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Finite-element modelling has been used to simulate local strains and stresses

within free-standing polycrystalline slabs of W, Cu and W–Cu, heated with free

or constrained boundaries. The elastic strain values in crystallites that satisfied

the diffraction condition were used to simulate the lattice strain data that would

be obtained from diffraction analysis, from which the average stresses within

diffracting domains were computed. Comparison of direct-space stresses in the

model with the average stresses determined from diffraction analysis shows that

the representative volume elements (RVEs) required to obtain equivalent

stress/strain values depend on the deformation mode suffered by the material.

Further, the direct-space and diffraction stress values agree only under strict

sampling and strain/stress uniformity conditions. Consequently, in samples

where measurements are conducted in volumes smaller than the RVE, or where

the uniformity conditions are not satisfied, further experimental and numerical

techniques might be needed for the accurate determination of applied or

residual stress distributions.

1. Nomenclature

r0: uniform far-field stress field applied at the sample

boundary.

���0: (homogeneous) strain matrix induced in an equivalent

isotropic sample in response to r0.

V0: total sample volume.

hriV: average stress over arbitrary volume V.

r: average stress for the entire sample volume V0.

hrihkl
V : average stress for all grains within volume V

diffracting into reflection hkl.

r(Q), ���(Q): local stress and strain matrices, respectively, at

point Q.

C(Q), S(Q): local stiffness and compliance matrices,

respectively, at point Q.

E, �: average Young modulus and Poisson ratio, respec-

tively, of the sample volume.

RLE, RAE, RVE: representative line, area and volume

elements, respectively.

RVEDS: direct-space representative volume element.

RVEhkl
diff : diffraction representative volume element.

P: sample coordinate system.

L: laboratory coordinate system.

auv: components of the direction cosine matrix linking P

and L.

r*(Q), ���*(Q): interaction stress and strain matrices,

respectively, at point Q (Heyn stresses and strains).

MS: meso-scale.

r**(Q), ���**(Q): Saint-Venant stresses and strains, respec-

tively, at point Q.
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qhkl: unit scattering vector normal to the diffracting planes.

qhkl || ~LL3.

d
q
hkl: atomic plane spacing of a particular family of planes

[hkl] along the specific scattering vector qhkl.

d0
hkl: equilibrium (unstressed) plane spacing of the [hkl]

family of planes.

h"q
hkliVhkl

� 
: average atomic lattice strain along qhkl.

�,  : angles describing the orientation of qhkl in the sample

coordinate system P.

Vhkl
� : total volume of all grains contributing to the hkl Bragg

peak at the particular orientation defined by the �,  angles.

"0ij: local strain tensor components in the laboratory coor-

dinate system L.

h"033iVhkl
� 

: components of the average strain tensor for V� in

the laboratory coordinate system L.

h"uvi
hkl
V� 

: components of the average strain tensor for V� in

the sample coordinate system P.

"hkl
ij : reflection average strains for the total reflection volume

Vhkl
M ¼

P
uðV

hkl
� Þu in the sample coordinate system P.

~PP�: direction in the sample coordinate system P along which

the biaxial stress component �hkl
� is measured.

DEC: quasi-isotropic diffraction elastic constants

hð1þ �Þ=Eihkl and h�=Eihkl for reflection hkl.

Nhkl
 : number of grains diffracting into a given hkl reflection

at a given  tilt.

�t: coefficient of linear thermal expansion (CTE) of phase t.

"Th, t: isotropic thermal strain for (cubic) phase t.

h"iji
t
i, h�iji

t
i: average strain and stress, respectively, of grain

number i and phase t in the P coordinate system.

h"iji
t
 , h�iji

t
 : average strain and stress, respectively, in the P

coordinate system of the grain set diffracting at a given  
orientation for phase t.

ZI: Zener index.

2. Introduction

The measurement of internal stresses and strains in crystalline

materials using diffraction techniques has been widely prac-

tised for almost a century (Lester & Aborn, 1925). There is a

broad literature base which supports these measurements,

including monographs (Noyan & Cohen, 1987; Hauk, 1997;

Hutchings et al., 2005), best-practice manuals (Ahmad et al.,

2003; Fitzpatrick et al., 2005) and measurement standards

(ASTM, 2020), as well as numerous articles in scientific and

trade journals. These measurements have a wide range of

technological applications, and are performed in the field and

in laboratories to measure applied or residual stresses (Lee et

al., 2017; Ramirez-Rico et al., 2016).

Since the results of such measurements are utilized in

design, quality assurance and failure analysis of critical engi-

neering components, significant effort has gone into their

validation and verification. Most of this work was carried out

in the last half of the previous century and identified two key

issues:

(i) For specimens subjected to directional plastic deforma-

tion, such as uniaxial elongation or rolling, the computed

stress results did not agree with the results of mechanical

relaxation techniques; diffraction-based stress distributions

were constant across the sample cross section, which violated

the equations of equilibrium. Such non-physical stress distri-

butions were termed ‘fictious’ by some researchers (Cullity,

1964, 1976; Abuku & Cullity, 1971).

(ii) The variation in lattice strains with direction within

some samples did not obey the coordinate transformation

rules for second-rank symmetric tensors as dictated by elas-

ticity theory; that is, the measured elastic lattice strains did not

behave as expected for (second-rank symmetric) tensor

elements. This second issue was not limited to specimens

subjected to directional plastic flow (Bollenrath et al., 1967;

Taira et al., 1971; Marion & Cohen, 1974, 1975, 1976).

Different groups attributed these observations to various

causes, and over the years many techniques have been

proposed to obtain the ‘true’ continuum-mechanics-compa-

tible elastic strain/stress distributions in such samples

(Greenough, 1949; Bollenrath et al., 1967; Marion & Cohen,

1975; Peiter & Lode, 1983; Brakman, 1983; Peiter, 1986;

Daymond, 2004; Ortner, 2006, 2009, 2011). These and similar

formalisms, however, have not found widespread acceptance,

and most have been (effectively) neglected, along with the

issues they were designed to address. The great majority of the

current analysis algorithms implemented in stress-scanning

machines at large facilities such as neutron sources or

synchrotrons, or supplied to end-users with laboratory-based

or portable diffraction systems, are ‘black boxes’; these do not

have explicit provisions to alert end users when the data

acquired by such systems do not fit the assumptions inherent

in basic theory used in the analysis.

In the current work we investigated how diffraction-based

strain/stress results can diverge from those predicted by linear

elasticity theory using comprehensive numerical simulations

of applied/residual stress distributions. For this purpose, we

constructed an ideal polycrystalline model where the shape,

orientation and location of all constituent crystallites were

specified. This model was populated with randomly placed

elastically anisotropic (Cu) or elastically isotropic (W) crys-

tallites for the single-phase simulations, and with Cu and W

grains for the two-phase case. Finite-element modelling

(FEM) was used to obtain the local stress/strain tensors at all

nodes within the models in response to (i) free thermal

expansion and (ii) far-field biaxial stress states induced by

constrained thermal expansion. These results represent the

‘direct-space’ stress/strain distributions which correspond to

stresses determined by mechanical methods (Prime, 2009;

Schajer, 2013). The local strain tensors were also used to

calculate the lattice strains along the various diffraction

vectors for the individual grains. These were used to calculate

the stress states in various crystal volumes with the traditional

diffraction stress analysis formalism. Thus, we could compare

the FEM-based stress values with those determined from

diffraction analysis.

Our results show that differences in elastic strains/stresses

measured with mechanical or diffraction methods originate

from the (very) different sampling modes and, consequently,
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the different averages taken by the respective probes. Results

from the two approaches agree if and only if the volumes

probed by diffraction are comparable in size or greater than

representative volume elements (Bonda & Noyan, 1992, 1996)

of the particular analysis. If these conditions are not met,

measurement of internal elastic strain/stress states using any

approach becomes non-trivial and requires information about

local grain topology, boundary conditions, gradient para-

meters etc. within the measurement volumes.

