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A general formalism is presented for the isotropically averaged single-chain

scattering function (form factor) of single, double, triple and higher-order

helices, as well as twisted fibres consisting of concentric layers of strands. Form

factors for double and triple helices with differently sized grooves have also

been derived. The formulas include the longitudinal and transverse interference

over the pitch and radius of the helices, respectively. The results may be useful

for the analysis of small-angle scattering data of (bio)macromolecules or

molecular assemblies exhibiting a helical arrangement.

1. Introduction

Helical diffraction theory was first developed for atoms on a

regular helix and used to solve the molecular structure of

nucleic acids (Cochran et al., 1952; Wilkins et al., 1953).

Expressions for the isotropically averaged single-chain scat-

tering function (form factor) have been reported for helical

filaments, pairs of coaxial helical filaments, pairs of coaxial

strands of different cross section and helical ribbons (Schmidt,

1970; Pringle & Schmidt, 1971; Puigjaner & Subirana, 1974;

Muroga, 2001; Hamley, 2008). The form factor of a superhelix

consisting of two diametrically opposed strands has been

derived and used for the analysis of DNA supercoiling

(Zakharova et al., 2002; Zhu et al., 2010). In the present

contribution, the form factors of various helical structures are

derived and cast in a general formalism for easy adaptation of

the number of coaxial strands and cross-sectional symmetry. In

particular, formulas are reported for double and triple helices

with grooves of different widths, as well as twisted fibres

consisting of concentric layers of strands. The results refer to

continuous helices and do not include spacing of individual

atoms or groups of atoms at regular intervals. The derived

formulas may hence be useful for the analysis of low-resolu-

tion scattering data of randomly or partially oriented

(bio)macromolecules or molecular assemblies exhibiting a

helical structural arrangement.

This article is organized as follows. First, the form factor of a

single helix is derived. The single-helix results provide the

basis for the derivation of the form factor of multiple-order

helices. Second, the form factor of a double helix is presented,

both for the symmetric case with opposing strands and for the

non-symmetric case with a major and minor groove. Third, the

same analysis is applied to a triple helix, including the

presence of differently sized grooves. Fourth, the form factor

pertaining to a higher-order helix with any number of equally

spaced strands but at a fixed radial distance from the central

axis is derived. Fifth, the form factor of hexagonal twisted

fibres consisting of concentric layers of parallel strands is

presented.

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576723008671&domain=pdf&date_stamp=2023-11-07


2. Single helix

Consider a single helix with radius r, pitch 2�p and length

along its contour l, as illustrated in Fig. 1. The length of the

helix projected on its helical axis is denoted by L. The struc-

ture of the helix is fully characterized by p, r and l (the effect of

the finite cross section of the strand will be considered below).

From integration along the contour it follows that

L ¼
lp

ðp2 þ r2Þ
1=2
; ð1Þ

and the pitch angle � is defined through

tanð�Þ ¼
p

r
¼

L=l

½1� ðL=lÞ
2
�
1=2
: ð2Þ

For the calculation of the form factor, the helix is placed with

its central axis along the z axis in a coordinate system with

Cartesian unit vectors i, j and k. A point on a right-handed

helix is then described by position vector

s ¼ r cos
z

p

� �
iþ r sin

z

p

� �
jþ z k; ð3Þ

with z the projected distance on the helical axis. The

momentum-transfer vector q is expressed in terms of its

magnitude q = |q| and spherical coordinates � and ’, so that

q � s ¼ q�zþ qð1� �2Þ
1=2

r cos ’�
z

p

� �
; ð4Þ

with � ¼ cos �. The scattering amplitude

�q ¼
1

L

ZL=2

�L=2

dz exp iq � sð Þ ð5Þ

(with complex conjugate �?q) then takes the form

�q ¼
1

L

ZL=2

�L=2

dz exp iq �zþ ð1� �2
Þ

1=2
r cos ’�

z

p

� �� �� �
:

