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Hendrickson & Lattman [Acta Cryst. (1970), B26, 136–143] introduced a method

for representing crystallographic phase probabilities defined on the unit circle.

Their approach could model the bimodal phase probability distributions that

can result from experimental phase determination procedures. It also provided

simple and highly effective means to combine independent sources of phase

information. The present work discusses the equivalence of the Hendrickson–

Lattman distribution and the generalized von Mises distribution of order two,

which has been studied in the statistical literature. Recognizing this connection

allows the Hendrickson–Lattman distribution to be expressed in an alternative

form which is easier to interpret, as it involves the location and concentration

parameters of the component von Mises distributions. It also allows clarification

of the conditions for bimodality and access to a simplified analytical method for

evaluating the trigonometric moments of the distribution, the first of which is

required for computing the best Fourier synthesis in the presence of phase, but

not amplitude, uncertainty.

1. Introduction

To enable determination of protein structures using X-ray

crystallography, a variety of methods for experimental phase

determination were developed and refined over several

decades [see Hendrickson (2023) for a review]. All of these

methods involved the systematic perturbation of Bragg

diffraction from the crystal, by manipulating either the

chemical composition of the crystal, the physical properties of

the irradiating X-rays or both. A well understood feature of

some approaches to experimental phase determination,

including single isomorphous replacement and single wave-

length anomalous dispersion, is that a twofold geometric

ambiguity in the phase results, even in the absence of error

(Matthews, 1970; Vijayan, 1980; Dauter et al., 2002; McCoy &

Read, 2010; Hendrickson, 2014). Hence the practical appli-

cation of these phase determination procedures naturally

generates bimodal phase probability distributions. This

complexity must be captured in any mathematical function

used to represent these probabilities. In addition, resolving the

crystallographic phase problem for biological molecules

experimentally often requires the combination of phase

information from independent experiments.

The probability density function introduced by

Hendrickson & Lattman (1970) addressed these issues. It has

the form

f � j A;B;C;Dð Þ ¼ N A;B;C;Dð Þ exp
�
A cos � þ B sin �

þ C cos 2� þD sin 2�
�
: ð1Þ
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Here (A, B, C, D) are the four coefficients of the distribution,

which encode the phase information, and N is a normalization

constant. Depending on the values of the coefficients, (1) may

be either unimodal or bimodal. Most conveniently, when (1) is

used to represent phase probabilities, independent sources of

phase information can be combined through simple addition

of the coefficients (A, B, C, D) because of the exponential

form of the distribution.

Hence, (1), being both sufficiently flexible and numerically

very convenient, became widely used to represent phase

probability distributions in protein crystallography. We note

that the Hendrickson–Lattman distribution is useful for

modeling the phase probability distributions of acentric data,

where the phase can take any value in the range 0–2�. For

centric data, where there are only two phase possibilities,

always separated by �, a discrete circular probability mass

function provides the most straightforward descriptor.

Although the treatment of error in experimental phase

determination has become increasingly sophisticated and is

now generally based on the principle of maximum likelihood,

with joint consideration of uncertainty in both amplitudes and

phases (Read, 2003; Bricogne et al., 2003; McCoy & Read,

2010), the Hendrickson–Lattman distribution is still used to

represent phase probability distributions in modern crystal-

lographic software. Hence some clarification of its basic

characteristics seems worthwhile.

Hendrickson & Lattman (1970) briefly noted the simila-

rities between their probability density distribution and the

von Mises distribution, and the connection has been remarked

on subsequently (Murshudov et al., 2011). However, to the

best of our knowledge, these observations have not been

systematically developed. Fully documenting the relation

between the Hendrickson–Lattman and von Mises distribu-

tions and placing the procedures used by Hendrickson &

Lattman (1970) within the framework of circular statistics is

the purpose of this short review.

