
computer programs

J. Appl. Cryst. (2024). 57, 529–538 https://doi.org/10.1107/S1600576724000116 529

ISSN 1600-5767

Received 30 November 2023

Accepted 3 January 2024

Edited by S. Moggach, The University of

Western Australia, Australia

Keywords: machine learning; serial

crystallography; image classification; X-ray free

electron lasers; graphical user interfaces; X-ray

diffraction patterns; data analysis; experimental

artefacts.

Published under a CC BY 4.0 licence

The Pixel Anomaly Detection Tool: a user-friendly
GUI for classifying detector frames using machine-
learning approaches

Gihan Ketawala,a,b Caitlin M. Reiter,c Petra Frommea,b and Sabine Bothaa,d*

aBiodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA, bSchool of

Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA, cNSF BioXFEL Science and Technology

Center Summer Internship Program, NY 14203, USA, and dDepartment of Physics, Arizona State University, Tempe, AZ

85287-1504, USA. *Correspondence e-mail: sbotha@asu.edu

Data collection at X-ray free electron lasers has particular experimental chal-

lenges, such as continuous sample delivery or the use of novel ultrafast high-

dynamic-range gain-switching X-ray detectors. This can result in a multitude of

data artefacts, which can be detrimental to accurately determining structure-

factor amplitudes for serial crystallography or single-particle imaging experi-

ments. Here, a new data-classification tool is reported that offers a variety of

machine-learning algorithms to sort data trained either on manual data sorting

by the user or by profile fitting the intensity distribution on the detector based

on the experiment. This is integrated into an easy-to-use graphical user inter-

face, specifically designed to support the detectors, file formats and software

available at most X-ray free electron laser facilities. The highly modular design

makes the tool easily expandable to comply with other X-ray sources and

detectors, and the supervised learning approach enables even the novice user to

sort data containing unwanted artefacts or perform routine data-analysis tasks

such as hit finding during an experiment, without needing to write code.

1. Introduction

Over a decade ago, scientists first recognized the potential of

exploiting the unique capabilities of X-ray free electron lasers

(XFELs) for the structure solution of biological macro-

molecules (Chapman et al., 2011; Boutet et al., 2012). Using the

ultrashort ultrabright X-ray pulses generated by these novel

sources, the diffraction pattern of micrometre-sized crystals, or

even single biological particles, can be recorded before the

sample is ultimately plasmarized by the interacting X-ray

beam, in an approach termed ‘diffraction before destruction’

(Neutze et al., 2000; Barty et al., 2012). Using a variety of

sample-delivery techniques [see e.g. Barends et al. (2022)],

millions of single crystals or particles are streamed across the

X-ray path in random orientations, where they interact with

the ultrashort ultrabright X-ray pulses. While the brilliance of

a single X-ray pulse obliterates the sample, the femtosecond

pulse duration enables the diffraction pattern to be collected

before structure-altering radiation damage can manifest. The

reduced radiation dose reflected in the diffraction patterns

during this data-collection approach therefore enables the

study of micro- and nanometre-sized protein crystals at room

temperature under physiological conditions, and has broa-

dened the realm of time-resolved crystallography experiments

where reactions can be triggered by light or rapid mixing

(Stagno et al., 2016; Kupitz et al., 2017; Botha & Fromme,

2023). The femtosecond X-ray pulses further enable the study

https://doi.org/10.1107/S1600576724000116
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=serial%20crystallography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=serial%20crystallography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=image%20classification&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free%20electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free%20electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=graphical%20user%20interfaces&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction%20patterns&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction%20patterns&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=experimental%20artefacts&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=experimental%20artefacts&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:sbotha@asu.edu
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724000116&domain=pdf&date_stamp=2024-02-12


of radiation-sensitive systems (Barty et al., 2012). In a standard

serial femtosecond crystallography (SFX) experiment, the

millions of individual crystals are streamed through the X-ray

beam in a liquid jet (Weierstall et al., 2012), while a data frame

is collected synchronously with every XFEL pulse arriving at

the interaction region. The first-generation detectors featured

only one gain setting and their repetition rates were limited to

30 Hz, e.g. the Rayonix detector. The first custom-design

multiple gain mode detector for use at an XFEL was the

Cornell–SLAC Pixel Array Detector (CSPAD) operating at

120 Hz (Blaj et al., 2015).

As X-ray flux and repetition rates increased, a new

generation of detectors was developed (Henrich et al., 2011;

van Driel et al., 2020) to accommodate higher repetition rates

and feature new pixel-by-pixel gain-switching modes, thereby

dramatically increasing the dynamic range of the detector.

However, these segmented dynamic gain-switching detectors

are custom designed by/for their respective X-ray facilities and

can pose a challenge for data-analysis personnel in a variety of

ways, including but not limited to non-linearity of the inten-

sities in the gain-switching mode, delays in the recording of the

per-pixel gain switching and challenges of the per-pixel

background correction in the different gain modes; correctly

calibrating the detectors is a research project in itself. Mis-

calibration of pedestal values or gain-switching regions and

parameters can result in pixels or detector panels recording

unreliable intensity values, which affects the accuracy of

downstream data analysis for both SFX and single-particle

imaging experiments. Furthermore, no two SFX experiments

are alike since the scattering background on the detector

varies depending on how the sample is introduced into the

X-ray beam, the X-ray energy, and various unwanted experi-

mental artefacts such as salt deposits on the nozzle, phase

changes of the sample carrier medium etc. In addition,

depending on the scientific case, the signal of interest may vary

from single-particle-diffraction large-unit-cell protein crystals

to small-unit-cell metallic organic frameworks or even solu-

tion scattering. Data analysis during an XFEL experiment

therefore usually requires experienced data scientists to flex-

ibly implement hit-finding algorithms or eliminate frames with

unwanted artefacts on the fly. To address this challenge, we

developed the Pixel Anomaly Detector Tool (PADT), a user-

friendly graphical user interface (GUI) to assist even the

novice student with these tasks, improving the accuracy and

reliability of diffraction intensity measurements without

needing to write custom code. Using machine-learning (ML)

