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In cellulo crystallization is a rare event in nature. Recent advances that have

made use of heterologous overexpression can promote the intracellular

formation of protein crystals, but new tools are required to detect and char-

acterize these targets in the complex cell environment. The present work makes

use of Mask R-CNN, a convolutional neural network (CNN)-based instance

segmentation method, for the identification of either single or multi-shaped

crystals growing in living insect cells, using conventional bright field images. The

algorithm can be rapidly adapted to recognize different targets, with the aim of

extracting relevant information to support a semi-automated screening pipeline,

in order to aid the development of the intracellular protein crystallization

approach.

1. Introduction

Crystallization of proteins in living cells is an emerging field

complementing conventional methods of protein crystal-

lization. However, some bottlenecks still limit its broad

application. To date, around 80 targets have been found to

crystallize in different cells (Tsukimoto et al., 2022; Li & Cui,

2020; Nass et al., 2020; Mudogo et al., 2020; Schönherr et al.,

2018; Duszenko et al., 2015; Koopmann et al., 2012). A number

of them were successfully used as targets for protein structure

elucidation (Redecke et al., 2013; Gati et al., 2014; Sawaya et

al., 2014; Baskaran et al., 2015; Tsutsui et al., 2015; Nass et al.,

2020; Lahey-Rudolph et al., 2021). Intracellular protein crys-

tallization can occur naturally, providing distinct advantages

for the cell (Schönherr et al., 2018), or as a consequence of

heterologous gene expression in host cells. Crystallization

efficiencies, i.e. the percentage of cells containing at least one

crystal within the entire cell culture, between more than 80%

and less than 1% are observed, and the intracellular crystal

size may vary between the sub-micrometre range and several

hundred micrometres. Although a correlation with the target

protein and the cell type used for gene expression has been

shown (Schönherr et al., 2015, 2018; Lahey-Rudolph et al.,

2020), the molecular basis remains to be investigated in detail.

Targeting the crystals to different cell compartments or

modifying the cells or the growth conditions may lead to

optimized crystallization efficiency and/or larger crystals

(Lahey-Rudolph et al., 2020; Mudogo et al., 2020), but iden-

tification of small crystals within a few cells of a large popu-

lation may be required. Even if the resolution of light

microscopy allows crystal identification, this can be a time-

consuming and laborious task. Thus, methods are required for
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the automatic characterization, screening and identification of

intracellular crystals. Deep-learning-based approaches can aid

in this search.

Image segmentation is a method for partitioning an image

into multiple disjoint regions via pixel-level classification. This

is beneficial to locate objects and object boundaries. The

technique is used in object detection and tracking (Maninis et

al., 2018), with downstream applications like action recogni-

tion (Khan et al., 2021), autonomous driving (Kosecka et al.,

1998) or scene understanding (Aarthi & Chitrakala, 2017).

Image segmentation is increasingly used in medical image

analysis as well, such as the macro- and microscopic study of

blood vessels (Ronneberger et al., 2015), tumor boundary

detection (Havaei et al., 2017) or neuronal structures (Beier et

al., 2017). Different approaches have been proposed for image

segmentation (Sharma et al., 2022), based on deep-neural

networks (He et al., 2017; Chen et al., 2018), which produce

high-quality results relying on enormous amounts of training

data. By utilizing the transfer learning approaches (Pan &

Yang, 2010), it is possible to adapt a heavily, specifically

trained model (for solving one problem) to solve a different

(but related) problem. This is addressed by training the

heavily trained model on a small amount of data on this

related problem.

In this work, we utilized the Mask R-CNN model (He et al.,

2017), an extension of Faster R-CNN (Ren et al., 2017), adding

object mask prediction. Faster R-CNN is a deep convolutional

neural network (CNN) for object detection which provides an

objectness score for each predicted object. The Mask R-CNN

model generates (1) the bounding box around the object

instances, (2) the objectness score and (3) the segmentation of

the object instance inside the bounding box. The bounding

boxes are produced via the region proposal network. The

positions are given to the mask generation network to produce

pixel-wise segmentation of the objects (Fig. 1).