3. Theory

Most classical residual stress determination formalisms

applicable to polycrystalline materials utilize linear elasticity

theory, usually with isotropic material constants. These form-

alisms contain implicit assumptions about the homogeneity of

the material and the dimensionality and spatial variation of

strain/stress fields in regions of interest. In polycrystalline

materials these assumptions are not valid at the local scale but

may be ‘statistically’ satisfied for larger domains. These issues

are reviewed below. Relevant concepts of linear elasticity

analysis, the critical assumptions associated with this analysis

and a consistent set of definitions used in this article are

summarized in Appendix A.

3.1. Stress/strain distributions in heterogeneous materials

Polycrystalline solids belong to the set of heterogeneous

materials. In such systems the elastic moduli vary with position

in the solid body. Such variation might be systematic, as in

fibre or laminate composites, or random, as in non-textured

polycrystalline materials. Here we discuss the case of a non-

textured single-phase polycrystalline solid subjected to a

uniform far-field stress field r0 on its boundary. In such

systems the heterogeneous (position-dependent) distribution

of elastic moduli within the sample volume results in hetero-

geneous distributions of stress and strain. Consequently, one

must specify the positions or volumes for which stress/strain

tensors are reported. In actual direct-space experiments the

measured tensors will be averages over the information

domain (line, area or volume) sampled by the measurement

technique. Diffraction values are volume averages. In what

follows such average quantities will be denoted by angle

brackets, hriV, where any subscript specifies the region within

which the particular parameter is averaged. If the average is

taken over the entire specimen volume V0, the average

quantities are indicated by an overline, e.g. hriV0 ¼ r. For

diffraction-based averages, any reflection dependencies are

specified as superscripts, hrihkl
V .

Consider an ideal single-phase polycrystalline body where

all crystallites are of the same shape and size. A cross section

of such a sample, based on hexagonal prism-shaped crystal-

lites, is shown in Fig. 1(a). We assume that: (i) the dimensions

of the body are many orders of magnitude larger than the

dimensions of its constituent crystallites, and all crystallites

have dimensions which are several orders of magnitude larger

than the unit-cell parameters of the material; (ii) all unit cells

in all crystallites are ‘perfect’ such that, using symmetry

considerations, any given crystallite can be replaced by a

homogeneous continuum with identical stiffness/compliance

tensors at all points within it; (iii) each crystallite is solidly

bonded to all of its neighbours across mutually shared facets

with no gaps; (iv) the boundaries between crystallites (grain

boundaries) are infinitesimally thin perfect geometric planes;

(v) any internal loads or displacements are completely trans-

ferred across these boundaries; and (vi) all crystallites are

randomly oriented in space with respect to a single Cartesian

sample coordinate system P (with ~PP1; ~PP2 in the sample

surface) and there is no correlation in the lattice orientations

of neighbouring crystallites. For simplicity, we further assume

that the unit cell of the material has cubic symmetry.

If this material is subjected to a uniformly distributed

external plane stress field r0, the local stress and strain

matrices at any point Q are linked by the local elastic moduli

C(Q) and S(Q),

rðQÞ ¼ CðQÞ ���ðQÞ; ð1aÞ

���ðQÞ ¼ SðQÞ rðQÞ: ð1bÞ

Here C and S are symmetric 6 � 6 matrices (replacing fourth-

rank tensors) which are defined for the particular crystallite

(containing point Q) in the Pi coordinate system (Nye, 1985).

Since C and S change from grain to grain, local terms are

research papers

1146 Seren, Pagan and Noyan � Strain/stress fields measured by diffraction J. Appl. Cryst. (2023). 56, 1144–1167

Figure 1
(a) An ideal untextured single-phase polycrystalline sample consisting of
identical hexagonal prism-shaped anisotropic crystallites; the elastic
modulus Cijkl along any direction varies from grain to grain. (b) The
equivalent isotropic sample, representing the ideal sample with Young’s
modulus (E) and Poisson’s ratio (�) determined from averages of the
grain compliances over V � RVE. (c) Finite-element nodes in a cluster of
seven grains within the ideal sample. Here each (node) point within a
particular grain is a material point and the material is assumed to be
continuous between these nodes. (d) In a real crystalline material many
unit cells are needed to constitute such a material point. The same sample
coordinate system P is used for panels (a), (b) and (c).



heterogeneously distributed in the material volume (between

and within grains) to satisfy the compatibility and equilibrium

conditions (Appendix A). In general, these terms are not

equal to their far-field values. However, it is possible to

homogenize these terms by considering their average values

over length, area and volume elements.

In the volume V0 of the ideal specimen, any vector rlR
of

sufficient length, ||r|| = lR or greater, will sample (traverse) a

sufficient number NR or more of (random) crystal orientations

along its length, such that the average elastic moduli along rlR

will tend to the volume-averaged elastic moduli of the entire

specimen, E and �. We define lR as the ‘representative line

element’ (RLE). The stress–strain response along any vector r

with ||r|| � lR can be represented by a material point (defined

formally in Appendix A) in an equivalent isotropic material

[Fig. 1(b)] with elastic moduli E and �. In two and three

dimensions, the ‘representative area element’ (RAE) and

‘representative volume element’ (RVE) are similarly defined

(Bonda & Noyan, 1992; Salahouelhadj & Haddadi, 2010;

Harris & Chiu, 2015a,b; Marino et al., 2019).

Following Hill (Bishop & Hill, 1951; Hill, 1952), the average

elastic moduli can be defined by considering the energy

density in the equivalent elastic material with stress and strain

fields r0 and ���0,

hrilRh���ilR ¼

R
l�lR

r��� dl

l
¼ r ��� � r0���0; ð2aÞ

hriRAEh���iRAE ¼

R
A�RAE r��� dA

A
¼ r ��� � r0���0; ð2bÞ

hriRVEh���iRVE ¼

R
V�RVE r��� dV

V
¼ r ��� � r0���0: ð2cÞ

The product r0���0 is twice the actual energy density of the

sample defined in terms of measured macroscopic quantities.

Hill used equation (2c) to show that the average Young

modulus EVS
of an ideal single-phase polycrystalline sample

falls between the Voigt and Reuss limits (constant strain and

constant stress in all grains, respectively) and can be

approximated by the arithmetic mean of the elastic moduli for

these limits, provided that (i) the grain orientations in the

material are random and (ii) the sample is large enough with

respect to the grain size that all possible orientations are

adequately sampled. This ‘arithmetic mean’ approximation

had been experimentally demonstrated a decade earlier by

Neerfeld (1942).

In summary, as long as the strain response of an ideal single-

phase polycrystalline sample is measured in direct-space

domains equal to or larger than the representative domains

for the particular dimension, by a linear strain gauge along any

RLE, by an area strain gauge on any REA, or by a volumetric

strain measurement technique over any RVE, the measured

response will be ‘isotropic’ and the applied far-field stress can

be linked to these average strain tensors through Hooke’s law.

In this context, material domains larger than the representa-

tive elements are termed ‘quasi-isotropic’ (or ‘statistically

isotropic’). If the material is textured, similar representative

elements can be specified wherein all texture components of

an infinitely large bulk sample are adequately represented. For

such cases material domains larger than textured representa-

tive elements can be termed ‘quasi-anisotropic’ (or ‘statisti-

cally anisotropic’). Hill designates such material volumes as

‘macroscopically homogeneous’ (Hill, 1952); these can be

represented by equivalent homogeneous materials or material

points. We note that the procedure described above contains

an implicit prior homogenization step: the geometric points

(nodes in a finite-element mesh) in each grain under analysis

[Fig. 1(c)] correspond to volumes of material containing, at a

minimum, representative numbers of unit cells [Fig. 1(d)],

such that each point possesses the macroscopic physical

properties of the particular grain and can be considered a

‘material point’.