algorithms from the scikit-learn toolbox (Pedregosa et al.,

2011), such as logistic regression, K-nearest neighbours, and

decision-tree and random-forest classifiers, PADT allows the

user to test and train models by classifying detector images

according to the problem or task at hand. The tool is written in

Python (van Rossum & Drake, 2011), is highly modular, and

can easily be expanded to support other X-ray detectors and

file formats to enhance the reliability of XFEL data and

streamline the data-analysis process.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016)

has become a powerful tool for ML to leverage existing

knowledge to present previously annotated data (the ‘training

set’) and is therefore becoming increasingly popular across

various scientific disciplines. The possibility of performing a

wide variety of cognitive and inference tasks after being

‘trained’ successfully makes it particularly powerful in image-

processing applications (Géron, 2017). One of the first appli-

cations of deep learning to serial macromolecular crystal-

lographic data was implemented by Ke et al. (2018), where a

convolutional neural network to detect Bragg spots was

executed to classify crystal ‘hits’ from ‘misses’ and ‘maybes’

for a variety of different proteins and experimental conditions.

The authors concluded that a successful outcome is heavily

dependent on a strong training set for a particular protein and

set of experimental parameters, unfortunately thereby

hindering generalizations. A potential solution to this hurdle

was implemented by Souza et al. (2019), who introduced a

method for generating labelled (desirable and undesirable)

diffraction images. The technique produces and labels images

via a simulator that receives the properties of the incident

X-ray beam, the environment and the structure to be analysed

as its input. It thereby generates a synthetic training set of

diffraction images with an annotation that is 100% accurate, as

opposed to erroneous manually annotated real images. Using

their simulated dataset (termed DiffraNet), the authors

explored several computer-vision-approach off-the-shelf

AutoML optimization tools and found that the best model

achieved 98.5% accuracy on synthetic images compared with

94.51% accuracy on real images. A similar approach

employing neural networks was investigated by Sullivan et al.

(2019) for macromolecular neutron crystallography, a

complementary structure-determination technique to X-ray

crystallography for determining the positions of low-z

elements (usually hydrogen). They simulated 100 000 training

peaks and demonstrated how ML can be used to refine peak

locations and peak shapes, and ultimately yield more accurate

integrated intensities for Bragg spots. These ML approaches

employing neural networks are not only limited to macro-

molecular crystallography but also find use in small-molecule

crystallography (Oviedo et al., 2018). Although this field is still

in its infancy, the method has been successfully demonstrated

on simulated data, but still holds clear bottlenecks when

extrapolating to real data. Yet, it contains enormous potential

for standardizing serial crystallography data collection and

processing, as well as achieving higher accuracy for intensity

prediction of Bragg reflections.

Our tool is designed to work on real data, regardless of the

problem identified during the course of the experiment (i.e. hit

finding, background fluctuations, detector artefacts etc.), while

being executable without any programming knowledge or ML

expertise. In this article, we will outline the architecture and

principle of PADT, and then introduce a test case where the

tool was used to improve data-collection statistics of a dataset

containing detector-calibration artefacts. PADT is open

source for academic use through an MIT License. The

full package can be downloaded from https://github.com/

gihankaushyal/PixelAnomalyDetectorTool, along with instal-

lation instructions, a user manual and tutorial data.

computer programs

530 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool J. Appl. Cryst. (2024). 57, 529–538

https://github.com/gihankaushyal/PixelAnomalyDetectorTool
https://github.com/gihankaushyal/PixelAnomalyDetectorTool


2. The Pixel Anomaly Detection Tool (PADT)

2.1. Overview

PADT provides a user-friendly interface that enables users

to perform three key phases of image analysis, as shown in

Fig. 1: task definition, model training and testing, and image

sorting. All code is written in Python3 (van Rossum & Drake,

2011) and makes use of the packages h5py, matplotlib, numpy,

Pandas, plotly, psutil, pyqtgraph, PyQt5, scikit-learn, seaborn

and tqdm. A full list of prerequisites, tested version numbers

and references can be found in Table 1.

During the first phase of PADT, the sorting criteria and

associated task are defined by the user. A subset of image files

are loaded into the GUI and inspected through an image

viewer. The user can define what constitutes a ‘good’ image

versus a ‘bad’ image depending on the task at hand, either by

manually clicking through images in the viewer and selecting

the appropriate check box depending on the displayed image

or by fitting an expected intensity profile to an area of the

detector. In addition to the test case presented in detail below,

further examples of good versus bad images that are applic-

able to PADT are shown in Fig. 2. The top panel shows

AGIPD detector frames collected at the European XFEL with

(bad) and without (good) an application-specific integrated

circuit (ASIC) calibration artefact. The bottom panel of

images shows a good image collected using a fixed-target setup

and a bad image where the X-ray interaction region is mis-

aligned with the sample window, resulting in shadows and

parasitic scattering. Both scenarios are handled identically in

PADT, since it is trained on the fly by the user on the basis of

the data, without making any prior assumptions. A 1D vertical

projection is displayed alongside each image for the region of

interest (ROI) selected, which can aid the user when deter-

mining whether profile fitting may be appropriate for pre-

classification. When choosing to employ profile fitting, the user

can select the order of polynomial to fit, and the GUI will sort

training/test image sets according to the location of the

computer programs

J. Appl. Cryst. (2024). 57, 529–538 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool 531

Figure 1
A workflow diagram of the three phases of PADT.

