in terms of the

unique names A, B, C and D, but are stated using the radius of

gyration of the polymers Rgp and radius of the sphere Rs as

well as the two excess scattering lengths �p and �s. If a tag is

not specified, then the unique name is used in its place as in

the diblock example above. By specifying tags, we can mark a

set of sub-units as being identical in terms of their scattering

properties and structural parameters.

3.3. Decorated polymer

A model of a surfactant-denatured protein could be a long

polymer with some spherical surfactant micelles along its

contour. To generate a polymer decorated by three spheres as

in Fig. 7 (bottom), we would use the following code snippet.

We note that this is nearly identical to the micelle code

above, since we link three sub-units to a single sub-unit in both

cases. The only difference is that, instead of linking three

polymers to a sphere, we link three spheres to one polymer.

The three spheres ”B”, ”C” and ”D” are tagged with ”s”

such that the scattering expression depends on the same

parameters as described above.

4. Advanced examples

Having discussed the basics of how to add and link sub-units,

create structures and output GiNaC expressions, here we show

how to implement some of the more advanced examples. In

particular, we show a complete example of how to write a

program that generates the scattering from 100 identical

linked sub-units for a variety of sub-units and linkage options,
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how to generate a dendritic structure of linked sub-units, an

example of polymers and rods linked to the surfaces of

different solid geometric objects, and finally how to implement

a chain of five linked diblock copolymer stars using hier-

archically defined building blocks.

4.1. Chain

To illustrate the versatility of SEB, below we show a short

C++ program that generates a chain of 100 identical polymers

linked end to end. The program obtains the symbolic

expression for the form factor, and then uses several helper

methods to evaluate this equation for specific parameters,

finally producing a file with F(q) versus q.

Lines 2–8 create the chain. Initially we add a single polymer

”P1”, and then we use a for loop to add and link 99 more

polymers. The polymers have unique names ”P(i)”, where i

denotes the number of the sub-unit. The string variables now

and last are the names of the current and previous sub-units,

respectively. These are all identical and both are tagged as

”p”. The linkage is ”P(i).end1” to ”P(i-1).end2” for

all polymers such that they form one long continuous chain. In

line 9 we name this structure ”RandomWalkPolymer” and

obtain the symbolic expression for its form factor F in line 10.

In lines 11–13 we define a list of parameters, and set the excess

scattering length ”beta_p” to one and the radius of gyration

”Rg_p” also to one. In line 14 we generate qvec, which is a

vector of all the q values at which we want to evaluate the

form factor. We choose 400 log-equidistant points between

qmin = 0.01 and qmax = 50. From the point of view of SEB, units

are irrelevant. All scattering expressions depend on dimen-

sionless products of structural length scales and a q value, and

as long as both are expressed with a consistent choice of unit,

the unit will cancel when evaluating the scattering profile

numerically. Finally, in line 15 we evaluate the symbolic

expression by inserting the list of parameters and each of the q

values into the expression. The result is saved to a file

”chain_end2end.q”. A plot of this file is shown in

Fig. 10(a).

We can now study how the scattering profile changes when

we keep the chain structure but change the sub-unit and/or the

linkage. Replacing ”GaussianPolymer” by ”ThinRod”

directly generates a file with the scattering for a chain of rods

linked end to end. This is shown in Fig. 10(c). Replacing end1

and end2 by ”contour.r(N)” and ”contour.s(N-

1)”, respectively, produces the contour-to-contour linkage

shown in Figs. 10(b) and 10(d)–10( f), where for the last two

curves we chose ”GaussianLoop” or ”ThinCircle” as

sub-units.

In the Guinier regime of Fig. 10, we observe that the end-to-

end linked rods have the largest radius of gyration, followed

by the end-to-end linked polymers. These form the most loose

and extended chain structure. The contour-to-contour linked

rods, polymers and loops have the smallest radii of gyration,

which is consistent with these chains being the most dense and

collapsed structures. Since a chain of 100 end-to-end linked

polymers with R2
g = 1 corresponds to a single polymer with

R2
g = 100, the scattering is the Debye form factor. At large q

values, for all polymer structures we observe the ðqRgÞ
� 2

power law consistent with local random walk statistics. For

chains built with rods, we see a (qL)� 1 power law behavior at

large q values, which is expected from a rigid rod. The chain-

of-circles structure shows oscillations due to the regular

distance between scatterers on a circle, but the trend line of

the oscillations follows a q� 1 power law consistent with a local

rod-like structure.