2. The von Mises distribution

The von Mises probability density function is central to

circular statistics, being the circular analog of the Gaussian

probability density function on a line, and its properties are

consequently very well documented (Batschelet, 1981; Fisher,

1993; Mardia & Jupp, 1999; Jammalamadaka & Sengupta,

2001). Like the Gaussian, the von Mises distribution is a

mirror symmetric mono-modal distribution, defined by two

parameters (Fig. 1). � is a location parameter. The function

takes on its maximum value at �, which is both the modal and

mean value of the distribution. � is a concentration parameter,

named because as � increases the distribution becomes more

concentrated around �. The von Mises probability density

function is given by

f � j �; �ð Þ ¼
1

2�I0ð�Þ
exp � cosð� � �Þ½ �; ð2aÞ

where � 2 [0, 2�), �� 0, and I0 is the modified Bessel function

of the first kind and order 0.

A simple extension of the von Mises distribution allows for

multimodality, subject to symmetry restrictions (Mardia &

Spurr, 1973; Batschelet, 1981). The multimodal von Mises

probability density function is given by

f � j �; �ð Þ ¼
1

2�I0ð�Þ
exp � cos nð� � �Þ½ �

� �
; ð2bÞ

where � 2 [0, 2�/n), � � 0 and n is a positive integer that

specifies the number of modes. The modes of this highly

symmetric distribution are separated by 2�/n, as depicted in

Fig. 2 for the monomodal (n = 1), bimodal (n = 2) and trimodal

(n = 3) cases.
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Figure 1
The von Mises distribution. (a)–(d) Four different instantiations of the von Mises probability density function represented in (left) circular form and
(right) linear form, where the functions have been unwrapped onto the line. In the circular representation, the radial distance from the unit circle at each
angle indicates the probability density (solid shaded), and the vectors internal to the unit circle display the first trigonometric moment of the probability
density distribution, calculated according to (13), which identifies its center of mass. When � = 0, the von Mises distribution reduces to the uniform
circular distribution. In this case, the center of mass of the distribution corresponds to the center of the unit circle, and the first trigonometric moment is
not fully defined.



3. The generalized von Mises distribution and its

equivalence with the Hendrickson–Lattman distribu-

tion

The ordinary von Mises distribution [equation (2a), Fig. 1] is

both unimodal and mirror symmetric, whereas its multimodal

extension [equation (2b), Fig. 2] has both mirror and rota-

tional symmetry. This limits applications. An important

generalization of the von Mises distribution (Gatto &

Jammalamadaka, 2007), which allows for both bimodality and

asymmetry, is given by

f � j �1; �2; �1; �2ð Þ ¼
1

2�G0 �1; �2; �1; �2ð Þ

�exp
�
�1 cos � � �1ð Þþ�2 cos 2 � � �2ð Þ

�
;

ð3Þ

where �1 2 [0, 2�) and �2 2 [0, �) are location parameters,

and �1 � 0 and �2 � 0 are concentration parameters. The

distribution (3) can be considered to arise from the multi-

plication of a unimodal and a bimodal von Mises distribution

(Fig. 3), and is hence termed the generalized von Mises

distribution of order 2 (the GvM2 distribution). Incorporating

multimodal von Mises distributions of higher order into the

product gives rise to an infinite series of probability distribu-

tions [see Gatto & Jammalamadaka (2007) and Gatto (2009)

for context and commentary]; however, GvM distributions

with order greater than two have found limited practical

applications. The GvM2 distribution (3) appears to have been

first proposed by Maksimov (1967) and its properties are now

well studied (Yfantis & Borgman, 1982; Gatto & Jammala-

madaka, 2007; Gatto, 2008, 2009; Salvador & Gatto, 2022a,b).

