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Polynator is a Python program capable of identifying coordination polyhedra,

molecules and other shapes in crystal structures and evaluating their distortions.

Distortions are quantified by fitting the vertices of a model to a selected set of

atoms. In contrast to earlier programs, models can be deformable, which allows

them to represent a point group or a range of shapes such as the set of all

trigonal prisms, rather than a specific, rigid shape such as the equilateral trigonal

prism. The program comes with a graphical user interface and is freely available.

This paper discusses its working principle and illustrates a number of

applications.

1. Introduction

In chemistry and crystallography, coordination environments

are regularly described in terms of polyhedra. These poly-

hedra are crucial in understanding and analyzing crystal

structures and their relations to material properties. Owing to

electronic effects or size mismatches, they are frequently

distorted to various degrees from their ideal configuration.

With some coordination environments it can even be chal-

lenging to find the closest-matching well defined polyhedron

in the first place. Moreover, the extent of the distortion is

notoriously difficult to quantify. In many cases, it can be

desirable to know the degree of distortion relative to the

closest-matching shape which obeys a given set of constraints,

e.g. a specific point-group symmetry. However, although

various authors have proposed formulae, algorithms and

programs, there is not yet a universal tool to quantify these

distortions. The idea of quantifying deviations from models

with an ideal reference shape was explored in an early

publication by Dollase (1974). His purely geometrical method

pairs the atoms in a given coordination environment with the

vertices of a model polyhedron. After the model has been

iteratively rotated and scaled to minimize the squares of the

distances between atoms and the corresponding model

vertices, the distortion can be quantified on the basis of the

residual deviation. Using a similar approach, Zabrodsky et al.

(1992) defined the continuous symmetry measure (CSM),

which Pinsky & Avnir (1998) later followed up with the

continuous shape measure (CShM). Both rely on the scale-

independent metric S for the deviation of an arrangement of

atoms from a reference model, defined as

S ¼ 100

P
i ai � vi

�� ��2P
i ai � c
�� ��2

 !
; ð1Þ

where ai is a vector with the Cartesian coordinates of an atom

i, vi is the vector of its corresponding model vertex and c is the
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centroid of all atom vectors a. Provided an optimal orientation

and size of the model and an optimal pairing of atom and

model vertices, S may assume values from 0 to 100, where 0

signifies perfect agreement between atoms and model vertices.

Although both CSM and CShM are based on the same defi-

nition of S, the difference lies in the way the reference model is

obtained. CShM refers to scalable but otherwise rigid prede-

fined models. CSM on the other hand refers to the closest-

matching model that conforms to a given point-group

symmetry. In the cases of the regular polygons, the Platonic

solids, the Archimedean cuboctahedron and the Archimedean

icosidodecahedron, CSM and CShM are equivalent. In any

other case, CSM allows for more degrees of freedom and will

thus generally produce lower values. Continuous chirality

measures (CCMs) and symmetry operation measures (SOMs)

belong to the same family (Alvarez et al., 2005; Echeverrı́a &

Alvarez, 2008). They refer to the closest-matching models

which are achiral (CCM) or conform to a single symmetry

element (SOM).

The computer program shape was first released in 2003 to

allow users to obtain continuous shape measures of coordi-

nation environments found in chemical compounds (Llunell et

al., 2013). ChemEnv, a program that can identify many poly-

hedra with fixed proportions by comparing their continuous

shape measures, is also based on this approach (Waroquiers et

al., 2020). A great advantage of ChemEnv compared with

shape is that it accepts .cif files as an input and finds coor-

dination environments with minimal user intervention, based

on the central atoms. The CoSyM (Continuous Symmetry

Measures) program (website http://csm.ouproj.org.il main-

tained by Tuvi-Arad and Avnir) is capable of calculating

SOMs and CCMs (as well as CShMs for a small set of models).

By comparing various different SOMs, it enables the user to

make approximate statements about the full point-group

symmetry of a given atom arrangement (Echeverrı́a &

Alvarez, 2008).