ð6Þ

With the help of the associated series of Bessel functions of

integer order Jk,

exp iz cosð’Þ½ � ¼ J0ðzÞ þ 2
P1
k¼1

ikJkðzÞ cosðk’Þ ð7Þ

(Abramowitz & Stegun, 1970; Gradshteyn & Ryzhik, 1980),

the scattering amplitude can be expressed as

�q ¼
1

L

ZL=2

�L=2

dz exp iq�zð Þ

(
J0 qð1� �2Þ

1=2r
� 	

þ 2
X1
k¼1

ikJk qð1� �2Þ
1=2r

� 	
cos k ’�

z

p

� �� �)
: ð8Þ

After integration of z over the length of the helical axis L, one

obtains

�q ¼
sin q�L=2ð Þ

q�L=2
J0 qð1� �2Þ

1=2r
� 	

þ 2
P1
k¼1

Ckð�; ’Þ i
kJk qð1� �2Þ

1=2
r

� 	
; ð9Þ

with the orientation-dependent coefficients

Ckð�; ’Þ ¼
sin ðq�þ k=pÞL=2½ �

ðq�þ k=pÞL
expð�ik’Þ

þ
sin ðq�� k=pÞL=2½ �

ðq�� k=pÞL
expðik’Þ: ð10Þ

For a left-handed helix, the corresponding coefficients are

given by the complex conjugate C?
k. The average of Ck over the

azimuthal angle ’ is identically zero, that is

1

2�

Z2�
0

d’Ckð�; ’Þ ¼ 0: ð11Þ

Furthermore, the coefficients Ck are orthogonal,

1

2�

Z2�
0

d’Ckð�; ’ÞC
?
mð�; ’Þ ¼ 0; k 6¼ m; ð12Þ

and normalized according to

1

2�

Z2�
0

d’Ckð�; ’ÞC
?
kð�; ’Þ ¼

sin2
ðq�þ k=pÞL=2½ �

ðq�þ k=pÞL½ �
2

þ
sin2
ðq�� k=pÞL=2½ �

ðq�� k=pÞL½ �
2 : ð13Þ

The form factor is given by PnðqÞ ¼ h�q�
?
qi, where the angle

brackets denote an isotropic orientation average of the

momentum-transfer vector with respect to the helical axis

(Lovesey, 1984). The index n denotes the number of strands

per helix (for a single helix, n = 1). An isotropic average

involves integration over azimuthal angle ’ and polar coor-

dinate � according to

h� � �i ¼
1

4�

Z1

�1

d�

Z2�
0

d’ � � � : ð14Þ

The form factor can now be calculated by isotropic averaging

of the product of the scattering amplitude [equation (9)] with

its complex conjugate and using the properties of the orien-
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Figure 1
A single helix with radius r, pitch 2�p, strand contour length l and z-axis
projected helix length L. In this specific example, the helix length L
equals two times the helical repeat, but in general L is a variable
parameter depending on r, p and l through equation (1).



tation-dependent coefficients [equations (11), (12) and (13)].

The exact expression of the form factor then takes the form

Pn
ðqÞ ¼

1

2

Z1

�1

d�

 
sin2 q�L=2ð Þ

ðq�L=2Þ2
J2

0 qð1� �2
Þ

1=2
r

� 	

þ
X1
k¼1

Fk;n

sin2
ðq�þ k=pÞL=2½ �

ðq�þ k=pÞL=2½ �
2

�

þ
sin2
ðq�� k=pÞL=2½ �

ðq�� k=pÞL=2½ �
2

�
J2

k qð1� �2Þ
1=2

r
� 	!

; ð15Þ

where the final integration of the orientation parameter � has

to be done numerically. In the presence of partial orientation

order, the latter integration can be carried out by including an

orientation distribution function. A factor Fk,n is introduced to

facilitate the formulation of the form factors pertaining to

higher-order helices with n > 1 (see below). In the case of a

single helix, n = 1 and Fk,1 = 1 for all values of index k. The

form factor is normalized to unity for q = 0.

In the long-wavelength limit q! 0, the form factor can be

expanded in powers of q according to

PnðqÞ ¼ 1�
R2

gq2

3
þOðq4Þ; ð16Þ

with radius of gyration Rg. In the expansion of equation (15),

the term proportional to J2
0 gives

1�
ðL2=12þ r2Þq2

3
þOðq4

Þ; ð17Þ

whereas the term proportional to J2
k with index k = 1 contri-

butes

2p2r2 1� cosðL=pÞ½ �=L2

 �

q2

3
þOðq4

Þ: ð18Þ

Terms proportional to J2
k with index k > 1 contribute to the

fourth and higher powers of q and are, hence, irrelevant in the

derivation of second moment Rg. Accordingly, one obtains

R2
g ¼

L2

12
þ r2 þ

2F1;np2r2 cos L=pð Þ � 1½ �

L2
: ð19Þ

The third term on the right-hand side vanishes if the length of

the helix L matches an exact multiple of the pitch 2�p. The

third term also vanishes for diametrically symmetric helices

with number of strands n > 1 (see below).