3.2. Scale-dependent stress/strain definitions in quasi-
homogeneous materials

Using the discussion on representative domain elements

one can define three direct-space domain scales for linear

elasticity analysis in the ideal polycrystalline sample shown in

Fig. 1(a):

Scale 1. For the set of material points {Q} within any crys-

tallite in the sample volume, the anisotropic Hooke law links

the local stresses and strains r and ���. To a first approximation

these terms can be expressed as perturbations around the

average stress/strain values, respectively, referred to the entire

sample volume:

rðQÞ ffi rðQÞ þ r�ðQÞ � r0
þ r�ðQÞ; ð3aÞ

���ðQÞ ffi ���ðQÞ þ ����ðQÞ � ���0
þ ����ðQÞ: ð3bÞ

Here, r* and ���* are position-dependent (local) interaction

stress/strain matrices arising to satisfy equations of force

equilibrium and displacement compatibility during the

collective deformation/distortion of the (bonded) aggregate of

anisotropic crystallites. These terms were first described by

Heyn in 1914 (Heyn, 1914; Masing, 1923). Following Garrod &

Hawkes (1963) and Krier et al. (1991), we term r* and ���* as

Heyn stresses and strains, respectively. If the local (total)

strain ��� at a material point could be measured, the local stress

r could be computed from the (general) Hooke law using the

appropriate single-crystal stiffness matrix C for the particular

grain. Then, if the far-field stress and strain terms r0 and ���0 are

known, the Heyn interaction terms r* and ���* at a particular

point Q can be computed.

Scale 2. If the measurement/analysis volume VM is larger

than the direct-space representative volume element RVEDS

then the interaction stress/strain matrices integrate to zero,

r0
� r ¼ inf

hriVM
¼r

R
VM

rðQÞ dV

VM

; ð4aÞ

���0
� ��� ¼ inf

h���iVM
¼ ���

R
VM
���ðQÞ dV

VM

: ð4bÞ
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Equations (1a), (1b), (4a) and (4b) indicate that the elastic

moduli linking r and ��� in RVEDS must be isotropic and equal

to the bulk elastic moduli E and �. Thus, the average strain

measured in such cases, ��� ¼ ���0, could be directly substituted in

the isotropic Hooke law with E and � to obtain the average

stress r ¼ r0. In such a measurement the interaction strain/

stress terms are not available. If, after such an experiment,

only r and ��� are reported, the polycrystalline material volume

is implicitly represented as being ‘macroscopically isotropic’

and can be represented by an equivalent homogeneous

material with elastic moduli E and � for further design, failure

analysis or ‘lifing’ considerations.

Scale 3. Meso-scale (MS) domains smaller than RVEDS

contain statistically unrepresentative numbers of grains and

other microstructural features. Consequently, the volume

averages of the interaction stress and strain fields may not

vanish, and the domain-averaged stress and strain values

hriMS and h���iMS need not be equal to the far-field values r0

and ���0 (Fig. 2). It follows that the average elastic moduli hCiMS

and hSiMS of such domains will contain domain-specific

configurational terms. These cannot be computed using only

the moduli of the constituent grains; all grain orientations,

geometries, topologies and interface properties must also be

specified. Also, one cannot obtain true elastic constants for

meso-domains by linking applied (far-field) stresses r0 to

measured local average strains h���iMS: since the average

interaction strains are finite, the computed moduli will contain

configurational components and thus will deviate from ‘true’

elastic moduli. Consequently, computation of the average

stress hriMS in an arbitrary meso-domain from measured

average strains is non-trivial.

The stresses and strains for all three domain scales discussed

above are symmetric second-rank tensor quantities and can be

transformed into other coordinate systems. For the first and

third cases these transformations are strictly defined only at

the particular point Q or for the centre of mass of the parti-

cular meso-domain, respectively. These transformed tensor

quantities cannot be generalized to any other point, any other

meso-domain or the entire sample without further analysis. In

addition, the dimensionalities of stress/strain tensors for

Scales 1 and 3 are not necessarily identical to the far-field

stress tensor (in Fig. 2 the far-field load is isotropic plane

stress). For material volumes larger than RVEDS Scale 2

applies; the average stress/strain tensors for all RVEDS are

identical to those of the equivalent representative material

and have the same form as any far-field stress/strain tensors.

3.3. Saint-Venant effects

The discussion so far has considered stress/strain distribu-

tions in the central regions (distant from boundaries) of

(large) solid parts subjected to uniformly applied far-field

loads. For samples with point loads and tractions, internal or

surface geometric discontinuities etc., local strain/stress

gradients can form (Appendix B). The Saint-Venant principle

asserts that these gradients vanish at sufficiently large

distances (� Saint-Venant length) from loading points and

other singularities (Toupin, 1965).

For polycrystalline materials, the strains/stresses caused by

such end effects will be superimposed on the Heyn strains/

stresses arising from the heterogeneous distribution of elastic

moduli and plastic flow. Thus, the local stress and strain values

at a given point Q can be written as

rðQÞ ffi r þ r�ðQÞ þ r��ðQÞ; ð5aÞ

���ðQÞ ffi ���þ ����ðQÞ þ �����ðQÞ; ð5bÞ

where r**(Q) and ���**(Q) are the local Saint-Venant strains

and stresses, respectively.

The presence of end effects has several ramifications. First,

for the volumes in such regions where there are stress/strain

singularities (point loads, sharp crack tips etc.), higher gradi-

ents of the displacement field must be included in the

expression for the strain energy function. Thus, formally, basic

linear elasticity theory is not applicable at such points. Second,

in Saint-Venant regions a single stress/strain measurement is

not sufficient to infer the far-field load distribution (Appendix

B, Fig. 16). Third, experimentally defining an RVEDS in such

regions is complicated. For example, in polycrystalline

materials it is possible to use texture measurements or elec-

tron backscatter diffraction orientation mapping to define

domains within Saint-Venant regions in which the elastic

moduli are statistically homogeneous, equal to those of any

RVEDS in central regions and identical to the elastic moduli of

the corresponding equivalent homogeneous material.

However, because of stress/strain concentration issues, linking

the strain tensors for such domains to applied (far-field)

stresses is non-trivial; integration over the entire Saint-Venant

volume is needed to average out the effects of stress

concentration.

Finally, specification of a local measurement volume in

Saint-Venant regions requires care. First, it may not always be
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Figure 2
Contour maps of nodal stresses (clockwise from top left) �11, �12, �33 and
�22 with node position for a meso-scale volume containing seven
anisotropic Cu grains. These were obtained from FEM analysis (Section
4) when the polycrystalline mesh shown in Fig. 1(a) was subjected to
uniform (isotropic) biaxial far-field stresses. Averaging these local stress
tensors over individual grains, or over this meso-domain, did not
eliminate Heyn stresses; the stress distributions in element, grain and
meso-domain volumes were not isotropic in the slab plane.



possible to infer the stress state of such regions by inspection.

Second, in regions of interest where steep strain gradients

exist, a small measurement volume might not contain enough

grains to constitute an RVE, introducing meso-domain issues.

Specification of a larger measurement volume to overcome

this issue would average over a large portion of the steep

strain gradient. In both cases such a measurement could yield

average strain/stress tensors which are not representative of

either the local or the far-field strain/stress tensors. In the case

of diffraction measurements, the relevant sampling issues are

exacerbated by the physics of the diffraction process. These

are discussed next.

3.4. Diffraction-based strain measurements

We limit our discussion to monochromatic diffraction

measurements performed on polycrystalline materials. The

(much) abbreviated treatment in this section is based on the

monograph by Noyan & Cohen (1987). It is extended to state

explicitly the major assumptions in this analysis, in particular

those which are relevant to applications of this formalism to

polycrystalline materials.