The normalizing constant G0 appearing in (3) ensures that

the distribution is a probability density function, and is

obtained by definite integration of the function over the unit

circle. This integral cannot be evaluated in closed form, but

can be written in terms of an infinite series expansion (Yfantis

& Borgman, 1982; Gatto & Jammalamadaka, 2007) as

G0 �1; �2; �1; �2ð Þ ¼
1

2�

Z2�

0

exp
�
�1 cos � � �1ð Þ

þ �2 cos 2 � � �2ð Þ
�

¼ I0 �1ð ÞI0 �2ð Þ þ 2
X1

j¼1

I2j �1ð ÞIj �2ð Þ

� cos 2j �1 � �2ð Þ; ð4Þ

where In are the modified Bessel functions of the first kind and

integer order n. The derivation of this result relies on the

Jacobi–Anger expansion (Olver et al., 2010):

expðz cos �Þ ¼ I0ðzÞ þ 2
X1

n¼1

InðzÞ cosðn�Þ: ð5Þ

As the modified Bessel functions decrease rapidly to zero with

increasing order (Oldham et al., 2009), accurate evaluation of

the normalizing constant G0 using (4) can be achieved with

only the first few summands of the infinite series.
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Figure 2
Multimodal von Mises distribution. A single instantiation of the (a) monomodal (n = 1), (b) bimodal (n = 2) and (c) trimodal (n = 3) von Mises
probability density functions are represented in (left) circular form and (right) linear form, as in Fig. 1. When n = 1, the ordinary von Mises distribution
results (see Fig. 1).



The GvM2 distribution (3) can be symmetric or asymmetric,

unimodal or bimodal, depending on its parameters (�1, �2, �1,

�2) [see the literature (Yfantis & Borgman, 1982; Gatto &

Jammalamadaka, 2007; Kato & Jones, 2010; Salvador & Gatto,

2022a) for demonstration and discussion]. If �1 = 0, the GvM2

distribution [equation (3)] reduces to a bimodal von Mises

distribution [equation (2b) with n = 2], whereas if �2 = 0, it

reduces to a monomodal von Mises distribution [equation

(2a); equation 2(b) with n = 1]. If �1 = 0 and �2 = 0, the GvM2

distribution reduces to the uniform circular distribution

(Yfantis & Borgman, 1982). The general conditions for

bimodality of the GvM2 distribution are elaborated below.

As written, the connections between the GvM2 (3) and the

Hendrickson–Lattman distribution (1) are not immediately

seen. However the GvM2 distribution can be reparameterized

(Gatto & Jammalamadaka, 2007) as follows.

If

�1 ¼ �1 cos�1;

�2 ¼ �1 sin�1;

�3 ¼ �2 cos 2�2;

�4 ¼ �2 sin 2�2;

ð6Þ

then the GvM2 probability density function can be

expressed as

f � j �1; �2; �3; �4ð Þ ¼ exp
�
�1 cos � þ �2 sin � þ �3 cos 2�

þ �4 sin 2� � K �1; �2; �3; �4ð Þ
�
; ð7Þ

where the constant K(�1, �2, �3, �4) is an appropriate trans-

formation of the normalizing factor appearing in the

denominator of (3),

K �1; �2; �3; �4ð Þ ¼ lnð2�Þ þ ln G0 �1; �2; �1; �2ð Þ
� �

: ð8Þ

Practically, the normalizing constant K(�1, �2, �3, �4) [equa-

tion (8)] can be evaluated using (4). Equations (6) have the

form of a polar-to-Cartesian coordinate transformation.

Parameters (�1, �2, �1, �2) can therefore be recovered from

parameters (�1, �2, �3, �4) using

tan �1ð Þ ¼
�2

�1

� �

;

tan 2�2ð Þ ¼
�4

�3

� �

;

�1 ¼ �2
1 þ �

2
2

� �1=2
;

�2 ¼ �2
3 þ �

2
4

� �1=2
:

ð9Þ

The reparameterized version of the GvM2 distribution (7) is

clearly equivalent to the Hendrickson–Lattman probability

distribution (1), with A = �1, B = �2, C = �3, D = �4 and

N = exp(� K) = 1/(2�G0). The equivalence has been noted

previously (Murshudov et al., 2011). The GvM2/Hendrickson–
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Figure 3
Construction of the generalized von Mises distribution of order 2, from the monomodal and bimodal von Mises distributions. (a) Instantiation of the
monomodal von Mises distribution with the parameters (�1, �1) as indicated. (b) Instantiation of the bimodal von Mises distribution with the parameters
(�2, �2) as indicated. (c) Generalized von Mises distribution with the parameters (�1, �2, �1, �2). This is the product of the unimodal and bimodal
distributions shown in (a) and (b), normalized by the constant [I0(�1)I0(�2)]/G0(�1, �2, �1, �2). The distributions are represented in (left) circular form
and (right) linear form as in Fig. 1.