Using bright field microscopy images from a crystal

containing insect cells, we examined the performance of the

Mask R-CNN algorithm, trained on different crystals, to

identify different crystal shapes in the cellular environment, as

a tool to extract information and aid in the development of

protocols for the in cellulo crystallography field.

Two different types of in cellulo crystals have been used to

establish the CNN-based instance segmentation method for

protein crystal detection in living cells. The first target, HEX-1

from the fungus Neurospora crassa, referred to here as ‘target

H’, is a naturally self-assembling protein and main constituent

of Woronin bodies in ascomycetes (Tenney et al., 2000). We

recently reported that spontaneous self-assembly of HEX-1

into intracellular crystals is not restricted to the native envir-

onment of fungal cells (Lahey-Rudolph et al., 2020). On

infection with a recombinant baculovirus encoding the HEX-1

gene, living insect cells also form micrometre-sized crystals

with a hexagonal cross section that enabled structure eluci-

dation using the fixed-target serial femtosecond crystal-

lography approach (FT-SFX) at an X-ray free-electron laser

(Lahey-Rudolph et al., 2021).

The second target, guanosine 50-monophosphate reductase

(GMPR) from the parasite Trypanosoma brucei, referred

to here as ‘target G’, catalyzes the NADPH-dependent

reductive deamination of guanosine 50-monophosphate to

inosine 50-monophosphate, a crucial step in the nucleotide

metabolism of the parasite (Hedstrom, 2012). GMPR has been

structurally characterized by conventional X-ray crystal-

lography (Imamura et al., 2020), but intracellular crystal-

lization has not been reported so far. However, this enzyme

shows high structural homology to inosine 50-monophosphate
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Figure 1
Schematic of the pipeline for training the pre-trained Mask R-CNN model (He et al., 2017) on our target G. Mask R-CNN adds a branch for object mask
prediction, in parallel to bounding box recognition. The model generates bounding boxes, provides the objectness score for detection and accurately
segments the intracellular crystals, requiring only a few annotated images as the training dataset.



dehydrogenase (IMPDH) from T. brucei, the structure of

which was recently elucidated by SFX using in cellulo crystals

(Nass et al., 2020). Since both enzymes are part of the de novo

purine biosynthesis cycle required for nucleotide production

in parasitic protozoa, which differs significantly from that of

mammals, these enzymes are considered suitable antiparasitic

drug targets (Bessho et al., 2016).

2. Material and methods

2.1. Cloning and recombinant baculovirus production

The gene coding for GMPR from T. brucei (GenBank

Acc. No. XM839789.1) and the Woronin body major protein

(HEX-1, GenBank Acc. No. XM_958614) from N. crassa were

amplified by PCR using primers 50-CTAGGGTACCTCCTT-

CAATGAATCGGCATCC-30 (sense) and 50-CTAGGCTAG-

CAAGTTTGGCAACACCGTGAC-30 (antisense), and 50-

CTAGGGTACCGGCTACTACGACGACGACG-30 (sense)

and 50-CTAGGC TAGCGAGGCGGGAACCGTGG-30 (anti-

sense), respectively. The amplicons were cloned into

pFastBac1 vector (Thermo Scientific) using KpnI and NheI

restriction sites. The standard procedure for the recombinant

baculovirus (rBV) generation has been described previously

(Lahey-Rudolph et al., 2020). In brief, recombinant bacmid

DNA was generated by the transformation of Escherichia coli

DH10EmBacY cells (Geneva Biotech), containing a YFP

expressing bacmid, with the above-mentioned donor vectors

containing the respective (H or G) target. After recombina-

tion, the resulting bicistronic bacmid, encoding both YFP and

target proteins, was then purified with the ZR Bac DNA

Miniprep kit (Zymo Research) and used for lipofection of

Spodoptera frugiperda Sf9 insect cells with Escort IV reagent

(Sigma–Aldrich) according to the manufacturer’s instructions.

Virus generation and assembly is then produced inside Sf9

cells. The virus titer of the third-passage (P3) stock was

calculated using the TCID50 (tissue-culture infectious dose;

Reed & Muench, 1938) in a serial dilution assay as described

previously (Lahey-Rudolph et al., 2020).