In practice, often local helical structure is probed with qL�

1. Note that �/(qL) is the expression of the form factor of a

rod with length L in the qL� 1 limit. Accordingly, in order to

derive the corresponding limiting expression for the helix, we

will evaluate the normalized form factor

lim
qL=2!1

qL

�
Pn
ðqÞ: ð20Þ

With the help of the following representation of the Dirac

delta function,

lim
t!1

1

�t

sin2
ðxtÞ

x2
¼ �ðxÞ; ð21Þ

and the exact expression of the form factor [equation (15)], we

obtain

lim
qL=2!1

qL

�
PnðqÞ ¼

Z1

�1

d�

(
�ð�ÞJ2

0 qð1� �2Þ
1=2

r
� 	

þ
X1
k¼1

Fk;n � �þ
k

pq

� �
þ � ��

k

pq

� �� �
J2

k qð1� �2
Þ

1=2
r

� 	)
:

ð22Þ

The integration over � gives � = 0 and � = k/pq for the terms

proportional to J2
0 and J2

k, respectively. Furthermore, the

summation index k � pq because the orientation variable is

0 � � � 1. Accordingly, for values of q far exceeding the

inverse length of the helix, one obtains the high-q limiting

form

Pn
qL�1ðqÞ ¼

�

qL
J2

0ðqrÞ þ 2
Xbpqc

k¼1

Fk;n J2
k q2

�
k

p

� �2
" #1=2

r

8<
:

9=
;

0
@

1
A:
ð23Þ

The exact and limiting form-factor formulas pertaining to a

single helix, equations (15) and (23) with n = 1, respectively,

are compared in Fig. 2(a). They are indiscernible for, say, qL >

10. At very high values of qL, the scattering is given by a rod-

like segment of the strand with form factor �/(ql) (l being the

contour length of the strand). In the intermediate qL range,

the structure factor shows oscillatory behaviour. This oscilla-

tory behaviour is more clearly shown by the normalized form

factor qLP1/� in Fig. 2(b). Variation of the radius and pitch

gives a shift in the positions of the maxima and minima but no

qualitative change in oscillatory behaviour.

In the derivation of the form factor, the effect of the finite

cross section of the strand has been ignored. Because of the

difference in length scales, this effect can be taken into

account by multiplication of the form-factor formulas with

that pertaining to the cross section Pc(q). In the case of a
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Figure 2
(a) The form factor of a single helix according to the exact (solid curve)
and limiting (dashed curve) formulas. (b) The normalized form factor
qLPn/� pertaining to single (n = 1), diametrically symmetric (n = 2) and
sixth-order (n = 6) helices. Notice that qLPn/� tends to L/(nl) for qL!
1. For both (a) and (b), the parameters are radius r = 5, pitch 2�p = 20
and helix length L = 250.



Gaussian radial strand profile with second moment hr2
s i, the

cross-sectional form factor is given by PcðqÞ ¼ expð�q2hr2
s i=2Þ.

3. Double helix

In the case of a double helix, one needs to average the scat-

tering amplitudes pertaining to the two individual coaxial

strands. Let the azimuthal angle between the two strands be �
[see Fig. 3(a)]. A point on strand � is then described by

position vector

s� ¼ r cos
z

p
�
�

2

� �
iþ r sin

z

p
�
�

2

� �
jþ z k; ð24Þ

so that

q � s� ¼ q�zþ qð1� �2
Þ

1=2
r cos ’	

�

2
�

z

p

� �
: ð25Þ

We first consider the situation of two diametrically opposed

strands with � = �. The calculation of the scattering amplitude

involves averaging of the orientation-dependent coefficients

pertaining to the two strands, that is

1

2
Ck �; ’þ

�

2

� 

þ Ck �; ’�

�

2

� 
h i
¼ cos

k�

2

� �
Ckð�; ’Þ:

ð26Þ

The derivation of the form factor closely follows that for the

single helix with almost identical results, but now with factor

Fk;2 ¼ cos2ðk�=2Þ (n = 2). In this specific case, the summation

is restricted to the terms with index k being even. As we will

see below, the restriction of index k terms to multiples of the

number of strands n is a common feature for diametrically

symmetric helices with constant azimuthal-angle spacing

between successive strands. A comparison with the result for

the single helix is shown in Fig. 2(b). The double-helical

structure exhibits much stronger oscillatory behaviour, coming

from interference of the two opposing strands.