Lattman distributions belong to the exponential family of

probability distributions, with (7) being the canonical repre-

sentation of that family. The relationships between the two

parameterizations of the Hendrickson–Lattman/GvM2 distri-

bution are illustrated in Fig. 4. Some aspects of the distribution

are easier to recognize when it is written in the order factor-

ized form (3) rather than the expanded form of (1) or (7). For

example, when �1 approaches �2, the GvM2 probability

density function (3) approaches mirror symmetric, and is

either unimodal or bimodal with peaks at antipodal positions

[Fig. 4(a)] (Gatto & Jammalamadaka, 2007; Salvador & Gatto,

2022b). When both concentration parameters (�1, �2) become

small, the distribution approaches uniform circular.

The order factorized form of the GvM2 distribution (3) also

allows analysis of the conditions for bimodality of the distri-

bution, which are of particular interest in crystallography.

These conditions are most readily expressed in terms of two

derived quantities: the scaled ratio of the two concentration

parameters, � = �1/4�2; and the difference between the loca-

tion parameters, �= �1 � �2 mod(�). When �� 1/2, the GvM2

distribution is always bimodal [see e.g. Figs. 3(c) and 4(a)].

When � � 1, the GvM2 distribution is always unimodal [see

e.g. Fig. 4(b)]. When 1/2 < � < 1, the GvM2 distribution may be

either unimodal or bimodal ,dependent on the value of � [see

e.g. Figs. 4(c) and 4(d)], the detail being somewhat complex as

it involves the roots of a quartic equation. Full details are

given by Salvador & Gatto (2022a).

Hendrickson & Lattman (1970) actually used a functionally

equivalent reparameterization of the probability distribution

in their paper. To facilitate analytical integration of the

distribution, and calculation of its normalizing constant N,

they perform a change of variables, almost identical to (9),

which effectively switches from the expanded form of the

distribution (1) or (7) to the order factorized form (3).

Allowing for the variations in definitions and notation, the

result obtained for the normalization constant [equation (21a)

of Hendrickson & Lattman (1970)] is the same as (4), up to a

factor of 2�. Other integrations were performed that enable

calculation of the best Fourier synthesis. Before considering

these results, we first reframe the crystallographic problem

being treated using the terminology of directional statistics.

4. The first trigonometric moment of a circular

probability distribution and the best Fourier synthesis

As with probability distributions defined on the line, prob-

ability distributions defined on the circle can be characterized

by a series of moments, which are obtained by integration of

products of the distribution. However, these moments must be

defined differently because of the circular periodicity. The

trigonometric moments used to characterize circular distri-

butions are named for the trigonometric functions that appear

inside the integral. Unlike the regular moments, the trigono-

metric moments are complex-valued quantities. Though

trigonometric moments of arbitrary order can be defined, we

consider here only the first trigonometric moment which is

defined as (Fisher, 1993; Mardia & Jupp, 1999; Jammalama-

daka & Sengupta, 2001)

m1 ¼

Z2�

0

cosð�Þf ð�Þ d� þ i

Z2�

0

sinð�Þf ð�Þ d�

¼ a1 þ ib1 ¼ �1 exp i�1ð Þ; ð10Þ

where f(�) is the probability density function.
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Figure 4
Equivalent parameterizations of the generalized von Mises distribution of order 2. (a)–(d) Four different instantiations of the GvM2 distribution
represented in (left) circular and (right) linear form, as in Fig. 1. Each distribution can be specified using either the expanded expression (1) and the
parameters (A, B, C, D) or the order factorized expression (3) and the parameters (�1, �2, �1, �2). The parameters are given in the table at the bottom of
the figure. The derived parameters � = �1/4�2 and � = �1 � �2 mod(�) are useful for diagnosing the bimodality of the distribution (Salvador & Gatto,
2022a). The vectors internal to the unit circle display the first trigonometric moment of each GvM2 distribution, calculated according to (18).