2.2. Cell culture, protein production and intracellular

crystallization

Insect Trichoplusia ni High Five cells (Thermo Scientific)

were grown at 27�C and 100 r min� 1 agitation in ESF921

insect cell-culture medium (Expression Systems), keeping the

cell density between 0.4 and 2.5 � 106 cells ml� 1. For intra-

cellular crystallization of the target proteins, exponentially

growing (1 � 106 cells ml� 1) High Five cells were plated in

2 ml of medium per six-well cell-culture plate and subse-

quently infected with the respective recombinant P3 baculo-

virus stock with a multiplicity of infection (MOI) of 0.1. In the

late phase of viral infection, High Five cells co-expressed

cytosolic YFP in addition to the respective target proteins

which were incorporated into crystals. Concretely, after incu-

bation at 27�C for 44–72 h (GMPR) or 72–96 h (HEX-1), the

cell cultures were imaged and in cellulo crystal formation was

verified by light microscopy. For experiments requiring both

target crystals to coexist in the same image, cell cultures were

co-infected with both viral stocks preserving an MOI of the

mixture of 0.1, and images were taken after 72 h post-infec-

tion.

2.3. Image acquisition parameters

Bright field images (2136 � 2136 px) were captured on a

Nikon Qi-2 camera coupled onto a Nikon Ti2-E microscope

mounting a Nikon S Plan Fluor ELWD 40� Ph2 ADM (NA =

0.6) objective. The whole process was highly automated,

through random multipoint acquisition coupled to auto-

focusing (employing the Nikon Perfect Focus System) using

the NIS Elements AR (version 5.41.01) software. Images

(corresponding to a 300� 300 mm field of view) were exported

as 8 bit-RGB TIFF format.

Optical sectioning of the targets was performed using laser

scanning confocal microscopy. Briefly, Z sections of G-target-

or H-target-containing cells (Figs. 2 and 3) were taken using a

Nikon AX-R confocal microscope, mounting a PlanApo �

100X oil immersion objective (NA = 1.45), using a pinhole size

of 15.9 mm, a 488 laser for excitation and a YFP emission gate

(518–551 nm) to detect the co-expressed cytosolic YFP.

Through this approach, crystals, which do not contain YFP,

appear dark against the fluorescent cell interior. Similar

optical Z sections of 2.1 and 2.4 mm thickness were obtained

for target G and H, respectively. Images were converted to

grayscale TIFF.

2.4. Algorithm training and testing

2.4.1. Implementation. The training and test stages were

computed with the SLURM (Yoo, Jette & Grondona, 2003)

resource management tool on the Maxwell cluster (available

at the Deutsches Elektronen-Synchrotron DESY, Hamburg,

Germany), incorporating 10 nodes. We used the Matterport

Mask R-CNN implementation of Mask R-CNN (https://

github.com/matterport/Mask_RCNN). The model was

trained on a backbone of ResNet50. We resized and converted

the main images to PNG format and 512 � 512 pixel resolu-

tion, using the Python Imaging Library (PIL), to reduce the

computational complexity of the overall process. Crystals were

manually annotated using freeware Labelme (Russell et al.,

2008) to produce the ground-truth segmentations to train the

Mask R-CNN model.

The annotated images were used for training our models,

already pre-trained on the COCO dataset (Lin et al., 2015).

Each of the annotated images consisted of a 300 � 300 mm

field of view, with all crystals/cells therein being annotated. In

parallel, we trained the Mask R-CNN model with the data-

science-bowl dataset (Caicedo et al., 2019) to detect cell nuclei

(Fig. 4). We used the warm-starting strategy to train the Mask

R-CNN model on our limited data. The processing details and

scripts are available on the shared GitHub page (https://

github.com/Amirhk-dev/Convolutional-Neural-Network-

Approach-for-the-Automated-Identification-of-in-Cellulo-

Crystals). Original and processed images, including annota-

tions, trained models and prediction results, are publicly
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available for download at Zenodo (https://doi.org/10.5281/

zenodo.10475961).

2.4.2. Models trained on single targets. To segment the

crystals of target G and H, separate models are trained with 50

images each (resulting in G50 or H50 trained models, see Table

1 and Fig. 4). We focused on the respective crystal target for 40

epochs with a batch size of one, with a learning rate (LR) of

1� 10� 3 and via the binary cross entropy (BCE) loss function.