For any value of the enclosed azimuthal angle �, the

average of the orientation-dependent coefficients takes the

form

1

2
Ck �; ’þ

�

2

� �
þ Ck �; ’�

�

2

� �� �
¼ cos

k�

2

� �
Ckð�; ’Þ:

ð27Þ

Again, the resulting formulas for the form factor P2(q) and its

high-q limiting form P2
qL�1ðqÞ are almost identical to those for

the single helix, but now with factor

Fk;2ð�Þ ¼ cos2 k�

2

� �
ð28Þ

depending on the enclosed angle �. This general result applies

to helices exhibiting a major and minor groove, such as DNA

in double-stranded form. With the width of the major and

minor groove being w+ and w�, respectively, one obtains

� ¼
�w�

wþ þ w�
: ð29Þ

The effect of the presence of grooves of different width,

through variation of �, is illustrated by a contour plot of the

normalized form factor qLP2/� in Fig. 4. For � = 0 and �, the

results for the single and diametrically symmetric double helix

are recovered [also shown in Fig. 2(b)]. For intermediate

values of �, the characteristic oscillation changes with gradual

shifts in the positions of the maxima and minima.

4. Triple helix

A triple helix, composed of three strands, is characterized by

two azimuthal angles (�1 and �2) [see Fig. 3(b)]. We will first

consider the easier-to-handle situation with �1 = �2 = �. The

averaging of the orientation-dependent coefficients over the

three strands in the calculation of the scattering amplitude

then takes the form

1

3
Ckð�; ’Þ þ Ckð�; ’þ �Þ þ Ckð�; ’� �Þ
� 	
¼

1

3
1þ 2 cosðk�Þ½ �Ckð�; ’Þ; ð30Þ

and subsequent calculation of the form factor gives
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Figure 4
A contour plot of the normalized form factor qLP2/� pertaining to a
double helix with major and minor grooves with variable enclosed angle
�. The parameters are radius r = 5, pitch 2�p = 20 and helix length L =
250.

Figure 3
(a) The transverse cross section of a double helix with enclosed azimuthal
angle �. (b) As in (a) but for a triple helix with azimuthal angles �1 and �2.



Fk;3ð�Þ ¼
1

9
1þ 2 cosðk�Þ½ �

2: ð31Þ

For a diametrically symmetric triple helix with � = 2�/3, the

summation is restricted to values of k being multiples of 3. A

contour plot of the normalized form factor qLP3/� is shown in

Fig. 5(a). The positions of the minima and maxima are similar

to those of the double helix, shown in Fig. 4. Furthermore, the

form factors for the single and diametrically symmetric double

helix are recovered for � = 0 and �, respectively.

In the general case with different angles �1 and �2, the

average of the orientation-dependent coefficients cannot be

expressed in terms of a single coefficient Ck(�, ’). It can

however be written as the sum of two coefficients with

different azimuthal angles as

1

3
Ckð�; ’Þ þ Ckð�; ’þ �1Þ þ Ckð�; ’� �2Þ
� 	
¼

1

3

�
2 cosðk�þÞCkð�; ’þ �

�Þ þ Ckð�; ’Þ
	
; ð32Þ

with �+ = (�1 + �2)/2 and �� = (�1� �2)/2. The form factor can

still be calculated in the usual way, but now one needs the

additional orthogonality and normalization properties

1

2�

Z2�
0

d’Ckð�; ’ÞC
?
mð�; ’þ �Þ ¼ 0; k 6¼ m; ð33Þ

and

1

2�

Z2�
0

d’Ckð�; ’ÞC
?
kð�; ’þ �Þ ¼

sin2
ðq�þ k=pÞL=2½ �

ðq�þ k=pÞL½ �
2 expðik�Þ

þ
sin2
ðq�� k=pÞL=2½ �

ðq�� k=pÞL½ �
2

expð�ik�Þ: ð34Þ

The resulting expressions for P3(q) and P3
qL�1ðqÞ are almost

identical to those for the single helix but with factor

Fk;3ð�1; �2Þ ¼
1

9

n
3þ 2 cosðk�1Þ þ cosðk�2Þ

� 	
þ 2 cos kð�1 þ �2Þ

� 	o
: ð35Þ

As in the case of the double helix, this general expression

takes into account the possible presence of grooves of

different widths. Furthermore, it reduces to equation (31) for

the situation with �1 = �2 = �.