It is assumed that appropriate collimators are used to limit

the acquired diffraction signal to a particular region (volume)

of interest (ROI) and that the peak belonging to a single

reflection hkl originating from the ensemble of grains within

the ROI is analysed. In this ‘single-peak’ analysis, the atomic

plane spacing d
q
hkl of a particular family of planes {hkl} along

the specific scattering vector qhkl is obtained from Bragg’s law,

� ¼ 2dhkl sin 	hkl; ð6Þ

where 	hkl is the Bragg angle for the particular peak. The

scattering vector q is defined as qhkl = kd� k0, where kd and k0

are the wavevectors of the diffracted and incident rays,

respectively. The vector qhkl is perpendicular to the diffracting

planes, and qhkl, kd and k0 are coplanar. In the sample coor-

dinate system P, the scattering vector qhkl is described by two

measurement angles, � and  (Fig. 3).

The lattice strains are then computed from d
q
hkl,

h"q
hkliVhkl

� 
¼

d
q
hkl � d0

hkl

d0
hkl

¼
jjq0

hkljj

jjqhkljj
� 1: ð7Þ

Here d0
hkl is the equilibrium (unstressed) plane spacing and the

computed (lattice) strain is a diffraction average over the total

volume Vhkl
� of all grains contributing to the hkl Bragg peak at

the particular orientation defined by the �,  angles. We term

Vhkl
� a ‘ volume’, where for brevity the � dependency is not

explicitly stated (but is assumed).

Defining the (orthogonal) laboratory coordinate system L

such that qhkl k
~LL3, with ~LL2 in the plane defined by ~PP1 and ~PP2,

one can relate the strain tensors in the L and P coordinate

systems using the second-rank tensor transformation rule

(Appendix A),

h"q
hkliV� ¼ h"

0
33iVhkl

� 
¼ a3ua3vh"uvi

hkl
V� 
: ð8aÞ

Here, the primed average strain h"033i
hkl
V 

is defined along ~LL3 and

(unprimed) strains h"uvi
hkl
V� 

are defined in the sample coordi-

nate system P averaged over the grain volumes contributing to

the Bragg peak at sample orientation �,  . Substituting for the

direction cosines a3u and a3v,

h"033iVhkl
� 
¼

�
h"11iVhkl

� 
cos2 �þ h"12iVhkl

� 
sin 2�þ h"22iVhkl

� 
sin2 �

� h"33iVhkl
� 

�
sin2  þ h"33iVhkl

� 

þ h"13iVhkl
� 

cos�þ h"23iVhkl
� 

sin�
� �

sin 2 : ð8bÞ

Equation (8b) has six unknown variables h"ijiVhkl
� 

and one

measured parameter h"033iVhkl
� 

. The classical analysis uses six or

more independent h"033iVhkl
� 

values, measured at various inde-

pendent orientations �,  , in a simple least-squares regression

analysis to obtain the strains h"ijiVhkl
� 

in the sample coordinate

system. This approach involves the specification of six inde-

pendent laboratory coordinate systems Li (i = 1–6), each with

its unique measurement angles �i,  i, and posits that (i) all

coordinate systems Li and P share the same origin and (ii) all

h"033iVhkl
� 

are elements of the same (symmetric) second-rank

tensor. [Equation (8a) implicitly defines diffraction-based

strains as components of a second-rank tensor, an array of

numbers that transform according to the specified transfor-

mation rules under a change of coordinates (Nye, 1985).]

These assumptions are trivially satisfied for a homogeneous

material. For polycrystalline materials, however, the grain

populations belonging to each  volume Vhkl
� are mostly

independent; different grains satisfy the Bragg condition at

different angle pairs �i,  i (Noyan & Nguyen, 1987, 1988;

Chidambarrao et al., 1997). Consequently, equation (8b) links

the average strain tensor associated with each Li to the

average strain tensor associated with a unique laboratory

coordinate system Pi defined at the centre of mass of the grain

population diffracting at orientation angles �u,  u. Simulta-

neous solution of the set of these equations assumes that the

average strain tensors for the grain sets in the diffraction

condition are identical for all Pu; h"ijiVhkl
� 
� "hkl

ij for all

elements of fVhkl
� g,

h"033iVhkl
� 
¼ "hkl

11 cos2 �þ "hkl
12 sin 2�þ "hkl

22 sin2 �� "hkl
33

� �
sin2  

þ "hkl
33 þ "hkl

13 cos �þ "hkl
23 sin�

� �
sin 2 : ð8cÞ
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Figure 3
Definition of the angle � and orientation of the (orthogonal) laboratory
coordinate system L with respect to the sample coordinate system P.

Vectors ~PP1, ~LL�, ~PP2 and ~LL2 are in the plane of the sample surface. Vectors
~PP3, ~LL3, ~PP� and ~LL1 are coplanar.



"hkl
ij are the reflection-average strains defined for the total

reflection measurement volume Vhkl
M from which h"033iVhkl

� 
data

are obtained, with Vhkl
M ¼

P
UðV

hkl
� Þu; U is the number of

sampled orientations, u 2 (1, U).

Equation (8c) shows that the variation in h"033iVhkl
� 

with

sin2  must be linear when both shear strains "13 and "23 are

zero [for brevity, we neglect any curvature due to stress

gradients ~PP3 normal to the surface (Noyan, 1983a); this

simplification does not materially change any conclusions].

Such plots can be analysed for "ij using simple linear regres-

sion of h"033iVhkl
� 

versus sin2  data. If either (or both) of the

shear strains "13 and "23 are finite, the h"033iVhkl
� 

versus sin2  
plot will exhibit ‘ splitting’ for 	  values due to the sin 2 
term. The analysis in this case is also based on linear regres-

sion, with additional computation of some intermediate terms

(Noyan & Cohen, 1987). The average stresses �hkl
ij in the

reflection measurement volume Vhkl
M can then be computed

from Hooke’s law with appropriate elastic constants for the

diffracting ensemble.

If the polycrystalline material within the reflection

measurement volume Vhkl
M is statistically isotropic, the average

strain terms in equation (8c) can be expressed in terms of

average stresses in the sample coordinate system P using the

isotropic form of Hooke’s law,

h"033iVhkl
� 
¼

1þ �

E

� �hkl�
�hkl

11 cos2 �þ �hkl
12 sin 2�

þ �hkl
22 sin2 �� �hkl

33

�
sin2  þ

1þ �

E

� �hkl

�hkl
33

�
�

E

D Ehkl

�hkl
kk þ

1þ �

E

� ��
�hkl

13 cos�þ �hkl
23 sin�

�

� sin 2 : ð8dÞ

The reflection-average stresses �hkl
ij are assumed to be constant

in all  volumes, h�ijiVhkl
� 
� �hkl

ij .

The terms h(1 + �)/Eihkl and h�/Eihkl are diffraction elastic

constants (DECs) and depend on the Miller indices hkl of the

reflection used for obtaining h"033iVhkl
� 

. These can be computed

from single-crystal moduli using various approximations

(Noyan & Cohen, 1987). The reflection dependency arises

from the Bragg selectivity of the diffraction process; for each

diffracting grain within Vhkl
� , one member of the hkl family of

directions must be coincident with the laboratory axis ~LL3.

Thus, the set of diffracting grains for each  volume defines a

virtual fibre-textured ensemble with fibre axis [hkl]. For

random polycrystalline materials the (computed) DECs do

not depend on the measurement angles �,  since the (inde-

pendent) fibre-textured ensembles selected at each  tilt are

assumed to be identical.

In most practical measurements utilizing X-rays with ener-

gies below 10 keV, the stress terms in the direction of the

sample normal �hkl
3j (j = 1–3) in equation (8d) are assumed to

be zero due to the shallow penetration depth of the radiation.