We chose those parameters by looking at the stabilization of

the loss function.

We alternatively trained the pre-trained Mask R-CNN

model on 10 and 30 images of each of the targets to study the

effect of training on a very small amount of training data (G10,

G30, H10 and H30 trained models, see Table 1), using the same

training strategy already described.

To increase the robustness of the model, image augmenta-

tion was included, such as random horizontal and vertical flip

and cropping of the images.

2.4.3. Incremental learning on targets G and H. To show the

generalizability of the trained models on different targets we

utilized the incremental learning approach (Geng & Smith-

Miles, 2009). The model trained on 50 images of one target

(referred to here as ‘primary’ training, see Table 1) was trained

further on a target of a different type (referred to here as

secondary training) using 10, 30 or 50 additional images. In

this ‘secondary’ training approach, the trained models were

tuned with 10 epochs and a learning rate of 1 � 10� 3, as a

standard strategy. To study the effect of learning rate on this

secondary training, the smaller value of 1 � 10� 4 was also

investigated.

2.4.4. Single training on combined images of targets G and

H. As an alternative to the incremental learning approach, we

followed a combined learning strategy (G50 + H50), where 100

images (50 from each of the targets) were combined into a

single (primary) training set. These images were the same as

previously used for the two-stage incremental learning

approach (G50 > H50). We used the same standard training

approach parameters (40 epochs and an LR of 1 � 10� 3) used

for the single-target training.

2.4.5. Evaluation. For each scenario, the performance of the

trained models was evaluated on test sets of the two targets, G

and H, each containing 150 fully annotated images. We

calculated the performance on the basis of three indicators: F-

measure, Jaccard index and � object. The F-measure (F) is a

harmonic mean of the precision (P) and recall (R), as

computed below:

F ¼ 2
PR

Pþ R

� �

;

where P and R are calculated as

P ¼
tp

tpþ fp

and

R ¼
tp

tpþ fn
;

tp, fp and fn being the numbers of true positive, false positive

or false negative pixels when comparing the segmentation

result with respect to ground-truth segmentation, respectively.

The Jaccard index (J), on the other hand, is a similarity

measure defined as the size of the intersection divided by the

size of the union of the sample sets, and it is computed as

follows:

J ¼
A \ B

A [ B

where A is the segmentation result and B is the ground-truth

segmentation.

On the other hand, the � object (�O) indicates the average

absolute difference between the number of objects (crystals)

available on the ground-truth image and the number of

segmented objects predicted by the trained model (Bideau et

al., 2018):

�O ¼
ground truth objects � predicted objects
�
�

�
�

n
;

n being the total number of images of the dataset.

Note that the F-measure and Jaccard index use ‘pixel-wise’

comparison, whereas �O uses ‘object-wise’ comparison.

Although the value of �O, by being an absolute difference

value, is equally affected by both ‘under’ (false negative) and

‘over’ (false positive) object segmentation, it shows lower

accuracy when both phenomena are combined on the same

image (since false positives and false negatives will cancel

out). For that reason, the first two indicators are more robust

when trying to observe small effects between algorithms

showing moderate performances (e.g. incremental learning).

However, we believe �O is still a valuable indicator for the

screening of very rare crystals, since its ‘binary’ behavior can

sense partial segmentation to a higher extent than the other

two indicators.

Furthermore, �O (normally used on motion segmentation)

can be biased by differences in the total number of objects on

the ground-truth segmentation (in our case, differences in cell

density or crystallization efficiency between images, or

between targets). To avoid this, we propose a new indicator

that we called ‘normalized � object (�ON)’, calculated as

follows:

�ON ¼
�O

N
;

where N is the total number of objects from the ground-truth

segmentation. This modified indicator shows increased

robustness when comparing different experiments.