In a different vein, a symmetry-independent method that

quantifies the distortion according to the sphericity of an

ellipsoid fitted to the coordination environment was proposed

by Cumby & Attfield (2017). Yet another approach was taken

with the PolyDis software, which allows the user to fit models

of the most frequently encountered polyhedra to their data

based on minimal average distances (Stoiber & Niewa, 2019).

Here we present Polynator, a Python program based on a

similar method to that of the CSM family of metrics. However,

in contrast to those, it overcomes the limitations of separate

shape and symmetry measures by making use of dynamic

models. It takes .cif files as input and, with minimal user

input, finds coordination environments, molecules and other

arrangements of atoms within the crystal structure. The

program may be used independently or most comfortably via

its own graphical user interface (GUI). In addition to detailed

output files and tables, new .cif files with only the coordi-

nates of real atoms and model vertices can be generated to

allow for easy visualization in external programs. Polynator is

equally well suited for the analysis of individual coordination

environments, molecules or cages and for screening large

databases to map trends within structural families. It is freely

available via download from https://www.iac.uni-stuttgart.de/

en/research/akniewa/ as a Python script or as a compiled

version for simple use with Microsoft Windows.

2. Working principle

Most of the earlier programs are limited to polyhedra of fixed

proportions, whereas Polynator is built to fit dynamic models

with any number of free parameters. In contrast to the rigid

models employed by shape and ChemEnv, dynamic models

can not only be rotated and scaled but also deformed in a

variety of ways specifically defined for each model (e.g.

stretching, twisting, puckering etc.). Dynamic models can thus

adequately represent the general definition of polyhedra such

as prisms and pyramids with a variable height-to-width ratio,

effectively providing point-group symmetry analysis for many

atom arrangements of small and medium size.

For example, Fig. 1 shows a number of model polyhedra

which are derived from the cube by adding one or more

degrees of freedom. All of these are included in Polynator,

along with a wide array of other predefined models of up to 60

vertices, currently 211 in total. This includes, among others, all

Platonic and the nine Archimedean solids, 28 Johnson poly-

hedra, the canonical Frank–Kasper polyhedra and three of

their dual fullerenes, various prisms, antiprisms, pyramids and

bipyramids, and models for common organic building blocks,

as well as dynamic models to account for distorted versions of

the polyhedra most frequently encountered in inorganic

crystal structures. The full list is included in the Polynator

manual provided in the supporting information. To cover any

unforeseen needs, the user can define additional custom

models using the GUI.

Every model is granted three translational and two rota-

tional degrees of freedom. In addition, various types of free

parameters (see Table 1) determine its shape. A simple

example is the scaling parameter, which preserves the

proportions of the model and is utilized primarily for rigid

models such as Platonic and Archimedean solids. There are

also independent width and height parameters, which lend

themselves to prisms, antiprisms, pyramids etc. Parameters for

torsion angles help to fit twisted prisms and the like. Height,

width and torsion angles can also be modulated via sinusoidal
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Table 1
Parameter types defined in Polynator with exemplary uses.

Parameter type Exemplary models

Scale (sc) Platonic and Archimedean solids, Johnson
polyhedra, hexacapped cube

Height (h) Prisms, pyramids, the majority of models
Width (w) Prisms, pyramids, the majority of models
Torsion angle (’) Twisted prisms, biphenyl skeleton
Modulated height ( ~hh) Dynamic triangular dodecahedron,