In this case equation (8d) is further simplified,

h"033iVhkl
� 
¼

1þ �

E

� �hkl

�hkl
�

� �
sin2  �

�

E

D Ehkl

�hkl
kk : ð8eÞ

Here �hkl
� is the in-plane stress along the surface direction P�

(Fig. 3).

Equation (8e) also predicts linear h"033iVhkl
� 

versus sin2  .

From the slope of the fitted line one can directly compute the

in-plane stress �hkl
� using the appropriate DEC. This is the

classic ‘sin2  ’ method.

h"033iVhkl
� 

versus sin2  plots which do not exhibit regular

behaviour (linear or  split), such as those exhibiting statis-

tically significant oscillations, indicate that the average strain

states in all diffracting volumes sampled during the experi-

ment Vhkl
� are not identical, i.e. h"0ijiVhkl

� 
are heterogeneously

distributed in the total sampled reflection volume Vhkl,

h"0ijiVhkl
� 
¼ f ð�; Þ therefore h"ijiVhkl

� 
6¼ "ij: ð9Þ

In such cases the average strains h"0ijiVhkl
� 

predicted by equation

(8c) and its extensions deviate significantly from measured

h"033iVhkl
� 

versus sin2  data. Such deviations might occur if, for

example, Vhkl
� do not constitute representative volume

elements.

3.5. Defining representative volume elements for diffraction
measurements

There are numerous experimental and numerical studies of

representative volume elements RVEDS in direct space

(Bonda & Noyan, 1992, 1996; Harris & Chiu, 2015a,b; Vel et

al., 2016; Marino et al., 2019). In contrast, there has been very

little discussion of the conditions under which grain ensembles

sampled in diffraction strain/stress measurements constitute

(diffraction) representative volume elements RVEhkl
diff.

Consider an ideal untextured single-phase polycrystalline

material with anisotropic grains subjected to uniform far-field

plane stresses at its boundary [Fig. 1(a)]. Any direct-space

measurement volume VM-DS � RVEDS can be represented by

an equivalent isotropic material volume or material point with

elastic moduli E; � linking the far-field strains and stresses ���0

and r0 in VM-DS. When diffraction is used to illuminate VM-DS

to obtain a set of average strain data fh"0ijiVhkl
� 
g along inde-

pendent fð~LL033Þ�; g, these data originate from a set of inde-

pendent  volumes fVhkl
� g. These, and the total reflection

volume Vhkl
M ¼

P
UðV

hkl
� Þu, are (proper) subsets1 of VM-DS,

Vhkl
M 
 VM-DS: If the (measured) variation in h"033iVhkl

� 
with

sin2  is linear and fh"0ijiVhkl
� 
g are used, with the appropriate

form of equations (8a)–(8e), to compute the average stress

tensor rhkl in the sample coordinate system P, it is assumed

that ���hkl , h(1 + �)/Eihkl, h�/Eihkl and rhkl will be identical for all

ðVhkl
� Þu (u!1) which could be measured within the direct-

space volume VM-DS for a given reflection hkl. Thus, the total

reflection volume Vhkl
M is assumed to be a ‘virtual’ homo-

geneous material with ideal fibre texture (with texture axis

[hkl]) subjected to uniform far-field stresses on its boundary.
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1 For an untextured polycrystal, Vhkl
M � VM-DS. The volume fractions of grains

contributing to a given reflection can be computed from the classical Lorenz
factor (Öztürk et al., 2014).



This is the fundamental assumption of diffraction strain/stress

analysis using a single reflection. Since this assumption is only

asserted for the particular reflection, it is not intimated that

h"033iVhkl
� 

versus sin2  data from other reflections must also

exhibit regular behaviour or that all reflection volumes have

identical stress/strain states.

Consider now the case where two (or more) independent

reflections are used to obtain independent linear h"033iVhkl
� 

versus sin2  plots within the direct-space volume VM-DS. Thus,

each sampled reflection volume Vhkl
M contains its own homo-

geneous strain/stress distributions. If statistically representa-

tive grain populations are sampled for each reflection, such

that any Heyn stresses are averaged out, the average stresses

computed for each reflection, rhkl and rh0k0 l0 , would be equal to

the far-field stress r0 acting on the boundaries of the real-

space volume VM-DS. However, for independent reflections,

the diffraction elastic constants h(1 + �)/Eihkl and h�/Eihkl are

not identical or equal to the bulk values. Thus, if rhkl � r0,

then """hkl
6¼ """0. This is physically possible, since Vhkl

M are

distributed interpenetrating volumes in direct space; fibre-

textured volumes Vhkl
M corresponding to each reflection, each

with a different average strain """hkl , cannot be continuous

direct-space volumes within VM-DS due to Saint-Venant

compatibility conditions.

On the basis of this discussion, a diffraction representative

volume RVEhkl
diff for an untextured single-phase material must

satisfy the following conditions:

(i) The variation in h"033iVhkl
� 

versus sin2  measured from

grains within RVEhkl
diff for the particular reflection must be

linear (regular) within experimental error.

(ii) h"033iVhkl
� 

values must be stable with grain population: for

a given illuminated volume, the addition of more grains for a

particular L�, orientation, or sampling additional grains at

new independent orientations, should not change the results of

the regression analysis outside error bounds.

(iii) The average stress tensor rhkl computed from the

diffraction data using Neerfeld–Hill or Kröner DECs must be

equal to the far-field stress tensor r0 acting on the boundaries

of the smallest direct-space volume VM-DS containing the set of

diffracting grains described by Conditions (i) and (ii). We note

that specifying rhkl � r0 for all hkl does not indicate that the

material is at the Reuss limit; each point within VM-DS has

heterogeneous stress/strain distributions which are averaged

to zero for VM-DS � RVEDS.

For an ideal non-textured single-phase polycrystal with

equiaxial grains and a unimodal size distribution, all reflec-
tions would be expected to have similar RVEhkl

diff. For a real
sample, however, one needs to test whether, for each reflec-
tion, the measured data originate from an RVEhkl

diff . For cases
where the far-field stress is known, all three conditions can be
tested experimentally. For samples with significant inter-
granular residual stress distributions, the first two conditions
might be relatively easy to test, but verifying the third

condition, rhkl � r0, might be problematic. If multiple
reflections in a single-phase material yield the same stress
value, rhkl ¼ rh0k0 l0 ¼ r, it is more likely that r! r0; this is a
necessary but insufficient condition. However, this test is

inapplicable to multi-phase materials. Consider a two-phase
random polycrystalline aggregate loaded into the plastic flow

regime, where one phase is much weaker. While a strain gauge

mounted on such a sample will average over strains in both

phases, diffraction can only interrogate one phase at a time:

Heyn stresses arising in response to the systematic partitioning

of plastic deformation cannot be averaged out within a single

phase. Thus, the stress/strain tensors measured by diffraction

from each phase will not be equal to the (direct-space) far-

field stresses acting on the specimen boundary. Similar issues

can also arise in textured single-phase materials, since slip and

anisotropic elastic moduli depend on crystallographic orien-

tation; texture components with different mechanical

responses can act as virtual phases.

The discussion presented above shows that specification of

representative volume elements in diffraction measurements

does not depend only on ‘elastic anisotropy’. The issue can be

quite challenging if plastic deformation is systematically

partitioned between crystal groups of different orientations

and/or between different phases. To investigate these issues,

we used finite-element modelling.