For all three (F, J and �ON) indexes, the range of the

values is between 0 and 1 (shown here as percentages). For the

first two, higher values indicate a better algorithm perfor-

mance, whereas for �ON, the lower the better. All indicators

are represented as average values (over all images).
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3. Results and discussion

GMPR crystals started to grow after 44 h post-infection (p.i.),

having a similar rectangular shape as observed for its close

structural homolog IMPDH (Nass et al., 2020), as well as a

comparable crystallization efficiency. At day 5 p.i., 95% of the

cells in the culture contained a single crystal, protruding from

the cellular body, with its longer axis (which can reach up to

140 mm) orthogonal to the light path. The vast majority of the

crystals tend to be placed at the bottom of the cells, as

observed with confocal optical sectioning (Fig. 2).

HEX-1 crystals have been observed in the baculovirus-

infected cells at day 4 p.i., exhibiting the reported hexagonal

cross section and the expected crystallization efficiency

(>85%), without protruding from the cell body (Lahey-

Rudolph et al., 2021). As well as the smaller size, HEX-1

crystals show a significant degree of clustering and grow in

diverse orientations (Fig. 3), adding a level of complexity to

crystal analysis compared with GMPR, for both manual

annotation and automatic segmentation.

The first factor to analyze is the impact of the number of

images used to train the Mask R-CNN algorithm, for each

respective target (Table 1, rows 1–3 and 10–12; Figs. S1–S3).

The results show that just 10 images were sufficient to train the

algorithm to recognize each of the targets (Table 1, rows 1 and

10; Figs. S1–S3). We did not observe a very significant

improvement of these indicator values with the addition of

more images (up to 50), despite the general tendency towards

a slight performance improvement. Hence, we chose 50 images

as the best compromise, selecting this as a base for the

following training strategies. Regarding cell recognition, the
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Figure 2
Fluorescence confocal optical sectioning of G-target-containing cells.
Fluorescence signal is produced by the co-expressed cytosolic YFP,
whereas target G crystals are identified by the absence of signal. A Z
value of 0 corresponds to the bottom of the cell. The optical sectioning
(using 2.1 mm steps) confirms the horizontal position of the crystals at the
cell base. All values correspond to micrometre units.

Figure 3
Fluorescence confocal optical sectioning of H-target-containing cells.
Fluorescence signal is produced by the co-expressed cytosolic YFP,
whereas target H crystals are identified by the absence of signal. A Z
value of 0 corresponds to the bottom of the cell. The optical sectioning
(2.4 mm steps) confirms the relatively random orientation and position of
the crystals throughout the cell body, as well as the presence of clustered,
multi-shaped crystals. All values correspond to micrometre units.



model trained with the science-bowl dataset is able to

correctly recognize the cell bodies (Fig. 4) on the basis of

previous training approaches (Mela & Liu, 2021). Our results

indicate that learning approaches are useful for recognizing in

cellulo crystals, using a limited number of epochs and anno-

tated images.

We next investigated the ability of the trained algorithm to

recognize crystal targets of a different nature than that of

those used for generating the training set. For that purpose,

the previously trained algorithms (on H or G targets) were

used to recognize the other (G or H, respectively) target

crystals. Despite the trained algorithms being able to recog-

nize some of the ‘new’ target features, the quality of the

predictions was lower in both cases, as expected (Table 1, rows

1–3 and 10–12; Figs. 4 and S1–S3).

In light of these results, we tried to follow the incremental

learning approach, based on the continuation of the previous

training (that was ‘off target’) by adding (10, 30 or 50) anno-

tated images from the target to be tested. In this approach, we

set two different learning rates (1� 10� 3 and 1� 10� 4) to test

the influence of this parameter on the outcome.

The results (Table 1, rows 4–5 and 13–14; Fig. 5; Figs. S4–S6)

indicate that the addition of these few images (of the target to

be tested) to the training process (referred to here as

‘secondary’ training) improved the recognition of this

‘secondary’ target significantly, and for both targets (e.g. G50

versus G50 > H10 performance on target H, or H50 versus H50 >

G10 performance on target G). A progressive increase of the

images used for this ‘secondary’ training did not result in a

clear change in performance, suggesting that 10 images are

sufficient to generate the observed changes (Table 1, rows 4–9

and 13–18).