18-crown-6 skeleton
Modulated width ( ~ww) Rhombus, 18-crown-6 skeleton
Modulated torsion angle ( ~’’) Rectangle, cuboid, anticuboid, 18-crown-6

skeleton
Composite parameters Pyritohedron, elpasolite cuboctahedron



functions. This allows, for example, a square to morph into a

disphenoid, rhombus or rectangle. Lastly, functions binding

multiple parameters to fewer variables can be defined in order

to afford polyhedra such as the pyritohedron or the tetra-

hedrally distorted elpasolite-type cuboctahedron. For details

on the fitting process, see the manual. Since quite a few models

are neither rigid nor constrained by symmetry alone, it is not

always clear how to classify the distortion values within the

CSM framework. Some models contain rigid parts but are not

altogether rigid, such as the biphenyl skeleton. Others have

other extrasymmetrical constraints, e.g. preserving the

planarity of their faces, such as the rhombohedron, rhombic

prism, pyritohedron and others. Instead of adding a member

to the already numerous CSM family (Pinsky & Avnir, 1998;

Alvarez et al., 2005; Echeverrı́a & Alvarez, 2008), we propose

a new metric, which measures the distortion relative to a

specified model. This is the distortion value �, defined as

� ¼ 100

P
i ai � vi

�� ��2P
i ai � c
�� ��2

 !1=2

; ð2Þ

where ai is an atom vector, vi is the vector of its corresponding

model vertex and c is the centroid of all atom vectors. While

this distortion metric is closely related to the S parameter of

the CSM family via S ¼ 0:01�2 or � ¼ 10
ffiffiffi
S
p

, it scales

approximately linearly instead of quadratically with small

deviations from the reference model, as illustrated in Fig. 2.

This leads to a more intuitive and arguably less skewed

understanding of the extent of distortion. It also yields more

reasonable values for small distortions: where CSM-type
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Figure 1
Partial tree diagram of model polyhedra derived from the cube by symmetry reduction. Higher positions in the diagram indicate higher symmetry. For
simplicity, the bicapped trigonal antifrustum (3) and the bicapped trigonal twisted prism (32) have been omitted.

Figure 2
Progressively increasing rhombic distortion of a quadrilateral arrangement of atoms a (dark gray) measured against the vertices v of a square model
(blue). The rhombus is contracted along the a1a3 diagonal by a factor k and stretched along the a2a4 diagonal by the same amount. Values of the
distortion metrics � and S (CSM) are plotted in the diagram on the right, with the examples given on the left marked with dots. Note: these are very
strong distortions. Common use cases for a program such as Polynator involve distortion values � < 30. In this range, the � curve is approximately linear,
and the S curve is approximately quadratic.



values often require three or more decimal places to discern a

small distortion from a perfect fit, two decimal places will

basically always suffice for �. Nonetheless, Polynator can be

configured to yield CSM-type values instead of � values and

the detailed output files it generates always contain both

values.

2.1. Process

For each .cif file provided as an input by the user, Poly-

nator traverses the process outlined in Fig. 3. We will proceed

by briefly explaining each step.

Step 1. The input .cif file is read and the relevant atom

vectors are generated according to symmetry instructions.

Step 2. Atom arrangements to be fitted can be classified into

coordination environments and molecules. A coordination

environment may be generated around a selected central atom

(or dummy atom coordinates) following one of several

methods. The most basic method is to include all atoms whose

distance from the central atom is within a user-specified range.

Alternatively, the user may assign atomic radii to each atom. It

is furthermore possible to specify a maximal coordination

number; excess ligands with the highest distance from the

central atom are excluded first. Coordination environments

can also be constructed by a simple algorithm, finding gaps in

consecutive center–ligand distances. Last but not least, an

algorithm based on the Voronoi polyhedron around the

central atom is available to the user. It considers an atom a

ligand if the solid angle subtended by its associated Voronoi

face from the perspective of the central atom is greater than a

given threshold (20� by default). This last algorithm is loosely

based on the definition by O’Keeffe (1979) for the coordina-

tion number and very similar to the method used by ChemEnv

(Waroquiers et al., 2020). Since there is no single unbiased

method to determine which atoms should be counted as

ligands, Polynator leaves the choice to the user.

Molecules are constructed on the basis of their connectivity

according to user-specified or default atomic radii. Subsections

(e.g. ethane units, icosahedra, porphyrin rings, fullerenes) can

automatically be extracted from molecules or infinite frame-

works by a number of predefined or user-specified topological

strategies. This does not require any pre-defined bonds, just a

regular .cif file and the name of the desired topological

shape.