4. Finite-element modelling

The basic modelling approach is based on our previous work

(Noyan & Nguyen, 1987, 1988; Chidambarrao et al., 1997),

where partitioning of elastic strains in finite-element models of

fully anisotropic crystallites was described. We prefer this

approach rather than that of spherical anisotropic grains

embedded in an isotropic continuum (Ruppersberg et al.,

1989; Krier et al., 1991), since the FEM code computes posi-

tion-dependent Heyn stresses and strains, as well as plastic

strain distributions, if any, resulting from the ‘compatible’

deformation of the total aggregate, and enforces compliance

with both the equations of (static) equilibrium and the

compatibility conditions. In the current study we used the

ABAQUS/CAE suite (Dassault Systèmes) to model un-

textured polycrystalline single-phase Cu and W, and two-

phase Cu–W polycrystalline slabs (W and Cu are insoluble in

each other; Vijayakumar et al., 1988), under free and

constrained thermal expansion. Relevant material properties

are listed in Table 1. As shown by its Zener index ZI, Cu is

highly anisotropic. The elastic response of stand-alone W

grains is essentially isotropic. Thus, this selection covers most

of the elastic anisotropy range for (cubic) metals.
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Table 1
Zener indices ZI, stiffness matrix components Cij, average elastic moduli
E and �, and coefficients of thermal expansion for the materials used in
our FEM models.

Cij are in units of GPa, E in GPa and CTE values in 1/�C. F.c.c denotes face-
centred cubic and b.c.c. denotes body-centred cubic.

Material Structure ZI C11 C12 C44 E � CTE � 106

Cu F.c.c. 3.20 168.4 121.4 75.4 112 0.34 16.7
W B.c.c. 1.00 501 198 151.4 385 0.27 4.6



The single-phase slab models consisted of 400 hexagonal

prism-shaped anisotropic grains arranged in a 20 � 20 � 1

matrix [Fig. 1(a)]. For the two-phase models the mesh

contained 676 grains distributed (almost) equally between the

phases. In both cases these (anisotropic) hexagonal grains

were complemented by partial grains at the edges [shaded

grey in Fig. 1(a)] to obtain a smooth boundary. The partial

grains had isotropic elastic moduli equal to the bulk moduli of

the modelled material. We used C3D20 elements (20-node

linear brick with 27 integration points) for discretization. Each

grain was meshed with 540 elements: 48 elements (24 � 2) for

the top and bottom surfaces, 300 elements (50 � 6) for side

facets, and 192 elements fully internal within each grain. Each

grain was ten elements thick. The grain thickness (ten FEM

units) was equal to the maximum diameter of the (hexagonal)

base. All grain surfaces were connected to each other with tie

constraints. To prevent global displacement of the model,

explicit equation constraints were used. Thus, the model

describes a static single-layer polycrystalline slab with iden-

tical quasi-equiaxial grains rigidly bonded across the

congruent grain surfaces.

Homogeneous temperature fields were applied over the

entire model to induce thermal strains. Since the coefficient of

thermal expansion is isotropic in cubic materials, free expan-

sion of these models did not induce interaction stresses

between grains. To induce elastic strain fields we used

symmetric distributed constraints to fix the boundaries in the

plane of the slab. Thus, the mesh was placed under an isotropic

compressive far-field plane stress state upon heating. For all

models the ABAQUS rate-independent isotropic plasticity

model was used, with uniaxial yield points of 245 and 750 MPa

for for Cu and W phases, respectively. Each grain was assigned

its own (maximum) Schmid factor computed from its crystal-

lographic orientation in the sample coordinate system. Any

grain within which the total stresses (far-field plus Heyn)

reached the Mises yield surface deformed plastically. We did

not implement strain hardening since our model was limited to

small (< 0.3%) plastic strains.

To specify the crystallographic directions coincident with

the axes of the sample coordinate system for crystallites

diffracting into a given hkl reflection for various  angles we

used the formalism described by Song & Noyan (1996). Since

the diffraction vector q = hx + ky + lz is defined in the sample

coordinate system, where x, y, z are the unit vectors along ~PPi,

the crystallographic vector a1x + b1y + c1z along ~PP1 for any  
(for � = 0) is given by

cosð90�  Þ ¼
ha1 þ kb1 þ lc1

ðh2 þ k2 þ l2Þ
1=2
ða2

1 þ b2
1 þ c2

1Þ
1=2
: ð10Þ

This equation can be solved numerically for the indices a1, b1

and c1 to obtain various vectors along ~PP1. The crystallographic

vectors along ~PP2 and ~PP3 can then be defined by taking the cross

products of q and ~PP1 and, once this is done, of ~PP1 and ~PP2,

respectively.

In the present study, these calculations were carried out for

the 222, 200 and 420 reflections for eight  angles between 0

and 71.57�. We selected grains to yield reasonably uniform in-

plane orientations around the diffraction vector for each  
angle, thus approximating a virtual fibre texture ensemble for

each  angle. In the model we define a ‘ ensemble’, with

volume Vhkl
 and population Nhkl

 , as the set of grains

diffracting into a given hkl reflection at a given  tilt.

Reflection ensembles, with populations Nhkl, refer to the total

number of grains scattering at all modelled  tilts for a given

reflection. Since the volume of each grain is the same, the

volume and number fractions f hkl
V 

and fhkl are identical for  
volume and reflection ensembles, respectively. Actual grain

distribution parameters for all three reflections are shown in

Table 2.

These grains were placed randomly in the mesh. The direct-

space locations of grain populations for these three reflections

are shown in Fig. 4. The strain tensors measured by diffraction

for these populations would be associated with the coordi-

nates of the centre of gravity of the relevant ensembles ( 
volumes or reflection volumes, respectively).

We note that, while in our previous work some grains within

the FEM meshes were non-diffracting (Noyan & Nguyen,

1987, 1988; Song & Noyan, 1996; Chidambarrao et al., 1997),
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Table 2
 ensemble populations Nhkl

 and volume fractions f hkl
V 

for the three
reflections in the mesh.

Total reflection ensemble populations N hkl and their (number) fractions f hkl

are given in the last column.

 angle (�) Totals
N hkl,
f hkl0 18.43 26.57 33.21 39.23 45 56.79 71.57

N200
 16 16 14 14 15 17 17 12 121

f 200
V 

0.040 0.040 0.035 0.035 0.038 0.043 0.043 0.030 0.303

N222
 18 18 18 17 16 18 18 17 140

f 222
V 

0.045 0.045 0.045 0.043 0.040 0.045 0.045 0.043 0.35

N420
 18 18 17 16 18 18 17 17 139

f 420
V 

0.045 0.045 0.043 0.040 0.045 0.045 0.043 0.043 0.348

Figure 4
Spatial distribution of the grains scattering into different hkl reflections in
the mesh. These ‘reflection volumes’ Vhkl

M are discontinuous in direct
space. Colours indicate the  angles at which the diffraction condition
would be satisfied for the particular reflection. For each reflection, grains
of a given colour constitute a ‘ ensemble’ with volume Vhkl

 and
population Nhkl

 .



all complete grains in the current models are accessible by

diffraction. This approach was chosen so that diffraction

stress/strain averages over the entire model could be

computed and compared with direct-space values. This

approach also enabled us to check whether the average

stresses determined from diffraction analysis satisfied the

average equilibrium conditions reported previously (Noyan,

1983b).

5. FEM results

5.1. Single-phase models

5.1.1. Unconstrained heating. We first simulated uncon-

strained expansion of the single-phase models consisting of W

or Cu grains subjected to uniform temperature increases.

These models served as initial tests of our model.

Direct-space analysis. Since the slabs were free to expand

along the sample axes, ~PPi (i = 1–3), at all points and the CTEs

of both W and Cu are isotropic, the distribution of thermal

strains "Th
ij in the mesh must also be isotropic, and no inter-

action strains, on any scale, should occur. Consequently,

thermal strains at any point "Th
ij ðQÞ within such models should

be independent of position and equal to the strain within an

equivalent isotropic sample, "0;t
ij = �t�T (t = Cu, W). The

average strain tensor h"ijiV computed for any node or volume

element within a model, or over the entire model, should also

be equal to "0;t
ij ,

"Th
ij ðQÞ ¼ h"iji

t
n ¼ h"iji

t
 ¼ "

t
ij ¼ "

0;t
ij ¼

"Th;t 0 0

0 "Th;t 0

0 0 "Th;t

2
4

3
5:
ð11aÞ

Here, h"iji
t
n and h"iji

t
 denote the average strains, in the P

coordinate system, for the nth grain and for the grain set

diffracting at a given  value of phase t, respectively.