However, when looking at the performance of the resulting

algorithms on their ‘primary’ targets (e.g. G50 versus G50 > H10

performance on target G, or H50 versus H50 > G10 perfor-

mance on target H), the effect of this ‘secondary’ training

substantially differs. Thus, in the case of the algorithm

‘primarily’ trained on target H (H50, smaller, more complex

crystals), the ‘secondary’ training (H50 > G10, providing ‘ver-

satility’ towards target G) comes across with a negative impact

on the recognition of its ‘primary’ target (e.g. F-measure of

82.51 versus 63.88, respectively), a consistent behavior

observed, to a significant extent, for both performance indi-

cators (Table 1; Figs. S4–S6). These findings suggest that, in

some cases, widening the scope of targets to be recognized is at

the expense of sacrificing specific performance. On the other

hand, this behavior is not observed when G (G50, larger, less

complex crystals) was the target used for the primary training,

suggesting that, in our particular setup, the incremental

learning approach is optimal when the primary training is

done with simpler cases (e.g. larger and less complex targets),

but not the other way around. Furthermore, our results

showed a differential effect on the incremental learning

approach depending on the training strategy used, which

needs to be considered when designing the pipeline for new

experiments.

In that sense, we also observed that, when this negative

impact (of the secondary training in the recognition of the

primary target) occurred, it was more evident when higher

(1 � 10� 3) learning rates for the ‘secondary’ training were
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Figure 4
Primary training of the algorithm on 50 images of target G (G50, panels C and G) or target H (H50, panels D and H), and the evaluation of each of the
targets G (left, A–D) or H (right, E–H). Additional training of the algorithm was performed using the data-science-bowl dataset (Caicedo et al., 2019) for
the segmentation of the cell bodies (panels B and F). The results indicate that specific training on the target crystal is required for optimum performance.
Performance indicator values are shown in Table 1.



used (e.g. for H50 versus H50 > G10, F-measure of 82.51 versus

63.88 for target H), with half of the negative impact observed

using lower (1 � 10� 4) learning rates (F-measure of 82.51

versus 73.49) for the same training sets. One possible expla-

nation is that lower (1 � 10� 4) learning rates (one order of

magnitude below those used on the primary training) could

have been too low for the secondary training, and therefore

showed up in the form of a reduced effect. Interestingly, we

found a positive correlation between the intensity of this

negative impact (on the primary target segmentation) and the

benefits observed on the recognition of the ‘secondary’ target,

which were, on the other hand, higher when using higher

learning rates (e.g. for H50 versus H50 > G10, F-measure of

55.77 versus 73.77 for LR = 1 � 10� 3, and 55.77 versus 62.75

for LR = 1 � 10� 4, both for target G). These results indicate

that, in this particular case, the adaptations to new features

came at the expense of prior knowledge (being more evident

using higher learning rates for this secondary training), and

that a systematic procedure is required to obtain the most

from the incremental learning strategy.

To test the algorithm performance in a more complex

scenario, images of cells containing both crystal targets were

generated by co-infection of the cell culture with the two

different viral stocks at equivalent ratios. This approach

produced images showing the two different crystal types in a

similar proportion and, in some cases, even within the same

cell. The predictions made by the various algorithms on these

new images (Fig. 6) were consistent with those made in the

context of single crystals (Figs. 4 and 5), confirming the

increased versatility provided by the secondary training, as

opposed to the more specific behavior of the algorithms

trained on single targets (Fig. 6, panels A and D). As the

separate annotation of each crystal type cannot be carried out

unambiguously in this context, we could not produce perfor-

mance indicators as done for the other algorithms. Instead, we

looked at the prediction box score averages (G50 > H50 algo-

rithm, LR = 1� 10� 4; Fig. 6, panel C) over a significant (>100)

number of crystals from these (two-crystal) images, either

present in isolated form (0.914) or coexisting with another

crystal type in the same cell (0.897). The results confirmed that

the algorithm showed a similar ability to recognize crystals in

both cellular contexts. These values were also similar with

respect to those obtained (using the same algorithm) from

images containing either H (0.951) or G (0.941) crystal types,

which showed slightly higher scores that can be explained by

these (single-target) images being a much closer match to the

training image context.