Table 1
A list of prerequisites and version numbers tested for functionality (in
alphabetical order).

Package Version Reference

Python 3.8 van Rossum & Drake (2011)
h5py 0.8.8 https://www.h5py.org/
matplotlib 3.5.2 Hunter (2007)
numpy 1.23.3 Harris et al. (2020)
Pandas 1.4.4 Pandas Development Team (2020)

plotly 5.9.0 https://plot.ly
psutil 5.9.0 https://github.com/giampaolo/psutil#readme
pyqtgraph 0.12.3 https://www.pyqtgraph.org
PyQt5 5.15.16 PyQt (2012)
seaborn 0.11.2 Waskom (2021)
scitkit-learn 1.1.3 Pedregosa et al. (2011)

tqdm 4.64.1 da Costa-Luis (2019)

Figure 2
Examples of PADT usage cases. ASIC calibration artefacts visible in
some diffraction patterns (top). Fixed-target data collection where some
images were collected with sub-optimal alignment of the X-ray beam and
the sample window (bottom).

https://www.h5py.org/
https://plot.ly
https://github.com/giampaolo/psutil#readme
https://www.pyqtgraph.org


inflection points of the fit. The latter method for image clas-

sification is particularly useful when there are drastic intensity

changes caused by intermittent shadowing or gain-switching

artefacts and negates the effort associated with manually

clicking through hundreds of images to assemble a reasonably

sized training set for phase 2. In the second phase, users can

train and test an ML model to take over the large-scale sorting

of images. The annotated images from phase 1 are split into

training and testing subsets; the user can specify the split

fractions, but the default is 70/30 and the GUI will display an

error if the split does not equate to 100% (avoiding the

potential for unintentional model bias). A range of ML

models are supported, as some may perform better than

others depending on the task at hand. PADT currently

supports logistic regression (Cox, 1958), K-nearest neighbours

(Fix & Hodges, 1989; Bentley, 1975), decision-tree classifier

(Quinlan, 1986; Wu et al., 2008) and random-forest classifier

(Breiman, 2001; Ho, 1995). Regardless of the model selected, a

confusion matrix and classification reports will be displayed

after training and testing are completed, so that the quality of

the model can be gauged. In the final phase, the model is

applied to data to perform the task it has been trained to do.

2.2. The PADT GUI

The PADT GUI is designed to guide the user through the

process of assembling the training data, training and testing

the model, and then applying it to experimental data. The

general workflow is outlined in Fig. 3. The main GUI is the

starting point and successively launches other GUIs as

required. Each step is outlined in more detail below.

The main GUI is launched when starting PADT, with most

functionality greyed out and inactive (Fig. 4, left). As the user

traverses the different phases of PADT, the buttons succes-

sively become active, guiding the user through the process

computer programs

532 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool J. Appl. Cryst. (2024). 57, 529–538

Figure 3
The PADT GUI layout. The black boxes refer to physical GUIs included
in PADT, whereas the dashed grey boxes refer to alternative GUI actions
and PADT outputs.

Figure 4
The main window of the tool. When initially launched, the GUI allows limited operations with inactive buttons greyed out (left). As the user is guided
through the three phases of the PADT process, buttons progressively become active (right). Also displayed is a 1D vertical projection of the selected
ROI, along with a fourth-order polynomial fit.



(Fig. 4, right). PADT supports the input of multi-event HDF5

image files (Collette, 2013), currently the most common

format of detector image files at XFELs, or a list of multiple

HDF5 files. Since many XFELs use segmented detectors,

PADT also requires a detector-geometry description in

CrystFEL (White et al., 2012) format to display the images in

the laboratory coordinate frame.

The image viewer is launched directly from the main GUI

(‘View File’) and is a modified and fully integrated version

of the Cheetah image viewer cxiview (Barty et al., 2014).

Interactively clicking the mouse on a detector panel in the

viewer (Fig. 5) will automatically select this panel as the ROI

for ongoing analysis. Additionally, a 1D vertical projection of

the pixel intensity values for the ROI can be displayed in the

main GUI (Fig. 4, right). Optional further functionality

includes fitting a polynomial to the 1D intensity profile and

using the location of the inflection points to automatically sort

the data. This is particularly useful when there is gross

intensity variation between good and bad images or when a

known scattering profile is desired (e.g. during solution scat-

tering experiments). Alternatively, and particularly useful for

the inexperienced scientist, images can also be directly tagged

through the image viewer.

This allows the user the utmost flexibility of classifying data

according to arbitrary criteria dictated by the task at hand

while using real data. The disadvantage of this approach is the

speed with which a human can tag sufficient data during an

ongoing experiment to assemble a large enough training set

for establishing a robust and reliable model. Regardless of the

chosen method for assembling the training data, PADT

outputs two text files containing lists of the image file names

(and event numbers for multi-event files, if applicable) for the

good and bad image files. Therefore, should an interruption

occur, the task can be resumed and does not need to be re-

started. Alternatively, multiple instances can be sorted in

parallel by multiple users to speed up the process of tagging

the training data, and then concatenated into a single folder

for input into the ML training and testing GUI. Good and bad

are simple descriptors and both datasets are handled identi-

cally (i.e. PADT will sort into two distinct datasets, either of

which can be subjected to downstream processing).

Once satisfied with the training dataset, the user can launch

the ML model training GUI (Fig. 6) from the main GUI via

the ‘Train a Model’ button. After pointing the application to

the folder containing the annotated data, the user has the

option to select from four different integrated ML algorithms,

which are detailed in the next section. The train/test data split

can be further adapted if required. The split is implemented

randomly across the pre-classified dataset and the test set is

excluded during model training to avoid bias.