The quantities

a1 ¼

Z2�

0

cosð�Þf ð�Þ d�;

b1 ¼

Z2�

0

sinð�Þf ð�Þ d�

ð11Þ

are the components of the first trigonometric moment

expressed in Cartesian form.

The quantities

�1 ¼ a2
1 þ b2

1

� �1=2
;

�1 ¼ atan2 b1; a1ð Þ
ð12Þ

are the components of the first trigonometric moment

expressed in polar form.

In the field of circular statistics, the modulus (�1) of the first

trigonometric moment is termed the mean length (sometimes

the mean resultant length), while the argument (�1) is termed

the mean direction. For the ordinary von Mises distribution

(2a), the mean length and mean direction are given by (Fisher,

1993; Mardia & Jupp, 1999; Jammalamadaka & Sengupta,

2001)

�1 ¼
I1½��

I0½��
;

�1 ¼ �:

ð13Þ

The first trigonometric moments for particular instantiations

of the ordinary von Mises distribution are displayed in Fig. 1.

The first trigonometric moment identifies the center of mass of

a circular probability density function. The mean length, which

can vary between 0 and 1, provides a useful measure of the

dispersion of a unimodal distribution, such as the von Mises,

though the interpretation is less straightforward for a poten-

tially multimodal distribution such as the generalized von

Mises.

Irrespective of the form of a circular probability distribu-

tion, the first trigonometric moment is of particular impor-

tance in crystallography. This is because, ignoring errors in the

Fourier amplitudes, and given probability density functions for

the phases, the best Fourier synthesis (in a least-squares sense)

is obtained using the product of the first trigonometric

moment and the measured Fourier amplitudes as coefficients.

Therefore, the required coefficients are

FbestðhklÞ ¼ FðhklÞ
�
�

�
�m1ðhklÞ ¼ FðhklÞ

�
�

�
��1ðhklÞ exp i�1ðhklÞ

� �
;

ð14Þ

where Fbest(hkl) represents the complex Fourier coefficients

and |F(hkl)| represents the measured Fourier amplitudes.

Hence the best Fourier synthesis is computed using the mean

direction as the phase, while weighting the Fourier amplitudes

by the mean length. This is the essential result given in the

foundational paper by Blow & Crick (1959) [see the literature

(Matthews, 1970; Vijayan, 1980; McCoy & Read, 2010) for

discussion]. In crystallographic applications, the mean length

has historically been termed the ‘figure of merit’, and the

mean direction the ‘best’ or ‘centroid’ phase (Matthews, 1970;

Vijayan, 1980).

5. The first trigonometric moment of the GvM2

distribution

We now consider the analytical evaluation of the first trigo-

nometric moment of the GvM2 distribution, which involves

the integrals in (11). For the GvM2 distribution, no closed

form solution for these integrals exists. However, as for the

normalizing constant of the distribution [equation (4)], solu-

tions can again be obtained that involve rapidly converging

series expansions. For clarity, we restate the results obtained

by Hendrickson & Lattman (1970), using the standard nota-

tion for the GvM2 distribution (3). The procedure described

by Hendrickson & Lattman (1970), when applied to evaluate

the integrals

G0 �1; �2; �1; �2ð Þa1 ¼
1

2�

Z2�

0

cosð�Þ exp
�
�1 cos � � �1ð Þ

þ �2 cos 2 � � �2ð Þ
�

d�;