Step 3. A model prototype with the appropriate number of

vertices for a given atom arrangement is constructed. Model

vertices are stored not as Cartesian coordinates but as a

compressed set of parameters directing their construction and

manipulation. These parameters do not affect single vertices,

but entire symmetry-aligned groups of them, referred to as

belts. These belts are orthogonal to and are stacked along a

model axis. For example, as illustrated in Fig. 4, an anti-

cuboctahedron (or rigid triangular orthobicupola) is split into

three belts. The information associated with each belt is listed

in Table 2, namely the number of vertices it contains, the basic
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Figure 4
Anticuboctahedron (also known as a trigonal orthobicupola), split into
belts along its 6 axis, which is used as the model axis. The individual model
vertices within a belt are labeled a–f.

Table 2
Widths, heights, torsion angles and free parameters for the construction
of an anticuboctahedron.

Belt
n
vertices

Width
coefficient

Height
coefficient

Torsion
angle

Free
parameters

1 3
ffiffiffiffiffiffiffi
1=3
p ffiffiffiffiffiffiffi

2=3
p

0 sc1

2 6 1 0 �/6 sc1

3 3
ffiffiffiffiffiffiffi
1=3
p

�
ffiffiffiffiffiffiffi
2=3
p

0 sc1

Figure 3
Simplified flow chart of the working principle. Multiple crystal structures
and multiple atom arrangements per crystal structure can be processed in
one run, not reflected here for simplicity.

Figure 5
Twisted trigonal prism with three free parameters, namely h1 for its
height, w1 for its width and ’1 for the torsion angle between the bases. In
general, a model may have any number of parameters.



cylindrical coordinates for the entire belt (width, height,

torsion angle) and any free parameters (in this case only the

same scaling parameter for each belt). The individual vertices

are constructed by rotating them around the model axis by

multiples of 2�/n, where n is the number of vertices in that

belt. Fig. 5 illustrates the deformations allowed by the free

parameters of a dynamic twisted trigonal prism.

Step 4. Identifying the optimal pairing scheme of model

vertices with their real counterparts found in the crystal

structure is sometimes easy to do for humans but deceptively

difficult for computer programs. The brute force approach of

checking every possible permutation of model–real vertex

pairs is the only way to guarantee the optimal result. However,

the number of required evaluations grows factorially with the

number of vertices, quickly rendering this approach infeasible

for all but the lowest coordination numbers. As explained by

Waroquiers et al. (2020), the number of evaluations can be

reduced slightly by taking into account the symmetry of the

model. Unfortunately, this does not ultimately solve the

problem of unmanageable numbers of vertex permutations.

The CoSyM program takes advantage of the topology of the

vertex figure (Alon & Tuvi-Arad, 2018) to achieve a significant

reduction in the number of permutations. Although this

approach is very well suited for molecular structures due to

their rather predictable bond lengths and comparatively low

connectivities, it can run into problems when dealing with

more irregular coordination polyhedra. Instead, depending on

the model, Polynator chooses one out of several strategies to

find the best fit without checking many combinations. When

fitting a coordination polyhedron or cage, it is assumed that

the real ligands are spread out more or less equally on a

spherical shell around their centroid. The atom arrangement is

sequentially scanned along the directions of 92 vectors

pointing from the centroid to equally spread out locations on a

unit sphere surface. It is then estimated how well the scanned

atom arrangement agrees with the model for each of these

directions. To do this, for each scanning step, the ligand vectors

are first filled into the model belts according to their dot

product with the scanning direction vector. The approximate

model axis is then constructed as the eigenvector with the

largest eigenvalue of a covariance matrix formed from the

centroids of all belts. The fit quality is estimated according to

the distance of each belt centroid from the model axis and the

difference in dot product with the model axis between each

vertex and the respective belt centroid. A small number of

assignment schemes with the best estimated agreement qualify

for full evaluation.