As previously discussed, the incremental methods, despite

providing the best results in this study (Table 1) increasing the

versatility of the algorithm to recognize different targets

(Figs. 5 and 6), show, in some cases, suboptimal responses

depending on the crystal targets used for the different training

steps. To address this, in a separate experiment we combined

the individual target images used for the incremental learning

(50 from each of the two targets) in a single dataset, and used

it to train the algorithm in a single step (H50 + G50), applying
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Figure 5
Secondary training of the previous algorithms (G50 or H50) on ten images of target G (H50 > G10, top panels A and B, and E and F) or target H (G50 >
H10, bottom panels C and D, and G and H), using 10 epochs and learning rates of 1 � 10� 3 (panels A and C, and E and G) or 1 � 10� 4 (panels B and D,
and F and H), and evaluation on target G (left, A–D) or H (right, E–H). Whereas G50 > H10 seems to be performed correctly on both targets (with low
influence by the learning rate used), the H50 > G10 algorithm seems to require higher learning rates for adapting to the secondary target (losing in turn
adaptation to its primary target). This shows that the learning rate is a parameter that must be tuned depending on each target’s characteristics.
Performance indicator values are shown in Table 1.



the standard parameters used for the primary trainings (40

epochs and LR = 1 � 10� 3). The algorithm trained following

this approach (Table 1, row 19; Figs. S4–S6) showed a

convergence (F-measure of 78.09 and 73.85, for H and G

targets, respectively) towards the best performing algorithms,

obtained with some of the (generally faster) incremental

learning methods, thus constituting an alternative to those

cases where the latter fails to produce the best results.

Note that, while having a negative impact in some cases, the

secondary training did not seem to benefit, for either of the

two crystals, the performance of the algorithm on the recog-

nition of its primary target. This, on the one hand, demon-

strates that no additional useful information is obtained from

the training on a different crystal type and, on the other hand,

indicates that the algorithm is very efficient in extracting all

the necessary information from very few images.

Investigating the cause of this variability on the secondary

training response by the algorithm is outside the reach of the

present article, but a possible explanation could relate to the

fact that the targets used in the primary and in the secondary

training differed in size (and/or complexity). In such a

scenario, the primary training (with 50 images) on the smaller

(and complex) target (e.g. H50 algorithm) led to ‘over

segmentation’ (multiple segments for a single crystal) of the

‘bigger’ (G target) objects, with each segment corresponding

to the size of the smaller target (panels D in Figs. 4 and 6). In

extreme cases, it resulted in a higher number of predicted

objects than ground-truth objects, as observed for some of the

images (Fig. 4, panel D). This incomplete/partial segmentation

is reflected in a negative impact on all three performance

indicators. On the other hand, a primary training (with 50

images) on the larger (less complex) target (e.g. G50 algo-

rithm) did not show this ‘mosaic’ segmentation on the smaller

(target H) objects, despite resulting in equally poor predic-

tions with a higher percentage of missed objects (Fig. 4, panel

G) and similarly low performance indicator values. These

observations may be an indication that the underlying reasons

(for the lower ‘off-target’ performance) could be essentially

different in both cases. And this could in turn explain why,

when we apply the incremental learning methods, the algo-

rithm responds differently to this secondary training, in each

of the targets, and why the learning rate may play a differential
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Figure 6
Performance of the different algorithms (Table 1: rows 3, 8, 9, 12, 17 and
18) on mixed crystal context. Algorithms resulting from both primary
(G50 or H50, panels A and D, respectively) and incremental learning
trainings (G50 > H50, panels B and C; or H50 > G50, panels E and F) were
tested on images containing both targets (even coexisting in the same
cell). Secondary trainings were performed using 10 epochs and learning
rates of 1 � 10� 3 (panels B and E) or 1 � 10� 4 (panels C and F). The H50

> G50 algorithm seems to require higher learning rates for adapting to the
secondary target (losing in turn adaptation to its primary target).
Performance indicator values are shown in Table 1.

Table 1
Validation of the model.

The quantitative results of the testing are reported on the basis of the three
different performance indicators, for both H and G targets. The original values

(0 to 1 range) are represented here as percentages (0 to 100 range). Higher
values of F-measure and Jaccard index, or lower values of �ON, indicate a
better performance. In the second column from the left, the different
(primary > secondary) training strategies (with target and number of images
used) are represented. A graphical representation of Table 1 can be seen (in a
digest format) in Figs. S1–S6. Row numbers are indicated (left column). LR =
learning rate.