The effect of the asymmetry of the triple helix, through

variation of �1 but fixed �2, is illustrated by contour plots of

the normalized form factor qLP3/� in Figs. 5(b)–5(d). Rather

complex behaviour is observed with a strong dependence of

the positions of the maxima and minima on the cross-sectional

distribution of the strands.

5. Higher-order helices

We now consider a set of n coaxial strands. The set is twisted

about its central axis and diametrically symmetric with a

constant spacing of 2�/n in azimuthal angle between succes-

sive strands. Owing to its symmetry, the average of the

orientation coefficients in the scattering amplitude can be

expressed in terms of a single coefficient Ck(�, ’) according to

1

n

Xn

m¼1

Ck �; ’þ
m2�

n

� �
¼ Gk;n Ckð�; ’Þ: ð36Þ

With equation (10), one readily obtains

Gk;n ¼

1

n
2
Xn=2

m¼1

cos
k�ð2m� 1Þ

n

� �( )
; even n;

1

n
1þ 2

Xðn�1Þ=2

m¼1

cos
k�2m

n

� �" #
; odd n:

8>>>>>><
>>>>>>:

ð37Þ

For number of strands n in the range 2–6, the results are

collected in Table 1. Results for the diametrically symmetric

double and triple helices with n = 2 and 3, respectively, agree

with those derived in previous sections. Evaluation of equa-

tion (37) as well as the entries in Table 1 shows that

Fk;n ¼ G2
k;n ¼ 1 for index k being multiples of n, and Fk,n = 0

otherwise. This implies that, for a diametrically symmetric

helix composed of n strands with a constant azimuthal spacing

of 2�/n, the index k summation in the form-factor expression

is restricted to the nk terms, that is even k for n = 2, k being a

multiple of 3 for n = 3 etc.

The normalized form factors for the single, diametrically

symmetric double and sixth-order helices are compared in

Fig. 2(b). With increasing number of strands n, the normalized

form factor exhibits increasingly irregular oscillatory beha-

viour and tends to lower values L/(nl) for qL!1.

Following expansion of the form factor in powers of q, one

obtains the radius of gyration of the diametrically symmetric

helix as
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Figure 5
(a) A contour plot of the normalized form factor qLP3/� pertaining to a
triple helix with variable enclosed angle �1 = �2 = �. (b)–(d) As in (a) but
for the general case with variable angle �1 and fixed angles �2 = �/3, 2�/3
and �, respectively. For all plots, the parameters are radius r = 5, pitch
2�p = 20 and helix length L = 250.



R2
g ¼

L2

12
þ r2; ð38Þ

which depends on the radius and length but not on the number

of strands (recall that k 
 n and J2
k terms with k > 1 do not

contribute to the second moment).

6. Twisted fibres

So far, we have considered helical structures with an equal

radial distance r from the central axis for all strands. However,

fibres are generally made of a twisted bundle of strands with a

range of radial distances. As an example, we will derive the

form factor of a hexagonal fibre with a transverse cross section

as illustrated in Fig. 6(a). In this particular example, there is

one strand at the core, six strands at a radial distance R and

another six strands at distance 31/2R (a total of 13 strands). All

off-centre strands have the same helical pitch but their

curvature depends on R. The strand at the core is in a straight

configuration.