When handling strongly prolate models, such as the bi-

phenyl skeleton, a very simple strategy of finding the belt

assignment scheme is employed instead. The model axis, or the

‘longest’ axis of the atom arrangement, is constructed as the

eigenvector with the largest eigenvalue of a covariance matrix

formed from all atom vectors. The vectors are ranked

according to their dot product with that axis and filled into the

belts accordingly. For multi-belt oblate models, such as the

porphyrin skeleton, the atom vectors are simply ranked by

their distance from the centroid. The performance and accu-

racy of the assignments is further improved by the possibility

for models to inherit their assignment from a less general

version of themselves, provided that version is a good fit. For

example, a trigonal antiprism may effectively copy the

assignment of a previously fitted regular hexagon or octahe-

dron. However, when copying from an octahedron, four

different orientations must still be fitted. Though none of

these strategies are technically guaranteed to find the best

assignment scheme, they appear to be very reliable as long as

the atom arrangement resembles the model to some degree.

Step 5. After the atom vectors have been assigned to belts,

they have to be paired with the model vertices within their

belt. This is done by rotating the model so that one of its

vertices has the same torsion angle around the model axis as

one of the atom vectors in the same belt. This torsion angle is

set to 0� and the clockwise angles of the other vectors are

measured with respect to it. The vectors within each belt are

then sorted according to their angle and paired up according

to this order. The agreement between model and real atoms is

estimated according to the individual angular deviations

between paired vectors, weighted by the distance from the

model axis. The final pairing scheme is determined by

repeating this process for each atom vector and selecting for

the best agreement.

Step 6. Once the vectors are paired up, the model orienta-

tion can be adjusted to optimally fit the real coordination

environment. This task is carried out by a Kabsch algorithm

(Kabsch, 1976).

Step 7. Subsequently, the values of free shape parameters

defined individually for each model are determined via least-

squares fits. In the majority of cases, this can be done analy-

tically by simply measuring averages of vector components

(height, width, magnitude). Otherwise, the optimal value must

be determined iteratively. Since the optimal solutions for

shape and orientation are generally interdependent, the

sequence of steps 6 and 7 has to be executed several times

until a convergence criterion is reached (the � value ceases to

improve by more than 10�5 between cycles).

3. Examples and applications

3.1. Shape recognition and classification

Since Polynator is capable of automatically recognizing

polyhedra and quantifying their similarity to a wide range of

models, a very basic use case is the identification of ‘exotic’

polyhedra, such as the elongated gyrobifastigium. This is

found as a coordination polyhedron of the Th site in the

�-ThSi2 structure type, but has not been identified as such in

the publications we are aware of. This elongated gyrobifasti-

gium is distinct from the regular gyrobifastigium, which can be

found in the same structure type (Alvarez, 2017), as depicted

in Fig. 6. The high-pressure CaFeTi2O6 phase, as described by

Leinenweber & Parise (1995), contains both the regular

gyrobifastigium and another somewhat uncommon Johnson

polyhedron, the sphenocorona. Polynator also natively

includes over 40 model polyhedra with more than 12 vertices,
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many of which are represented in intermetallic phases (Zintl

& Haucke, 1938, 1940; Kasper et al., 1965; Ban & Sikirica,

1965), zeolites (Broussard & Shoemaker, 1960) or boron

clusters (Popov et al., 2015).

Another simple application is finding the best description of

a given ‘irregular’ coordination polyhedron. For example, in

the scheelite-type Bi[VO4] compound (Mariathasan et al.,

1986), bismuth is coordinated by eight oxygen atoms in an

arrangement that could be understood as a distorted version

of either a triangular dodecahedron, a bicapped trigonal prism

or a tetragonal antiprism. As illustrated in Fig. 7, when

comparing the fit for rigid versions of all three models, it

becomes clear that the triangular dodecahedron is the best

description, although not by a very large margin. These

differences become more apparent when comparing dynamic

versions of these models, as the distortion of the optimal

triangular dodecahedron amounts to less than a quarter of the

distortion of the optimal versions of the other candidates. This

comparison between dynamic models is also arguably more in

line with the intuitive understanding of a given polyhedron.