4.2. Dendrimers

Generating a dendritic structure calls for a recursive func-

tion.

The challenge here is how to assign names systematically so

the links are consistent with a dendritic structure. In line 1 we

define a Point, which we call ”center”. This is an invisible

sub-unit with zero excess scattering length, but which is useful
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Figure 10
Scattering from a chain of N = 100 identical linked sub-units for (a) end2-
to-end1 linked Gaussian polymers, (b) contour-to-contour linked Gaus-
sian polymers, (c) end2-to-end1 linked rods, (d) contour-to-contour
linked rods, (e) contour-to-contour linked polymer loops and ( f ) contour-
to-contour linked circles. The structural parameters of the sub-units are
chosen such that their radius of gyration is one.



as a seed to attach other sub-units to. In line 2 we define a

counter which will be counting the number of sub-units added.

The recursive function Attach() generates the dendrimer

(see code below) and is called in line 3. The argument 4 is the

number of generations to generate, and 3 is the functionality

of each connection point. The ”center.point” is the

initial reference point on which to graft additional polymers.

The two last arguments are the counter and the world we are

adding sub-units into. In the last line we name the resulting

structure ”Dendrimer”. The rest of the code for generating

a file with the form factor is identical to the chain example

above.

The recursive function receives g the number of genera-

tions that remain to be attached, f the functionality of each

link and ref, which is the reference point from the previous

generation onto which we link the current generation. c and w

are a global counter and the world, respectively. In lines 3–4

we define the numbers of arms to attach to this reference

point. Usually this is f � 1 since we are linking to the tip of an

existing branch, but in the special case where we are linking

arms to the center.point we need to add f arms instead.

This ensures that all connection points have the desired

functionality.

In lines 5–12 we add the arms and link them to the previous

generation. In line 7 we define a name for each new sub-unit

”S(c)” and in line 8 we add GaussianPolymer sub-units and

link them to the tip of the previous generation. The links are

”S(c).end1” to ref, where ref is the tip of the last

generation of polymers. In line 9 we define the new reference

point on which to add the next generation. This reference

point is ”S(c).end2”. Finally in line 10, we increment the

counter of sub-units that have been added so far. If at this

point we have not finished building, that is if g is larger than

one, in line 11 we again call the Attach function to attach the

next generation to the tip of the current arm, that is to

newref. The attachment process continues recursively,

decrementing g with each generation of branches attached.

The final generation is g=1, which corresponds to the outer-

most leaves on our dendritic structure.

The resulting structure contains 45 sub-units (three from

the first generation, six from the second generation, 12 from

the third generation and 24 from the fourth generation) The

code above generates the structure plotted in Fig. 11(a).

Again, by changing line 8 we can link other sub-units such as

thin rods. Changing lines 7 and 9, we can change the reference

points from end-to-end to contour-to-contour links. The

results are the four curves shown in Fig. 11. Again, we observe

in the Guinier regime that dendrimers made by end-to-end

linked rods and polymers have the largest radii of gyration.

We also observe that at large q values the power laws (qL)� 1

for rods and ðqRgÞ
� 2 for polymers show what sub-units they

are built with. We also observe that contour-to-contour linked

structures have the same radius of gyration, independent of

their sub-unit structure.

4.3. Solids

With SEB we can investigate how different linkage options

of sub-units on the surfaces of solid bodies affect the scat-

tering.

In the example code above, we generate a solid spherical

shell in line 1. The shell is a homogeneous solid body defined

by an exterior radius Ro and an interior radius Ri. In lines

4–6, we add and link a Gaussian polymer. The polymer is

named ”poly(i)” and linked by ”poly(i).end1” to

”shell.surfaceo#p(i)”, where surfaceo denotes

distributed reference points on the ‘outer’ or exterior surface

of the shell. The unique label ”p(i)” ensures that all poly-

mers are linked to different random points on the surface. In

lines 7–9, we add and link a thin rod. The rod is named
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Figure 11
Scattering from a dendrimer with four generations and three functional
links. (a) end1-to-end2 linked polymers, (b) contour-to-contour linked
polymers, (c) end1-to-end2 linked rods and (d) contour-to-contour linked
rods. The structural parameters of the sub-units are chosen so the radius
of gyration is always one. The sketches of the dendrimer structures only
show the first two generations for the sake of brevity.