No.
Training set
(primary > secondary)

Average
F-measure
(%) target
H/target G

Average
Jaccard index
(%) target
H/target G

Average �ON
(%) target
H/target G

1 G10 > – 47.14/75.67 31.41/60.94 67.49/17.79
2 G30 > – 58.95/77.11 42.23/62.82 53.93/15.97
3 G50 > – 54.95/77.70 38.38/63.60 61.28/15.76
4 G50 > H10 (LR = 1 � 10� 3) 82.35/75.34 70.13/60.52 16.49/14.53
5 G50 > H10 (LR = 1 � 10� 4) 78.79/77.23 65.18/62.97 17.86/11.52
6 G50 > H30 (LR = 1 � 10� 3) 81.76/76.20 69.27/61.63 14.60/17.02

7 G50 > H30 (LR = 1 � 10� 4) 79.92/77.34 66.69/63.12 17.34/10.66
8 G50 > H50 (LR = 1 � 10� 3) 83.34/75.64 71.55/60.90 13.77/22.79
9 G50 > H50 (LR = 1 � 10� 4) 80.93/76.89 68.11/62.52 17.19/13.02

10 H10 > – 82.19/54.40 69.92/37.65 16.25/25.01
11 H30 > – 81.61/55.07 69.10/38.36 13.69/43.23
12 H50 > – 82.51/57.77 70.38/40.97 11.35/50.32

13 H50 > G10 (LR = 1 � 10� 3) 63.88/73.77 47.41/58.53 49.87/19.34
14 H50 > G10 (LR = 1 � 10� 4) 73.49/62.75 58.36/45.85 30.69/11.33
15 H50 > G30 (LR = 1 � 10� 3) 67.49/73.01 51.26/57.61 38.16/13.90
16 H50 > G30 (LR = 1 � 10� 4) 73.65/60.29 58.57/43.30 30.75/13.25
17 H50 > G50 (LR = 1 � 10� 3) 68.36/74.26 52.33/59.16 44.67/19.40
18 H50 > G50 (LR = 1 � 10� 4) 73.47/59.93 58.38/42.94 29.89/12.85
19 H50 + G50 (LR = 1 � 10� 3) 78.09/73.85 64.26/58.64 21.04/16.13



role. According to our results, the use of a single training step,

with a combination of images of both targets, represents an

alternative to the incremental learning strategy.

Altogether, the results confirmed the effortless adaptability

of the algorithm, and the potential to improve it with every

new target studied. However, this incremental learning

approach, in some cases, may interfere with the previous

knowledge of the algorithm, causing it to ‘unlearn’, improving

the versatility while reducing specificity. The current article

sheds some light on this behavior, and indicates that the

approach requires tuning depending on the characteristics of

the objects used for training the algorithm.

4. Conclusions

We showed the potential of our method for the segmentation

of in cellulo crystals. Further, we propose a model based on

Mask R-CNN, which accurately detects different types of

intracellular crystals, with well differentiated shapes. The

model can be further tuned and effortlessly adapted to new

crystal shapes. In addition, optical sectioning allows us to

segment the cells and crystals in different layers, widening the

scope to three-dimensional segmentation of the objects.

The current setup, including the fully automated acquisi-

tion, is intended to be used as a general screening pipeline to

rapidly score cell cultures for successful intracellular crystal

growth. It is particularly useful for cells producing unknown

protein targets with low or very low crystallization efficiency,

preventing hours of manual cell scoring. The algorithm can

also assist in the selection of optimization protocols during in

cellulo crystallization, being able to monitor the impact of the

different approaches on the occurrence or the size or shape of

the crystals. Potentially, it can be used to perform real time

tracking of cells containing crystals (or isolated crystals)

during X-ray diffraction experiments at synchrotrons or free-

electron lasers, either placed on fixed targets or flowing

through high-viscosity jets. This could result in significant

advantages like avoiding the need to irradiate the sample for

target localization, or synchronizing beam exposures to

selected targets or crystal shapes.
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