For example, most coordination polyhedra commonly identi-

fied as triangular dodecahedra are not as prolate as the

equilateral version, but more or less spherical.

3.2. Measuring characteristic parameters

Polynator can be used as a way to obtain exact values of

parameters which can otherwise be somewhat challenging to
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Figure 6
Both the regular gyrobifastigium and the elongated gyrobifastigium are
found in the crystal structure of the ThSi2 type.

Figure 7
Coordination environment of bismuth in Bi[VO4], viewed from three
different perspectives, corresponding to the optimal orientation of an
equilateral bicapped trigonal prism (left), an equilateral tetragonal
antiprism (center) and an equilateral triangular dodecahedron (right).
Distortion values quantify the fit of the aforementioned rigid equilateral
models, as well as dynamic models which share the basic structure of the
rigid models, but are otherwise only constrained by the respective point
group.

Figure 8
Overlay of real molecule (black) and fitted model (blue) for biphenyl
skeletons cut from two different molecules. The C24H30N4O4 molecule
(top) (Holý et al., 2001) has somewhat bulky substituents on all ortho
positions, hence the rather large dihedral angle 2’. The biphenyl skeleton
(bottom) is part of a fluorene molecule (Burns & Iball, 1955) with point
group m. Though the latter molecule is not perfectly flat, its 2’ value is
still exactly 0�. The considerable distortion is due to the skewed phenyl
rings.



measure correctly. A good example is the dihedral angle

between the phenyl rings in a biphenyl unit, as pictured in

Fig. 8. Though it is easy to get an approximate value by

calculating the dihedral angle between an atom in the first ring

and an atom in the second ring, using the bridging atoms as the

hinge axis, this approach falls short if more precision is

desired. Polynator provides a clean value for this angle as a by-

product when finding the closest-matching ideal molecule. The

model for a biphenyl skeleton has three free parameters: one

for the radius of the phenyl rings, one for the length of the

bridging bond and one for their dihedral angle. These values

are accessible in the output files.

3.3. Quantification of distortions

Polynator is suited just as well for more intricate investi-

gations, such as uncovering trends and patterns in the coor-

dination behavior of a given structure type. Since any number

of input files, atom arrangements and models can be processed

at once and the process is quite fast (typically 10–20 models

per second), large numbers of similar structures can be

compared almost effortlessly. This is also facilitated by .csv

output files listing important results in table form and the

topological package allowing for the automatic extraction of

specific structural units from large molecules or frameworks.
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Figure 9
Temperature-dependent distortions of CaO12 cuboctahedra in Ca(TiO3)
with respect to three model polyhedra which conform to different point
groups. Experimental data according to a single sample powder X-ray
diffraction measurement series (Yashima & Ali, 2009).

Figure 10
Tree diagram of distorted cuboctahedra. Higher positions in the diagram indicate higher symmetry. Note that there are two differently distorted

cuboctahedra with the point group 42m. Model 42m (1) is a combination of a bidisphenoid and a square, whereas 42m (2) can be described as a
combination of an anticuboid and a disphenoid. Each is viewed along its 4 axis. Similarly, model mmm (1) is a combination of a cuboid and a rhombus,
whereas mmm (2) is a combination of a diagonal orthobicupola and a rectangle.