”rod(i)” and linked by ”rod(i).end1” to ”shell.

surfacei#r(i)”, where surfacei denotes the interior

surface. Again the unique label ”r(i)” ensures that rods are

linked to different random points. In line 11 we name the

resulting structure ”Structure”. As in the chain example,

we evaluate the form factor and generate a file with the

corresponding scattering curve.

Changing line 1, we can change which solid body we are

attaching sub-units to, e.g. solid spheres or cylinders. Changing

lines 6 and/or 9, we can change what sub-units we link to the

surface and by which reference point the link should be made.

Changing the reference points in lines 5 or 8, we can choose

different linkage options on the solid body. Fig. 12 shows a

comparison of some of the possible linkage options. The code

above corresponds to the Fig. 12(d) curve. Here, we choose to

contrast match the solid body �shell = 0, and choose �poly =

�rod = 1. Hence the scattering is due to both the polymers and

rods and their interference contribution, which depends on the

shape of the body to which they are attached.

In the Guinier regime of the scattering profiles shown in

Fig. 12, we observe that the solid spheres and spherical shells

are nearly identical, as is the scattering from cylinders. This is

not surprising since the scattering between different sub-units

is modulated by the phase factor of the solid body to which the

sub-units are attached. At very large q values we observe a

power-law behavior with an exponent slightly larger than � 1.

This is to be expected, since the scattering is dominated by the

sub-unit form factors, and asymptotically the rod (qL)� 1 will

dominate over the polymer ðqRgÞ
� 2 unless the number of

polymers vastly outnumbers the number of rods. In the

crossover regime, we observe different oscillations for the

different linkage options. These oscillations are due to the

different distributions of surface-to-surface distances between

the tethering points of pairs of rods and/or polymers.

4.4. Hierarchical structures

In the examples above we have built structures by

connecting sub-units to each other. The result of each was

described by a GraphID that we could name as a type of

structure, and then we could use that name to derive various

scattering expressions. Since the formalism is complete any

sub-structure can be used as a sub-unit. World has a Link

method that takes a GraphID (referring to a type of structure)

and names and links it to an existing structure. This works

analogously to Link called with a string denoting a type of

sub-unit. The code below illustrates the concept.

In line 1 we add a Gaussian polymer sub-unit ”A”, and in

line 2 we add and link another Gaussian polymer ”B” sub-unit

to it as we have done in several of the examples above. The

names ”A” and ”B” should be thought of as two instantia-

tions of the type of object with an internal structure described

by the type ”GaussianPolymer”. It is important to

distinguish between concrete objects of a certain type of

structure and the type of structure itself. The type does not

exist per se, but is just a generic description. In the case of ”A”

and ”B” these have their own structural parameters and

contribute specific terms to scattering expressions. The type

GaussianPolymer is a description of the internal chain statis-

tics of a polymer molecule. When creating a new sub-unit or

structure in SEB, we instantiate it from a type of structure.

GraphID variables are also types of structure; in particular,

the GraphID variable d describes a diblock copolymer

structure. In line 3, we add a new structure to the world named

”diblock1”, which is an instantiation of the diblock type.

Hence ”diblock1” is a concrete structure in the same sense

as ”A” and ”B” are concrete sub-units.