G0 �1; �2; �1; �2ð Þb1 ¼
1

2�

Z2�

0

sinð�Þ exp
�
�1 cos � � �1ð Þ

þ �2 cos 2 � � �2ð Þ
�

d�;

ð15Þ

yields

G0 �1; �2; �1; �2ð Þa1 ¼ I0 �2ð ÞI1 �1ð Þ cos �1ð Þ þ
X1

n¼1

In �2ð Þ

�
�

I2n� 1 �1ð Þ cos �1 � 2n �1 � �2ð Þ
� �

þ I2nþ1 �1ð Þ cos �1 þ 2n �1 � �2ð Þ
� ��

;

G0 �1; �2; �1; �2ð Þb1 ¼ I0 �2ð ÞI1 �1ð Þ sin �1ð Þ þ
X1

n¼1

In �2ð Þ

�
�

I2n� 1 �1ð Þ sin �1 � 2n �1 � �2ð Þ
� �

þ I2nþ1 �1ð Þ sin �1 þ 2n �1 � �2ð Þ
� ��

:

ð16Þ

The proof again rests on the repeated use of the Jacobi–Anger

expansion (5) and standard trigonometric identities. By

making substitutions that reflect the variant re-parameteriza-

tion of the probability density function used by Hendrickson

& Lattman (1970),

�1 ¼ S;

�2 ¼ T;

�1 ¼ � �;

�2 ¼ �
1

2�
;

ð17Þ

then expressions (16) are seen to be equivalent to the equa-

tions appearing at the bottom of page 141 of the article by
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Hendrickson & Lattman (1970), up to a factor of 2� (noting

the presence of a typographical error resulting in an erroneous

change of sign when specifying the Bessel functions). The

result (16) can also be obtained from the expressions for the

trigonometric moments of arbitrary order, reported by Yfantis

& Borgman (1982), who used an identical method of deriva-

tion.

Without loss of generality, we now consider the case where

�1 = 0. For any GvM2 distribution this can be achieved by an

angular coordinate transformation. When setting �1 = 0,

expressions (16) for the components of the first trigonometric

moment simplify to

G0 �1; �2; �1; �2ð Þa1 ¼ I0 �2ð ÞI1 �1ð Þ þ
X1

n¼1

cos 2n�ð ÞIn �2ð Þ

�
�

I2nþ1 �1ð Þ þ I2n� 1 �1ð Þ
�
;

G0 �1; �2; �1; �2ð Þb1 ¼
X1

n¼1

sin 2n�ð ÞIn �2ð Þ

�
�

I2nþ1 �1ð Þ � I2n� 1 �1ð Þ
�
;

ð18Þ

where � = �1 � �2 is the difference between the location

parameters of the distribution. This is a computationally more

convenient way to analytically evaluate the integrals, and is

also the result given by Gatto (2009), made specific for the first

trigonometric moment.

The first trigonometric moments for particular instantia-

tions of the GvM2 distribution, evaluated using (18), are

displayed in Fig. 4.

6. Conclusions

Directional data are ubiquitous in the physical and biological

sciences, so it is probably unsurprising that the circular

probability distribution developed by Hendrickson & Lattman

(1970) was independently discovered and characterized by

others. The exponential form of the Hendrickson–Lattman

probability distribution confers many desirable properties.

However, the Hendrickson–Lattman coefficients A, B, C and

D lack straightforward meaning. Recognizing the equivalence

of the Hendrickson–Lattman and GvM2 distributions allows

reparameterization of the distribution to a more intuitive form

that reflects the relationship with the von Mises distribution. It

also allows a fuller appreciation of the general mathematical

and statistical properties of the distribution, including the

conditions for bimodality, and access to analytical procedures

for computing all its trigonometric moments. There may be

applications in crystallography where the inferential proper-

ties of the Hendrickson–Lattman/GvM2 distribution become

important (i.e. when the parameters of the distribution need to

be inferred, on the basis of computational procedures that

effectively sample phase probabilities), and these have been

studied in the statistical literature.
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