Because of its rich structural diversity, the perovskite family

lends itself well to the analysis of its coordination environ-

ments. A good example is provided by the eponymous

Ca(TiO3) compound which, on heating to 1600 K, undergoes

two phase transitions on its way from the Pbnm room-

temperature modification via I4/mcm to the Pm3m aristotype

structure. Fig. 9 shows that the distortion of the cuboctahedral

coordination polyhedron of the Ca site decreases with

increasing temperature. This is true with respect to the

scaleable but otherwise rigid Archimedean model, but also

with respect to dynamic models which represent lower-

symmetry versions of the cuboctahedron (see Fig. 10). These

are automatically deformed within the constraints of their

point group in order to achieve the best fitting version. In the

example at hand, the 4/mmm model starts out with a slightly

better fit than the Archimedean model, but this difference all

but disappears with the first-order phase transition to the

I4/mcm structure. This implies that the distortion of the

cuboctahedron is at first in part due to an elongation or

compression along one of its fourfold axes, which then

vanishes following the phase transition. The 42m model fits

best from the start and seems to improve roughly at the same

rate as the higher-symmetry models. However, after the phase

transition, its deviation from the real coordination environ-

ment falls to zero, indicating that it matches the point group of

the crystallographic site. It follows that a model having all the

degrees of freedom permitted by the 1 point group would not

be a better fit for the cuboctahedra in the I4/mcm structure

than the 4/mmm model, as the remaining distortion of the

latter is only due to the constraint of inversion symmetry

imposed on it. The ratio of distortions relative to these point

groups observed in Ca(TiO3) turns out to be overall typical

behavior for perovskites. To illustrate this, distorted cubocta-

hedron models with the point groups 43m, m3, 4/mmm, 3m,

422, 4mm, 42m, 4/m, mmm (two models), 32, 3m and 3 were

fitted to the cuboctahedra found in a large selection of

structures from four major tilted perovskite structure types

and their elpasolite counterparts. The results are displayed in

Fig. 11 and Table 3.

Several observations can be made. Firstly, while the 43m

cuboctahedron model fits the cuboctahedra in the Fm3m

elpasolite with untilted octahedra exactly, it fits only slightly

better than the Archimedean m3m cuboctahedron model for

each of the tilted elpasolite structure types investigated. There-

fore, in most cases, the distortion caused by the elpasolite-type
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Table 3
Deviations (�) from the Archimedean cuboctahedra, number of sampled
crystal structures and average deviations from various models as fractions
of �(m3m).

I4/mcm I4/m R3c R3 Ibmm I2/m Pbnm P21/n

�(m3m) 5.189 7.289 10.676 9.073 7.953 9.253 18.396 17.470
Sample size 14 30 17 18 9 13 46 32
43m 1 0.882 1 0.883 1 0.91136 1 0.979
m3 1 1 1 1 1 1 0.943 0.945
4/mmm 0.999 0.999 1 1 1.000 1.000 0.911 0.913
3m 1 1 0.991 0.999 1.000 1.000 0.999 0.999
42m (1) 0 0.399 0.819 0.861 0.712 0.770 0.706 0.719
42m (2) 0.999 0.877 1 0.883 1.000 0.909 0.911 0.889
4mm 0.999 0.999 1 0.997 0.997 0.990 0.910 0.912
422 0.999 0.997 1 1 1.000 1.000 0.911 0.913
4/m 0.999 0.999 1 1 1.000 1.000 0.911 0.913
mmm (1) 0.999 0.999 0.997 1.000 1.000 1.000 0.911 0.913
mmm (2) 0.999 0.999 1 1 1.000 1.000 0.817 0.823
32 0.817 0.858 0 0.424 0.585 0.675 0.753 0.764
3m 1 0.882 0.991 0.871 0.9954 0.905 0.997 0.976
3 1 1 0.991 0.999 1.000 1.000 0.942 0.944

Figure 11
Various models fitted to the cuboctahedra found in four perovskite structure types and their respective elpasolite counterparts. Each structure type is
represented by an array of crystal structures belonging to it. Each individual distortion � was first divided by the distortion of the Archimedean
cuboctahedron model fitted to the same coordination environment. Thus the arithmetic mean of all values generated was then taken for each
combination of a model and a structure type in order to obtain a data point shown in the diagram. See the supporting information for a discussion of the
methodology applied in this plot.



superstructure is much smaller than the distortion caused by

the octahedral tilting. The difference is even more pronounced

with lower space-group symmetries. This result is to be

expected, as the distortion by tilting increases with decreasing

space-group symmetry, while the difference in octahedron

sizes should stay roughly the same on average. The maximal

hettohedra with point groups 4/mmm and 3m do not fit

noticeably better than the Archimedean cuboctahedron,

except in the case of the Pbnm and P21/n structure types,

where the 4/mmm model shows some relative improvement.