Since all terms of the strain tensor shown in equation (11a)

are thermal eigenstrains (Mura, 2013), the local and average

stress components at all scales discussed above must be zero,

�Th
ij ðQÞ ¼ h�iji

t
n ¼ h�iji

t
 ¼ �

t
ij ¼ �

0;t
ij ¼

0 0 0

0 0 0

0 0 0

2
4

3
5: ð11bÞ

In both cases, finite-element simulations yielded the

expected local and average strain and stress values. These

average values had zero dispersion, indicating that all nodes

and all grains had the same thermal strains and were stress

free.

Diffraction analysis. We computed the "033 versus sin2  
plots for all modelled reflections from the average strains in

the diffracting crystallites for the particular  volumes. These

were all straight lines with zero slopes (Fig. 5), indicating that

diffraction stress analysis would have yielded zero stress

[equation (8e)] irrespective of the diffraction elastic constants

used in the analysis (Tables 3 and 4). In summary, our

unconstrained thermal expansion models of Cu and W

samples yielded the predicted stress/strain states, indicating

that there were no basic problems with the FEM mesh. In the

second set of simulations, stresses were induced in the slabs

through constrained thermal expansion.

5.1.2. In-plane constrained heating. In these models we

specified homogeneous displacement constraints at the model

boundaries in the slab plane and

applied uniform temperature fields.

Thermal expansion in the grains could

only occur normal to the slab surface
~PP3; the in-plane displacements were

kept at zero by reaction forces distrib-

uted uniformly over the model

boundaries. We first report results from

the W model; in this case the expected

strain/stress states could be analytically

predicted.

(a) Single-phase W slabs. Since all W

grains are isotropic in both elastic and

thermal response (Nye, 1985), the

elastic moduli at all points within

the model will be independent of

orientation and all points will undergo
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Table 3
Diffraction elastic constants (TPa�1) of W calculated from single-crystal
stiffness values (Table 1) using various approaches; these values are
independent of reflection since W crystals are isotropic in elastic loading.

Reuss Voigt Kröner Neerfeld–Hill

��/E 0.70 0.70 0.70 0.70
(1 + �)/E 3.30 3.30 3.30 3.30

Table 4
Diffraction elastic constants (TPa�1) for an untextured Cu polycrystalline
sample, calculated from single-crystal stiffness values at various limits.

hkl Reuss Voigt Kröner Neerfeld–Hill

��/E 200 6.28 2.24 3.73 4.26
��/E 222 1.40 2.24 1.93 1.82
��/E 420 3.94 2.24 2.87 3.09
(1 + �)/E 200 21.28 9.17 13.63 15.23
(1 + �)/E 222 6.65 9.17 8.24 7.86
(1 + �)/E 420 14.26 9.17 11.04 11.73

Figure 5
Computed h"033i versus sin2  plots for all grains contributing to the 200 reflections of (a) W and (b)
Cu models heated without boundary constraint for �T = 70�C. Strain values for all grains diffracting
at all  angles are identical and fall on top of each other. Identical plots were obtained for all
reflections of each material.



identical displacements in response to heating. Thus, the local

strain tensor at any point Q within the W model is expected to

be homogeneous with the form

"ij

� �
Q;W
¼

0 0 0

0 0 0

0 0 "33

2
4

3
5: ð12Þ

The total lattice strain ("ij)Q,W along the sample normal ~PP3 at

any node Q in the W mesh is the sum of two components: an

elastic strain ð"B:C:
33 ÞQ caused by the boundary constraint in the

plane of the slab, plus the thermal strain "Th,W due to the

temperature increase. From basic elasticity analysis we obtain

"B:C:
33

� �
Q;W
¼

2�

ð1� �Þ
"Th;W; ð13aÞ

"33ð ÞQ;W¼ "
Th;W ð1þ �Þ

ð1� �Þ
; ð13bÞ

�ij

� �
Q;W
¼

�E "Th;W=ð1� �Þ 0 0

0 �E "Th;W=ð1� �Þ 0

0 0 0

2
4

3
5:
ð14Þ

Direct-space analysis. The stress and strain values in the

sample coordinate system, computed using these equations for

our W model, are listed in Table 5 for a temperature increase

of 70�C. The corresponding results from the FEM analysis are

also included. We observed excellent agreement between the

values obtained from the FEM simulation and the analytical

computations. As expected, the FEM simulation yielded

isotropic stress and strain distributions within the model

volume; all average stresses and strains were identical to their

local (node) values, independent of the type of averaging and

the size and location of the averaging volume, and all exhib-

ited zero dispersion. Since the induced stresses are much lower

than the uniaxial yield point of W, there was no plastic flow in

this model.

Diffraction analysis. The stresses in the sample coordinate

system were also calculated by simulating and analysing h"033i 
versus sin2 graphs (Fig. 6) for all reflections. In all cases these

plots were linear with identical slopes. The in-plane strain/

stress values computed from these slopes using equations (8c)

and (8e) were identical to the predictions of the analytical

computations [equations (13a), (13b) and (14)] and to the

direct-space results from the FEM simulation. Since our

numerical results agreed completely with the isotropic linear

elasticity analysis, we concluded that our model was mathe-

matically sound. We then extended this approach to model the

strain/stress distribution in an ideal Cu slab by substituting Cu

stiffness parameters and the Cu CTE in the model definition;

all other parameters were unchanged.

(b) Single-phase Cu slabs. In the Cu model the distribution

of elastic moduli in the sample coordinates is heterogeneous.

Thus, the constraint stresses imposed by the fixed boundaries

in the plane of the slab during heating will cause Heyn strains/

stresses to arise within the model. These local values were

computed by FEM at the node scale. We used these local
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Table 5
Stress and strain tensors for the edge-constrained W thin-slab model heated to 70�C, obtained from analytical formulations [equations (13a), (13b) and
(14)], and direct-space and diffraction averages computed from FEM.

Parameter Equations (13a), (13b) and (14) ABAQUS/CAE X-ray diffraction analysis

Thermal strain "Th,W (m")
345 0 0

0 345 0

0 0 345

2
4

3
5 345 0 0

0 345 0

0 0 345

2
4

3
5 �

Boundary constraint strain, "B:C:
ij (m")

�345 0 0

0 �345 0

0 0 255

2
4

3
5 � �

Total strain ("Th
W þ "

B:C:
ij ); h"iji (m")

0 0 0

0 0 0

0 0 600

2
4

3
5 0 0 0

0 0 0

0 0 600

2
4

3
5 0 0 0

0 0 0

0 0 600

2
4

3
5

Stress �ij; h�iji (MPa)
�182 0 0

0 �182 0

0 0 0

2
4

3
5 �182 0 0

0 �182 0

0 0 0

2
4

3
5 �182 0 0

0 �182 0

0 0 0

2
4

3
5

Figure 6
Computed h"033i versus sin2  plot for all grains contributing to the 200
reflections of the edge-constrained W model subjected to a temperature
increase of 70�C. For each  angle, all grains in the diffraction condition
had identical h"033i . The exact same plot was obtained for all W
reflections.



values to compute average stress/strain tensors for individual

grains and for various volumes of interest. We also computed

the expected stress/strain states in an equivalent isotropic Cu

slab [equations (13a), (13b) and (14)] using macroscopic

values for Cu Young’s modulus and Poisson’s ratio. In this

model, to avoid plastic flow, we specified a 25�C temperature

increase.