In lines 4–6, we do something new; we call Link() not with

a sub-unit type but with the diblock type (GraphID variable

d). We name these three new structures ”diblock2”,

”diblock3” and ”diblock4”, respectively. Each struc-

ture is linked by a reference point inside the structure to a

reference point that already exists in the world. For the

computer programs
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Figure 12
Scattering from various solid bodies with 50 rods and 50 polymers
attached to different surfaces. The solid body is contrast matched, �solid =
0, and �poly = �rod = 1. (a) A solid sphere R = 10 with rods and polymers
randomly attached to the surface. (b) A solid sphere R = 10 with pairs of
rods and polymers attached to the same random point. (c) A solid
spherical shell Ri = 8, Ro = 12 with rods and polymers randomly attached
to the interior and exterior surfaces. (d) A solid spherical shell Ri = 8, Ro =
12 with 50 rods attached to the interior surface and 50 polymers attached
to the exterior surface. (e) A cylinder L = 10, R = 5 with rods and
polymers randomly attached to the surfaces. ( f ) A cylinder L = 10, R = 5
with rods attached to the two cylinder ends and polymers attached to the
hull. For curves (c) and (e) where several surfaces contribute area, we
have weighted the scattering terms with their respective area fractions to
ensure homogeneous area coverage in the case of random attachment.



diblock2 structure, we link ”diblock2:polyA.end1” to

”diblock1:polyA.end1”; since ”diblock1” already

exists in the world we can link to it. To link structures, we need

to specify the path to get from the structure level via sub-

structures down to the reference point which is associated with

a specific sub-unit. Since all names are unique, so is any path

from a sub-structure to a reference point. The resulting

structure is a four-armed diblock copolymer star, where the

”A” blocks are linked by their end1 reference points which

form the center of the star, while the corona is formed by the

four ”B” blocks and their free chain ends are at the end2

reference points.

While we usually define the GraphID by the returned value

of the first Add() method, all subsequent Link() calls also

return the same GraphID value, since this is associated with

the whole graph first created by Add() and then grown each

time the Link() is called. In line 3, we store the type of graph

formed by ”diblock1” to ”diblock4” in the GraphID

variable s, which is now the type of a four-armed diblock star

structure.

In line 7, we now instantiate a star sub-structure and name it

”star1”. This defines a new GraphID which we save in a

variable c. Then in lines 8–11 we proceed to instantiate

four more star sub-structures named ”star2” to ”star5”.

Each time we link ”star(n):diblock1:B.end2” to

”star(n-1):diblock3:B.end2”, since ”star(n-

1)” already exists and has a ”diblock3:B.end2” refer-

ence point inside it. The result is a linear chain of stars formed

by linking the tips of ”diblock1” and ”diblock3”;

hence ”diblock2” and ”diblock4” form dangling ends

analogous to a bottle-brush structure. Finally, to calculate the

form factor of this type of chain, we must name it to instantiate

it in the world. The rest of the code is similar to the chain

example above.

This example illustrates the power of building structures

using more simple sub-structures as building blocks. With 12

lines of code, we have generated a hierarchical structure with

40 sub-units. Fig. 13 shows an illustration of the resulting

structure, together with the form factor evaluated for three

different contrast options. In the Guinier regime, we observe

that the radius of gyration is nearly the same, independent of

contrast, which we would also expect for such a structure. At

large q values we obtain the characteristic power law of

polymer sub-units. For intermediate q values the structure is

slightly different. When the ”polyA” blocks are contrast

matched, �A = 0, they play the role of invisible spacers inside

the stars. When the ”polyB” blocks are contrast matched,

they play the role of invisible spacers between different stars.

Besides calculating scattering expressions, SEB can also

provide expressions characterizing the size of a structure. For

instance, w.RadiusOfGyration2(”chain”) returns an

expression for the radius of gyration by applying a Guinier

expansion of all sub-unit scattering terms. After simplification,

the result is

hR2
gi ¼ ð�A þ �BÞ

� 2
�

12:9R2
gA�

2
B þ 9:6R2

gB�
2
A þ 21R2

gB�A�B

þ 24:3R2
gA�A�B þ 11:3R2

gB�
2
B þ 11:3R2

gA�
2
A

�
: ð10Þ

The radius of gyration measures the distances between all

pairs of scatterers, so we could for instance also ask what is the

mean-square distance between the center of the star and all

scatterers in the structure. A Guinier expansion of the corre-

sponding form factor amplitude provides the result, and

”star3:diblock1:polyA.end1” is the reference point

at the center of the star. Hence this mean-square distance

gives an idea of the radial extent of the structure. Calling

w.SMSD_ref2scat(”chain:star3:diblock1:polyA.