This suggests that there is generally no significant elongation

or compression along the three- and fourfold (pseudo-)axes

for the higher-symmetry structure types, as both would

improve these fits. However, the Pbnm and P21/n structure

types, which represent the a�a�c+ tilting scheme (Glazer,

1972), adopt an elongation along one of the fourfold pseudo-

axes, more precisely one of the axes along which the tilting has

alternating rotational directions. Note that the elongation

does not stem from an elongation of the octahedra, as

compounds with octahedral distortions � > 3.2 were filtered

out and the majority of octahedra in the admitted structures

were better described as trigonal antiprisms than as tetragonal

bipyramids.

The overall best fits are, in all cases, achieved by the 32 and

42m (1) models. These perfectly match the site symmetry for

the I4/mcm (a0a0c�) and R3c (a�a�a�) structure types,

respectively. With the elpasolite counterparts I4/m and R3, the

site symmetry is reduced to 4 and 3, respectively. This goes

along with a significant deterioration of the fit for these

models, which far outweighs the concomitant relative

improvement of the 43m model fit.

Somewhat interestingly, the 32 model fits better than the

42m model for the Ibmm and related I2/m structure types. This

is despite the fact that the cuboctahedral site in the Ibmm

structure type has mm2 symmetry, which is a maximal

subgroup of 42m, but not closely related to 32.

4. Limitations

In some cases, especially for lower symmetries and larger

numbers of vertices, more than one model may be required to

cover all possible manifestations of a point group. This means

that the strengths and weaknesses of Polynator when it comes

to symmetry analysis are complementary with CoSyM. CoSyM

especially shines during the measurement of symmetry

deviations for low-symmetry point groups but is currently not

equipped to cover, for example, cubic point-group symmetries,

except in some trivial cases.

Since the atom-assignment process does not check all

possible permutations, suboptimal fits can sometimes result if

a given model does not resemble the evaluated atom

arrangement at all. Although the reliability of the assignment

algorithm depends on the number of atoms, the model and the

particular type of distortion, fit results with � values below 30

are generally highly trustworthy, which means this is not an

issue in practice.

User-defined models may have a large variety of shapes, but

not all possible shapes are guaranteed to work well with the

existing strategies for assigning model vertices to atom vectors.

Furthermore, in order to be properly fitted, the centroid of

each model belt has to rest on the model axis. This should

rarely be a problem in practice, since model shapes generally

need to be somewhat symmetrical to be useful in the first

place.

5. Conclusions

Polynator allows for the comparison of distortions by quan-

tifying the dissimilarity between one or more rigid or dynamic

models and a given arrangement of atoms found in a crystal

structure. The GUI and the automatic pairing of model and

real vertices make it very easy to use. Polynator comes with a

large host of preset models, which can easily be expanded by

the user according to specific needs. In contrast to earlier

programs, models can feature multiple degrees of freedom.

Hence, a model may represent either a rigid shape or a specific

point-group symmetry (or subset thereof). Furthermore, there

are models which are not rigid and neither is their shape

determined by symmetry alone. This latter category contains

models representing molecules with flexible joints and rigid

components like the biphenyl unit, but also dynamic model

polyhedra with specific constraints, such as the pyritohedron

with its planar pentagonal faces. The program is a useful tool

for identifying polyhedra and molecular shapes, quantifying

their distortions, obtaining structural parameters such as

polyhedral volumes or dihedral angles between molecular

subunits, and making observations about structural trends.
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