The estimated model quality is displayed directly in the

GUI in the form of a confusion matrix and classification

report, the interpretation of which is elaborated on below.

Once a satisfactory model has been obtained, it can be saved

for future use. The trained and tested model can now flexibly

be loaded through the main GUI to sort a dataset at any point

in time. Selecting the ‘Sort Data’ button will launch the sorting

GUI (Fig. 7) with the model pre-loaded. PADT can now be

pointed towards a folder containing multi-event HDF5 files

computer programs

J. Appl. Cryst. (2024). 57, 529–538 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool 533

Figure 5
Manual sorting within the PADT image-viewer GUI. By selecting the
appropriate check box, an image can be added to the training dataset as
being good or bad, or if the user is unsure the image can be skipped. The
image loaded into the GUI shows a non-linearity particularly pertinent in
the ROI selected (yellow box). The viewer itself is adapted from the
Cheetah image viewer cxiview (Barty et al., 2014), with all functionality,
along with the PADT sorting ability.

Figure 6
The model training and testing GUI. Once training and testing are
completed on the training dataset, the confusion matrix and classification
report can be inspected.



for sorting, and will write a list with good and bad events as

well as displaying a summary for each file in the GUI.

2.3. Additional PADT features

While PADT is constantly being improved, some features

that are particularly beneficial towards the ‘user friendliness’

aspect already implemented are outlined below:

(a) Status bar: the PADT GUI is designed to provide an

exceptional user experience and effortless navigation. When-

ever users interact with the tool, they receive helpful messages

on the status bar that serve as navigational aids, providing

real-time feedback and guidance for optimal usage.

(b) Tooltip: to help users understand the tool’s functionality

and use it effectively, each interactive button on the PADT

GUI has a tooltip that provides a brief description of its

function and purpose. This ensures that users can harness the

full potential of the tool without any confusion.

(c) Error messages: if there are any operational issues or

user errors, the PADT GUI uses dialogue boxes to display

error messages promptly. This proactive approach ensures that

users are informed of any problems and can take corrective

measures with confidence.

(d) Parallelization: from a technical perspective, PADT is

highly adaptable. It is fully compatible with message passing

interface (MPI) parallelization systems. Furthermore, if a

system does not support MPIs, PADT can leverage multiple

processes through multi-threading. If neither MPI nor multi-

threading is feasible, the tool can still operate in a single-

threaded mode. This multi-tiered approach guarantees

optimal performance across different system architectures.

2.4. PADT ML algorithms

Machine-learning algorithms are a subset of artificial

intelligence that enable computers to learn and make

predictions or decisions without being explicitly programmed.

In the context of PADT, these algorithms are used to classify

and subsequently sort detector frames as good or bad

depending on the problem definition.

PADT currently supports several ML algorithms, including

logistic regression (Cox, 1958), K-nearest neighbours

(Bentley, 1975; Fix & Hodges, 1989), decision-tree classifier

(Quinlan, 1986; Wu et al., 2008) and random-forest classifier

(Ho, 1995; Breiman, 2001). All of the ML algorithms imple-

mented in PADT are part of the scikit-learn library (Pedre-

gosa et al., 2011). Here is a brief explanation of how each

algorithm works:

(i) Logistic regression: this is a binary classification algo-

rithm that uses a logistic function to model the probability of a

certain class. It tries to find the best decision boundary that

separates the classes in the input data (sklearn.liner_

model.LogisticRegression).

(ii) K-nearest neighbours: this is a non-parametric classifi-

cation algorithm that uses a distance metric to find the

K-nearest training examples to a given test example. The

class of the test example is then determined by a majority

vote of the K-nearest neighbours (sklearn.neighbours.

KNeighbors).

(iii) Decision-tree classifier: a decision tree is a hierarchical

model that uses a set of if–then rules to make decisions.

A decision-tree classifier works by recursively partitioning

the input space into subsets based on the values of dif-

ferent features in the input data. At each node in the tree,

a decision is made according to the value of a particular

feature, and the process continues until a leaf node is reached

that corresponds to a particular class (sklearn.tree.

DecisionTreeClassifier).

(iv) Random-forest classifier: random forest is an ensemble

learning method that combines multiple decision trees to

improve the accuracy of the classification. The algorithm

works by building a set of decision trees on random subsets of

the input data and random subsets of the features. The final

classification is then determined by a majority vote of the in-

dividual trees (sklearn.RandomForestClassifier).

In the context of PADT, the ML algorithms are trained on a

set of diffraction images with known labels of good or bad.

The input data for each algorithm consist of the pixel intensity

values for the ROI selected for each diffraction image. The

algorithms are then evaluated on a separate set of test images

to determine their accuracy in classifying the images into two

distinct datasets. The user can select the best-performing

algorithm for the task at hand before moving on to large-scale

image sorting.

Overall, the ML algorithms in PADT are a powerful tool for

automating the process of flexibly classifying diffraction

images, saving valuable time and effort for data-analysis

personnel.

2.5. Model quality diagnostics

In the realm of ML, evaluating the efficacy and precision of

a model is of paramount importance. Two pivotal evaluation

metrics that stand out in this context are the confusion matrix

computer programs

534 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool J. Appl. Cryst. (2024). 57, 529–538

Figure 7
The data-sorting GUI. PADT can now be pointed at any dataset and will
automatically use the most recently trained ML model to sort the data for
further analysis.



and the classification report. Both serve as critical tools to

assess and refine the performance of ML models, albeit in

slightly different ways.