end1”) returns that result. The method is called SMSD for

sigma mean-square distance to remind the user to account for

a potential symmetry factor. Finally, we could ask what are the

length and breadth of the structure? To calculate the length,

we call w.SMSD_ref2ref(”chain:star1:diblock1:

polyB.end2”, ”chain:star5:diblock3:polyB.end2”)

which returns the mean-square distance between the two

reference points at either end of the structure. The result is

hR2
lengthi = 60ðR2

gB þ R2
gAÞ To estimate the breadth of the

structure, we change the reference points to w.SMSD_

ref2ref(”chain:star3:diblock2:polyB.end2”,

”chain:star3:diblock4:polyB.end2”), since

”diblock2” and ”diblock4” are the two dangling

diblocks, and ”polyB.end2” are the dangling ends of these

diblocks. The result is hR2
breadthi = 12ðR2

gB þ R2
gAÞ.

These results are easy to obtain by hand. For a single

polymer R2
gðNÞ ¼ hR

2
end2endi=6 ¼ b2N=6, where b is the

random walk step length and N is the number of steps in the

polymer. Then to estimate the number of steps along the

length of the chain, we note that it has ten A blocks and ten B

blocks from one end to the other. Hence hR2
lengthi = b2Nlength =

b2(10NA + 10NB) = 60ðR2
gA þ R2

gBÞ. For the breadth, a star has

a breadth of Nbreadth = 2NA + 2NB. The result is that the chain

computer programs

600 Jarrett and Svaneborg � SEB J. Appl. Cryst. (2024). 57, 587–601

Figure 13
Scattering from a chain of five four-armed stars where each arm is a
diblock copolymer for three different choices of contrast. The illustrated
links are (a) the block copolymer formed by ”A.end2” to ”B.end1”,
(b) the star formed by ”diblock2:A.end1” to ”diblock1:
A.end1” and similar for the other arms, and (c) the chain formed by
”star2:diblock1:B.end2” to ”star1:diblock3:B.end2”
and similar for the other stars.



is five times longer than its breadth, which is what one would

expect.

5. Summary

The main problem in analyzing small-angle scattering (SAS)

data is the availability of model expressions for fitting. Here

we have presented Scattering Equation Builder (SEB), which

is an open-source C++ library available at https://github.com/

tobionecenobi/seb. SEB automates part of this problem by

generating symbolic expressions for complex composite

models of structures using the formalism presented by

Svaneborg & Pedersen (2012a,b). The formalism is built on

the assumptions that sub-units are mutually non-interacting,

that structures do not contain loops and that all links are

assumed to be completely flexible. No further mathematical

simplifications or approximations are made. In particular, no

assumptions are made regarding the internal structure of the

sub-units.

With SEB the user writes short programs that construct a

structure using sub-units and simpler structures as building

blocks. Much like the construction toy LEGO, sub-units can

be linked at certain points called reference points. Either these

can be specific geometric points, such as one of the ends of a

polymer, or they can be randomly distributed, e.g. on the

surface of a sphere. With the building blocks of sub-units and

the reference points, a large number of complex structures can

be built with relative ease. See Fig. 2 for the sub-units and

reference points supported by this initial release.

SEB derives analytic symbolic expressions for the form

factor, form factor amplitude and phase factor of a structure.

SEB can also derive expressions for the radius of gyration, as

well as for the mean-square distance between a reference

point and all scatterers in a structure. Finally, SEB can derive

the mean-square distance between pairs of reference points.

The expressions can be evaluated to a number e.g. when

fitting, evaluated to produce a file for plotting, output in

several formats for LaTeX documentation or C/C++ and

Python-compatible equations, or exported to MATLAB or

Mathematica.

In the present article, we have given simple illustrative

examples and some more complex examples of what SEB can

do. SEB is available on GitHub (https://github.com/

tobionecenobi/seb), and a frozen version related to the

present work is deposited on Zenodo (SEB Version 1.0,

https://doi.org/10.5281/zenodo.10204364). We hope the SEB

library will grow as more sub-units become supported, and we

welcome contributions from users in developing future

versions of the library.
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