The scattering amplitude of the fibre can be calculated by

taking the weighted average of the scattering amplitudes

pertaining to the strands at the core and the two radial

distances, that is

�q ¼
1

13
�qð0Þ þ 6�qðRÞ þ 6�qð3

1=2RÞ
� 	

: ð39Þ

For the strand at the core, the scattering amplitude is simply

given by

�qð0Þ ¼
sinðq�L=2Þ

q�L=2
: ð40Þ

The sets of six strands (n = 6) at radial distances R and 31/2R

are diametrically symmetric with an azimuthal-angle spacing

of �/3. Furthermore, the set of strands at distance 31/2R is

rotated by a phase factor of �/6 with respect to the set at

distance R. With the help of the results obtained in the

previous section, the corresponding scattering amplitudes take

the forms

�qðRÞ ¼
sin q�L=2ð Þ

q�L=2
J0 qð1� �2Þ

1=2R
� 	

þ 2
X1
k¼1

Gk;6 Ckð�; ’Þ i
kJk qð1� �2Þ

1=2R
� 	

ð41Þ

and

�qð3
1=2RÞ ¼

sin q�L=2ð Þ

q�L=2
J0 qð1� �2

Þ
1=231=2R

� 	
þ 2

X1
k¼1

Gk;6 Ck �; ’þ
�

6

� 

ikJk qð1� �2

Þ
1=231=2R

� 	
ð42Þ

The Gk,6 term restricts the index k summation to multiples of

6. The form factor of the hexagonal fibre can now be calcu-

lated in the usual way. The result is given by

PhexðqÞ ¼
62

132

1

2

Z1

�1

d�

 
sin2
ðq�L=2Þ

ðq�L=2Þ2

�

�
1

6
þ J0 qð1� �2Þ

1=2R
� 	

þ J0 qð1� �2Þ
1=231=2R

� 	�2

þ
X1
k¼1

sin2
ðq�þ 6k=pÞL=2½ �

ðq�þ 6k=pÞL=2½ �
2 þ

sin2
ðq�� 6k=pÞL=2½ �

½ðq�� 6k=pÞL=2�2

� �

� J6k qð1� �2Þ
1=2R

� 	
þ ð�Þ

kJ6k qð1� �2Þ
1=231=2R

� 	
 �2

!
;

ð43Þ

with its high-q limiting form
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Figure 6
(a) The transverse cross section of a hexagonal fibre. Note that there is
one strand at the core (black), six strands at a radial distance R (grey) and
another six strands at distance 31/2R (white). (b) The normalized form
factor qLPhex/� of a twisted (pitch 2�p = 20) and straight (2�p =1) fibre
with a cross section as illustrated in (a). The other parameters are R = 5
and fibre length L = 500.

Table 1
Factor Gk,n for symmetric helices composed of n strands with azimuthal-
angle increment 2�/n for n in the range 2–6.

n Gk,n

2 cos
k�

2

� �

3 1þ 2 cosðk2�=3Þ

3

4 cosðk�=4Þ þ cosðk3�=4Þ

2

5 1þ 2 cosðk2�=5Þ þ 2 cosðk4�=5Þ

5

6
cosðk�=6Þ þ cosðk�=2Þ þ cosðk5�=6Þ

3



Phex
qL�1ðqÞ ¼

62

132

�

qL

"
1

6
þ J0ðqRÞ þ J0ðq31=2RÞ

� �2

þ
Xbpq=6c

k¼1

�
J6k q2 � ð6k=pÞ2

� 	1=2
R

n o

þ ð�Þ
k
J6k q2

� ð6k=pÞ
2

� 	1=2
31=2R

n o�2
#
: ð44Þ

Normalized form factors qLPhex/� for a twisted and straight

hexagonal fibre are shown in Fig. 6(b). The effect of twisting

comes to the fore at higher qL values. In the qL range up to

the first maximum, it is sufficient to include the J0 terms only.

The radius of gyration of the hexagonal fibre does not

depend on the pitch and is given by

R2
g ¼

L2

12
þ

24R2

13
: ð45Þ

For fibres of different symmetry and/or different number of

concentric layers of strands, the formalism can easily be

adapted by taking the weighed average of the relevant layer’s

scattering-length amplitudes (depending on radial distance,

number of strands and relative orientation).

7. Conclusions

Formulas have been presented for the isotropically averaged

single-chain scattering function (form factor) of single, double,

triple and higher-order helices, and a twisted hexagonal fibre.

Form factors of double and triple helices with grooves of

different widths have also been derived. The formulas include

the longitudinal and transverse interference over the pitch and

radius of the helices, respectively. Limiting equations valid for

values of momentum transfer far exceeding the inverse length

of the helical structures have also been presented. The results

are cast in a general formalism for easy adaptation of the

number of strands per helix and cross-sectional symmetry.

Furthermore, the formalism pertaining to the fibre can easily

be adapted for fibres of different symmetry and/or number of

concentric layers of strands. The form-factor expressions may

be useful for the analysis of small-angle scattering data of

randomly or partially oriented (bio)macromolecules or

molecular assemblies exhibiting helical structural arrange-

ments.
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