The confusion matrix, as its name implies, lays out a matrix-

form representation of a model’s predictions against the actual

class labels. Annotated data that were excluded from model

training (i.e. the ‘test’ fraction) are sorted by the model and

the outcome is compared with the assigned labels for

compliance. The visual representation is divided into four

main components: true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). By presenting

these values, the matrix offers insights into the number of

correct predictions made for each class, as well as those that

were classified incorrectly from the assigned label. The power

of the confusion matrix lies not only in its ability to give an

overall view of the model’s prediction accuracy but also in

highlighting specific areas where the model might be faltering.

This makes it an invaluable tool for data scientists and ML

engineers, as it helps them recognize patterns, potential biases

and areas of improvement for their models. Equations (1) and

(2), shown below, allow calculation of the accuracy and mis-

classification rate to evaluate the performance of a classifica-

tion model, considering the TP, TN, FP and FN obtained from

the confusion matrix:

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð1Þ

and

Misclassification Rate ¼
FPþ FN

TPþ TNþ FPþ FN
: ð2Þ

The classification report, on the other hand, dives deeper,

offering a more granular view of the model’s performance.

Rather than just showing prediction outcomes, it calculates

and presents several vital metrics, giving a more rounded

perspective of the model’s efficacy. These metrics include the

following:

(a) Precision quantifies how many of the predicted positive

instances are actually positive:

Precision ¼
TP

TPþ FP
: ð3Þ

(b) Recall (or sensitivity) gauges the model’s capability to

identify all positive instances correctly:

Recall ¼
TP

TPþ FN
: ð4Þ

(c) F1 score is the harmonic mean of precision and recall.

The F1 score provides a balance between the two metrics,

especially useful when the class distribution is uneven:

F1 score ¼ 2
Precision � Recall

Precision þ Recall
: ð5Þ

(d) Support represents the number of actual occurrences of

the class in the dataset, giving context to the other metrics:

Supportþ ¼ Number of actual positive instances ¼ TPþ FN

ð6Þ

and

Support� ¼ Number of actual negative instances ¼ TNþ FP:

ð7Þ

The classification report therefore paints a detailed picture

of a model’s strengths and weaknesses. The presented metrics

elucidate the model’s efficiency in making correct predictions,

its rate of FP, the balance between precision and recall, and

more.

3. Example case

The efficacy of PADT was tested on a subset of SFX data that

has been published previously. This particular dataset was

chosen since it had necessitated elaborate data-analysis efforts

to mitigate the effects of a gain-switching artefact on the

detector prior to publication. Specifically, testing was

performed on SFX data from the SARS-CoV-2 NendoU

protein (Jernigan et al., 2023). The data were collected in 2021

using the ePix10k-2M detector (van Driel et al., 2020) at the

macromolecular femtosecond crystallography instrument

(Sierra et al., 2019) at the Linac Coherent Light Source in

California. For more experimental data-collection details,

please refer to Jernigan et al. (2023), as they are not relevant

for demonstrating the functionality of PADT. Of importance,

and why this particular dataset was chosen, are the effects of

the gain-switching artefact resulting in miscalibrated inten-

sities when the diffuse scattering from the water ring falls into

a critical intensity range. An adversely affected panel is

selected as the ROI in Fig. 5, and preparing these data for

publication required extensive data-analysis efforts at the

time. In Fig. 9 it can be seen how the miscalibration features

extend for an entire q range for data collected at this critical

intensity threshold.

Thirty random multi-event HDF5 files containing SFX

crystal diffraction patterns (post-hit finding) were selected

(2606 images in total) and annotated using both the profile-

fitting approach and manual sorting for the model training set.

An unanticipated hurdle encountered during the profile-

fitting approach was that PADT assumes that the majority of

image files constitute good data and therefore suggests that

the inflection points located within the dominant histograms

are good images. This may not always be the case depending

on the subset, so special attention needs to be paid whenever

concatenating the training dataset out of multiple separate

instances of PADT profile-fitting classification runs. To ensure

a trusted and verified training set, the 2606 images were sorted

manually using the viewer, with 790 images being classified as

good and 1816 as bad for the training dataset. In preliminary

tests it was determined that at least 2000 images are required

for reliable model training and testing for this particular case.

At this point, no attention was paid to the quality or potential

indexability of the crystal diffraction patterns.

The training dataset was applied to all four of the ML

algorithms and the respective models calculated and saved.

The default split of 70/30 training/testing ratio was used. The

computer programs

J. Appl. Cryst. (2024). 57, 529–538 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool 535



saved models were then used on a larger portion of data

collected under the same experimental conditions (104 731

images in total), while special attention was paid to not include

any of the images used to train and test the model in the

datasets sorted with the trained models and reported below.

The sorting accuracy was evaluated for each sorting algorithm

by manually inspecting the sorted results for �2200 random

images and verifying whether they had been correctly sorted

as good images (TP), bad images (TN) or neither (FP and FN).

The results from this assessment for the four supported ML

algorithms are presented in Table 2.

From this comparison, the random-forest model most

accurately identified good images (i.e. TP) as well as bad

images (i.e. TN), making it clearly superior to the other

models for this particular case (94.3 and 98.3%, respectively).

Since the random-forest model presented the lowest mis-

classifying rate overall (5.7 and 1.7% for good and bad data-

sets, respectively), the impact of applying the model for data

classification versus not applying the model (and benefiting

from higher data redundancy instead) was further investi-

gated.

General crystallography data-collection statistics were

calculated for the full unclassified dataset (104 709 apparent

crystal hits), referred to as the ‘control group’, as well as for

the 23 979 crystal hits contained in the dataset classified as

good by the random-forest model. No new attempt was made

to optimize hit-finding or peak-finding parameters; the data

were reused as processed on the fly during the beam time. In

brief, datasets were submitted to indexing using CrystFEL

version 0.9.1 (White et al., 2012), with the following para-

meters and options: –peaks = cxi; –int-rad = 2,4,6;

–multi and –check-peaks. Hence, indexing was

performed using the peaks stored in the HDF5 files from the

previous processing and not optimized [as they had been by

Jernigan et al. (2023) where a second round of hit and peak

finding was performed under optimized conditions]. Succes-

sive indexing attempts were made using XDS (Kabsch, 2010),

Mosflm (Powell et al., 2013), Dirax (Duisenberg, 1992) and

Xgandalf (Gevorkov et al., 2019), in that order with unit-cell

parameters a = 154 Å, b = 154 Å, c = 117 Å, � = 90�, � = 90�

and � = 120�. The only pixel masks applied to the detector

images were the bad pixel mask from the beam time

(containing hot and dead pixels) and the panel edges; no

further mask refinement was implemented on the basis of

data-processing results. Under these conditions, 19 284 images

were successfully indexed for the all-encompassing control

dataset (18%) and 11 269 images for the random-forest-

classified dataset (47%). Interestingly, the substantially higher

indexing rate for the random-forest dataset clearly indicates

that the hit and peak finding carried out during the experiment

were considerably hindered by the erroneous regions of

the detector. The maximum intensity integrated for every

reflection is plotted against resolution in Fig. 8 for the random-

forest good dataset (right) as well as the complete all-

encompassing dataset (left).

The higher occurrence of over-estimated intensity values,

particularly in the region most commonly effected by gain-

switching errors (0.2–0.4 Å� 1; 5.0–2.5 Å), is evident, indicating

that many of the indexed hits from the control dataset still

contain images with miscalibrated pixel values. The indexing

results for both datasets were then merged into point group

622 using CrystFEL’s partialator program (White et al., 2012)

with the following settings: unity model, 1 iteration.

The signal-to-noise ratio (SNR) as well as CC*, a statistic

commonly reported for crystallography datasets that estimates

the correlation of an observed dataset with the underlying true

signal (Karplus & Diederichs, 2012), are plotted against

computer programs

536 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool J. Appl. Cryst. (2024). 57, 529–538

Table 2
Performance comparison for ML algorithms for example data verified by
manually inspecting 2200 random images from the final sorted dataset
after applying the respective models.

Logistic
regression

K-nearest
neighbour

Decision
tree

Random
forest

True positive 91.5% 78.2% 91.4% 94.3%

False positive 8.5% 21.8% 8.6% 5.7%
True negative 97.5% 90.0% 97.4% 98.3%
False negative 2.5% 10.0% 2.6% 1.7%

Figure 8
Comparison of the maximum intensity measured for every reflection versus 1/resolution (Å). Control dataset (19 284 indexed images) (left). Random-
forest-classified dataset (11 269 indexed images) (right).



resolution for both merged datasets in Fig. 9. Interestingly, the

random-forest dataset has both lower SNR and marginally

lower CC* values at lower resolution. However, in the region

where the pixels display the anomalous behaviour, the

substantially smaller random-forest dataset notably outper-

forms the control dataset. This is reflective of the higher

redundancy of the control dataset beneficially impacting the

statistics at lower resolution, but the inclusion of bad data

results in inconsistent intensity measurements at higher reso-

lution that are outweighed by the inclusion of more data. This

example case demonstrates how PADT can easily aid in

improving crystallographic data statistics during an ongoing

experiment or after, without the need for writing a single line

of code.

4. Conclusions

Here we introduced a user-friendly GUI interface for image

classification, which is particularly amendable to data

collected at an XFEL. Based on ML algorithms and a super-

vised learning approach, PADT supports a wide range of data-

classification and -analysis tasks without the need to write

code for the specific task at hand. While PADT currently

supports the Epix2k-4M (van Driel et al., 2020) detectors and

file formats at the LCLS as well as the AGIPD detector

(Henrich et al., 2011) at the European XFEL GmbH (Altarelli

et al., 2006), we are working on making it universally adap-

table to any X-ray detector. In particular, unsegmented

detectors, the norm at synchrotrons, will soon also be

supported. Currently, the specification of an ROI is necessary

to maintain reasonable processing speeds, but implementing

HPC support will make this requirement obsolete in the

future. Furthermore, an in-GUI peak finder to aid in on-the-fly

hit finding during training will make manual image selection

for hit finding obsolete. In summary, the applications that can

benefit from PADT extend far beyond XFEL data analysis.

Acknowledgements

This work was influenced by experiments at the European

XFEL. We acknowledge the European XFEL in Schenefeld,

Germany, for provision of XFEL beam time at the scientific

instrument SPB/SFX and thank the staff for their assistance.

Funding information

This work was supported by the National Science Foundation

by BioXFEL STC (award 1231306) and the Biodesign Center

for Applied Structural Discovery at Arizona State University.

We also acknowledge that the data presented in the test case

made use of the Linac Coherent Light Source (LCLS), SLAC

National Accelerator Laboratory, which is supported by the

US Department of Energy (DOE), Office of Science, Office of

Basic Energy Sciences under contract No. DE-AC02-

76SF00515.

References

Altarelli, M., Brinkmann, R., Chergui, M., Decking, W., Dobson, B.,
Düsterer, S., Grübel, G., Graeff, W., Graafsma, H., Hajdu, J. H.,
Marangos, J., Pflüger, J., Redlin, H., Riley, D., Robinson, I., Ross-
bach, J., Schwarz, A., Tiedtke, K., Tschentscher, T., Vartaniant, I.,
Wabnitz, H., Weise, H. W., Wichmann, R., Witte, K., Wolf, A.,
Wulff, M. & Yurkov, M. (2006). XFEL: The European X-ray Free-
Electron Laser. Technical Design Report. DESY, Hamburg,
Germany. https://bib-pubdb1.desy.de/record/349107.

Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. (2022).
Nat. Rev. Methods Primers, 2, 59.

Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T.,
Andreasson, J., Arnlund, D., Bajt, S., Barends, T., Barthelmess, M.,
Bogan, M., Bostedt, C., Bozek, J., Coffee, R., Coppola, N.,
Davidsson, J., Deponte, D., Doak, R., Ekeberg, T., Elser, V., Epp, S.,
Erk, B., Fleckenstein, H., Foucar, L., Fromme, P., Graafsma, H.,
Gumprecht, L., Hajdu, J., Hampton, C., Hartmann, R., Hartmann,
A., Hauser, G., Hirsemann, H., Holl, P., Hunter, M., Johansson, L.,
Kassemeyer, S., Kimmel, N., Kirian, R., Liang, M., Maia, F.,
Malmerberg, E., Marchesini, S., Martin, A., Nass, K., Neutze, R.,
Reich, C., Rolles, D., Rudek, B., Rudenko, A., Scott, H.,
Schlichting, I., Schulz, J., Marvin Seibert, M., Shoeman, R., Sierra,
R., Soltau, H., Spence, J., Stellato, F., Stern, S., Strüder, L., Ullrich,
J., Wang, X., Weidenspointner, G., Weierstall, U., Wunderer, C. &
Chapman, H. (2012). Nat. Photon. 6, 35–40.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

Bentley, J. L. (1975). Commun. ACM, 18, 509–517.
Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D.,

Haller, G., Hart, P., Hasi, J., Herbst, R., Herrmann, S., Kenney, C.,
Markovic, B., Nishimura, K., Osier, S., Pines, J., Reese, B., Segal, J.,
Tomada, A. & Weaver, M. (2015). J. Synchrotron Rad. 22, 577–583.

Botha, S. & Fromme, P. (2023). Structure, 31, 1306–1319.
Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A.,

Doak, R. B., Weierstall, U., DePonte, D. P., Steinbrener, J.,
Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A.,
Kassemeyer, S., Kirian, R. A., Seibert, M. M., Montanez, P. A.,
Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S. M.,

computer programs

J. Appl. Cryst. (2024). 57, 529–538 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool 537

Figure 9
A diffraction pattern with anomalous detector behaviour in the range
5.0–2.5 Å. Inset: SNR and CC* calculated from the merged intensities in
different resolution shells for the control and random-forest datasets.

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8


Philipp, H. T., Tate, M. W., Hromalik, M., Koerner, L. J., van Bakel,
N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman,
C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C.,
Katona, G., Kupitz, C., Liang, M., Martin, A. V., Nass, K., Redecke,
L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N. A., Schafer, D.,
Defever, J., Neutze, R., Fromme, P., Spence, J. C. H., Chapman, H.
N. & Schlichting, I. (2012). Science, 337, 362–364.

Breiman, L. (2001). Mach. Learn. 45, 5–32.
Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A.,

Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan,
M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B.,
Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder,
L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G.,
Schopper, F., Soltau, H., Kühnel, K., Messerschmidt, M., Bozek, J.
D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G.,
Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M.
M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S.,
Nass, K., Andritschke, R., Schröter, C., Krasniqi, F., Bott, M.,
Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T.
R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D.,
Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H.,
Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H. (2011).
Nature, 470, 73–77.

Collette, A. (2013). Python and HDF5. Sebastopol: O’Reilly.
Costa-Luis, C. O. da (2019). J. Open Source Software, 4, 1277.
Cox, D. R. (1958). J. Roy. Stat. Soc. Ser. B Stat. Methodol. 20, 215–232.
Driel, T. B. van, Nelson, S., Armenta, R., Blaj, G., Boo, S., Boutet, S.,

Doering, D., Dragone, A., Hart, P., Haller, G., Kenney, C., Kwai-
towski, M., Manger, L., McKelvey, M., Nakahara, K., Oriunno, M.,
Sato, T. & Weaver, M. (2020). J. Synchrotron Rad. 27, 608–615.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
Fix, E. & Hodges, J. L. Jr. (1989). Int. Stat. Rev. 57, 238–247.
Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems. Sebastopol: O’Reilly Media.

Gevorkov, Y., Yefanov, O., Barty, A., White, T. A., Mariani, V.,
Brehm, W., Tolstikova, A., Grigat, R.-R. & Chapman, H. N. (2019).
Acta Cryst. A75, 694–704.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning.
Cambridge: MIT Press.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C. & Oliphant, T. E. (2020). Nature, 585, 357–362.

Henrich, B., Becker, J., Dinapoli, R., Goettlicher, P., Graafsma, H.,
Hirsemann, H., Klanner, R., Krueger, H., Mazzocco, R., Mozza-
nica, A., Perrey, H., Potdevin, G., Schmitt, B., Shi, X., Srivastava, A.,
Trunk, U. & Youngman, C. (2011). Nucl. Instrum. Methods Phys.
Res. A, 633, S11–S14.

Ho, T. K. (1995). Proceedings of the Third International Conference
on Document Analysis and Recognition, Vol. 1, pp. 278–282. IEEE.

Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.
Jernigan, R. J., Logeswaran, D., Doppler, D., Nagaratnam, N., Sonker,

M., Yang, J. H., Ketawala, G., Martin-Garcia, J. M., Shelby, M. L.,
Grant, T. D., Mariani, V., Tolstikova, A., Sheikh, M. Z., Yung, M. C.,
Coleman, M. A., Zaare, S., Kaschner, E. K., Rabbani, M. T., Nazari,
R., Zacks, M. A., Hayes, B., Sierra, R. G., Hunter, M. S., Lisova, S.,
Batyuk, A., Kupitz, C., Boutet, S., Hansen, D. T., Kirian, R. A.,
Schmidt, M., Fromme, R., Frank, M., Ros, A., Chen, J. J., Botha, S.
& Fromme, P. (2023). Structure, 31, 138–151.e5

Kabsch, W. (2010). Acta Cryst. D66, 125–132.

Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030–1033.

Ke, T.-W., Brewster, A. S., Yu, S. X., Ushizima, D., Yang, C. & Sauter,
N. K. (2018). J. Synchrotron Rad. 25, 655–670.

Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S.,
Oberthür, D., Hunter, M., Liang, M., Aquila, A., Tenboer, J.,
Calvey, G., Katz, A., Chen, Y., Wiedorn, M. O., Knoska, J., Meents,
A., Majriani, V., Norwood, T., Poudyal, I., Grant, T., Miller, M. D.,
Xu, W., Tolstikova, A., Morgan, A., Metz, M., Martı́n-Garcı́a, J. M.,
Zook, J. D., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Meza, D.,
Fromme, R., Basu, S., Frank, M., White, T., Barty, A., Bajt, S.,
Yefanov, O., Chapman, H. N., Zatsepin, N., Nelson, G., Weierstall,
U., Spence, J., Schwander, P., Pollack, L., Fromme, P., Ourmazd, A.,
Phillips, G. N. & Schmidt, M. (2017). Struct. Dyn. 4, 044003.

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Nature, 521, 436–444.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J.
(2000). Nature, 406, 752–757.

Oviedo, F., Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N. T. P.,
Savitha, R., DeCost, B. L., Tian, S. I. P., Romano, G., Kusne, A. G. &
Buonassisi, T. (2018). arXiv:1811.08425[physics.data-an].

Pandas Development Team (2020). pandas-dev/pandas: Pandas,
https://doi.org/10.5281/zenodo.3509134.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). J. Mach. Learn. Res. 12, 2825–2830.

Powell, H. R., Johnson, O. & Leslie, A. G. W. (2013). Acta Cryst. D69,
1195–1203.

PyQt (2012). PyQt4 Reference Guide, https://www.riverbankcomputing.
com/static/Docs/PyQt4/.

Quinlan, J. R. (1986). Mach. Learn. 1, 81–106.

Rossum, G. van & Drake, F. L. (2011). The Python Language
Reference Manual. Network Theory Ltd.

Sierra, R. G., Batyuk, A., Sun, Z., Aquila, A., Hunter, M. S., Lane, T.
J., Liang, M., Yoon, C. H., Alonso-Mori, R., Armenta, R., Castagna,
J.-C., Hollenbeck, M., Osier, T. O., Hayes, M., Aldrich, J., Curtis, R.,
Koglin, J. E., Rendahl, T., Rodriguez, E., Carbajo, S., Guillet, S.,
Paul, R., Hart, P., Nakahara, K., Carini, G., DeMirci, H., Dao, E. H.,
Hayes, B. M., Rao, Y. P., Chollet, M., Feng, Y., Fuller, F. D., Kupitz,
C., Sato, T., Seaberg, M. H., Song, S., van Driel, T. B., Yavas, H.,
Zhu, D., Cohen, A. E., Wakatsuki, S. & Boutet, S. (2019). J.
Synchrotron Rad. 26, 346–357.

Souza, A., Oliveira, L. B., Hollatz, S., Feldman, M., Olukotun, K.,
Holton, J. M., Cohen, A. E. & Nardi, L. (2019). arXiv:1904.11834
[cs.LG].

Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain,
M., Fan, L., Nelson, G., Li, C., Wendel, D. R., White, T. A., Coe, J.
D., Wiedorn, M. O., Knoska, J., Oberthuer, D., Tuckey, R. A., Yu, P.,
Dyba, M., Tarasov, S. G., Weierstall, U., Grant, T. D., Schwieters, C.
D., Zhang, J., Ferré-D’Amaré, A. R., Fromme, P., Draper, D. E.,
Liang, M., Hunter, M. S., Boutet, S., Tan, K., Zuo, X., Ji, X., Barty,
A., Zatsepin, N. A., Chapman, H. N., Spence, J. C. H., Woodson, S.
A. & Wang, Y. X. (2016). Nature, 541, 242–246.

Sullivan, B., Archibald, R., Azadmanesh, J., Vandavasi, V. G., Langan,
P. S., Coates, L., Lynch, V. & Langan, P. (2019). J. Appl. Cryst. 52,
854–863.

Waskom, M. L. (2021). J. Open Source Software, 6, 3021.

Weierstall, U., Spence, J. C. H. & Doak, R. B. (2012). Rev. Sci.
Instrum. 83, 035108.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z., Steinbach, M.,
Hand, D. J. & Steinberg, D. (2008). Knowl. Inf. Syst. 14, 1–37.

computer programs

538 Gihan Ketawala et al. � The Pixel Anomaly Detection Tool J. Appl. Cryst. (2024). 57, 529–538

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB41
https://doi.org/10.5281/zenodo.3509134
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46

	Abstract
	1. Introduction
	2. The Pixel Anomaly Detection Tool (PADT)
	2.1. Overview
	2.2. The PADT GUI
	2.3. Additional PADT features
	2.4. PADT ML algorithms
	2.5. Model quality diagnostics

	3. Example case
	4. Conclusions
	Acknowledgements
	Funding information
	References