Direct-space analysis. In Figs. 7(a)–7(d) the distributions of

grain-averaged out-of-plane strains h"33iu (u = 1 to N) for the

entire mesh and for the particular reflection volumes are

plotted. Strain components h"11i, h"22i and h"12i had similar

distributions. Shear strains h"13i and h"23i were negligible.

Average values and dispersion parameters for elastic strains

h"iji are listed in the top half of Table 6. The mesh and

reflection averages of all strain components are within 50 m" of

the values predicted for an equivalent isotropic Cu slab.

For most strain distributions Shapiro–Wilk and Kolmo-

gorov–Smirnov tests could not reject normality at the 0.05

level (Razali & Wah, 2011). Thus, in general, the Heyn inter-

action strains are normally distributed. This was expected:

each Vhkl
� has a finite number of grains Nhkl

� and each grain is

modelled with a very large number of nodes. Thus the strain

within the nth grain will be a mean value h"033inhkl
� 

taken over

all these nodes, with a deviation 
"033nhkl
� 

. The grain-averaged

strains h"033inhkl
� 

are then averaged again to obtain the  
volume average h"033iVhkl

� 
. Thus, in the absence of systematic
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Figure 7
Distributions of direct-space out-of-plane grain-averaged normal strain h"33ii within the plane-constrained Cu mesh subjected to a 25�C temperature
increase. (a) The entire mesh, (b), (c) and (d) subset distributions for the 200, 222 and 420 reflection volumes, respectively.

Figure 8
Cumulative direct-space averages of strain components (a) h"11iN, h"12iN and h"22iN, and (b) h"33iN with number of grains N, randomly selected from the
constrained Cu mesh heated by 25�C. The horizontal dashed lines show the overall mesh averages. The vertical error bars on the far right in each plot
span one standard deviation



partitioning of strains between grains in a  volume, the

central limit theorem predicts that the distribution of h"033iVhkl
� 

must be Gaussian if enough nodes and enough grains are

sampled (Fox, 2015). In the bottom half of Table 6 the stress

distribution parameters are listed. The stress and strain

distributions were very similar.

The two halves of Table 6 show that in direct space all three

reflection volumes are, individually, larger than RVEDS for this

model since they yield average values equal to the mesh

averages. To determine the minimum number of grains

constituting an RVEDS we used a random number generator

to select grains while monitoring the (running) average strain

and stress values of the cumulative ensemble. Results for

selected strains are shown in Figs. 8(a) and 8(b). Between 30

and 40 grains are sufficient to obtain the mesh average within

one standard deviation; this number is comparable to our

experimental results for plastic strains in Pb–Sn solders

(Bonda & Noyan, 1992, 1996).

The cumulative averages of the (finite) stress components

exhibit similar behaviour (Fig. 9). Thus, for the current model,

any direct-space RVE needs to contain approximately 35

grains in the plane of the sample. Since our model contains 400
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Table 6
Distribution parameters for (top part) direct-space strain and (bottom
part) stress components induced in the boundary-constrained Cu mesh
for �T = 25�C for various volumes.

Average values are highlighted in bold. SD denotes standard deviation. The
‘Range’ parameter encompasses the entire distribution breadth.

Strain component (m")

Approach Parameter "11 "22 "33 "12 "13 "23

Isotropic slab Equations (13a)
and (13b)

0 0 848 0 0 0

ABAQUS/CAE
Full mesh (400 grains) Average 5 3 884 �3 0 0

SD 9 9 11 3 0 0
Median 1 �4 872 �1 0 0
Range 486 461 466 248 1 1

200 (121 grains) Average 44 �38 889 0 0 0
SD 9 8 12 3 0 0
Median 52 �48 861 1 0 0
Range 469 398 433 226 1 1

222 (140 grains) Average �30 45 872 �5 0 0
SD 7 9 12 3 0 0
Median �37 59 858 �1 0 0
Range 345 382 453 213 0 1

420 (139 grains) Average 5 �4 890 �5 0 0
SD 8 8 11 3 0 0
Median 10 �4 888 �4 0 0
Range 465 429 454 208 0 1

Stress component (MPa)

Approach Parameter �11 �22 �33 �12 �13 �23

Isotropic slab Equation (14) �74 �74 0 0 0 0
ABAQUS/CAE
Full mesh (400 grains) Average �76 �74 0 0 0 0

SD 10 10 5 5 0 0
Median �76 �74 0 0 0 0
Range 43 50 26 28 0 0

200 (121 grains) Average �76 �74 0 0 0 0
SD 10 10 5 5 0 0
Median �76 �74 0 0 0 0
Range 43 50 26 28 0 0

222 (140 grains) Average �75 �78 1 �1 0 0
SD 9 10 5 5 0 0
Median �74 �78 0 0 0 0
Range 38 47 24 23 0 0

420 (139 grains) Average �76 �74 0 �1 0 0
SD 10 9 5 5 0 0
Median �76 �74 �1 �1 0 0
Range 40 42 21 28 0 0

Figure 9
Cumulative direct-space average in-plane normal stresses with number of
grains randomly selected from the constrained Cu mesh heated by 25�C.
The horizontal dashed line shows the expected stress for an equivalent
isotropic slab. The vertical error bar on the far right spans one standard
deviation.

Figure 10
h"033i versus sin2  plots for the 200, 222 and 420 reflections for the in-plane constrained single-phase Cu mesh heated by 25�C. At each  angle, strain
values for all diffracting grains are shown. For all plots the dashed line connects the average strain values (included to guide the eye). The green solid
straight lines depict least-squares fits.



grains, it is approximately one order of magnitude larger than

RVEDS.

Diffraction analysis. Comparing Tables 2 and 6 we observe

that, while all three reflection volumes are significantly larger

than the direct-space RVE, individual  volumes for each

reflection are smaller, each having, on average, half of the

grains needed for RVEDS. To investigate how this deficiency

N < NRVE-DS impacted the diffraction stress results, we

simulated the h"033i versus sin2  plots for all three reflections

and used the standard sin2  analysis based on equation (8e)

to compute the in-plane stresses in the sample coordinates.

The computed h"033i versus sin2  plots are shown in Fig. 10.

Both the 200 and 222 reflections exhibit slight deviations from

linearity. These deviations are more pronounced for the 222

reflection. We used linear regression to fit straight lines to

these plots (solid green lines) and utilized the fitted line slopes

with the Cu Neerfeld–Hill and Kröner diffraction moduli

(Table 4) to obtain the in-plane stresses. These results are

shown in Table 7, along with the stress values computed for

the isotropic equivalent slab using equation (14) for compar-

ison. We observe reasonable agreement within statistical

uncertainty, indicating that, even when each  volume is

somewhat smaller than the direct-space RVE, the overall

research papers

J. Appl. Cryst. (2023). 56, 1144–1167 Seren, Pagan and Noyan � Strain/stress fields measured by diffraction 1157

Table 7
In-plane average stresses for the boundary-constrained Cu mesh (�T =
25�C) obtained from slopes of regression-fitted lines to the data shown in
Fig. 10.

The stress values for the equivalent isotropic slab were computed using
equation (14) with bulk elastic moduli, yielding �11 = �22 = �74 MPa.

Diffraction analysis, h�11i
hkl (MPa)

Reflection At Neerfeld–Hill limit At Kröner limit

200 �71 � 4 �80 � 5
222 �84 � 8 �81 � 7
420 �84 � 3 �89 � 3

Figure 11
Distributions of in-plane and out-of plane direct-space grain-averaged strains h"11ii and h"33ii within the entire Cu mesh when the temperature is
increased by 70�C. (a), (b) Elastic strain components and (c), (d) plastic strain components.

Table 8
Distribution parameters for mesh-averaged strain and stress components
for the edge-constrained polycrystalline Cu model for �T = 70�C.

Average values are highlighted in bold. SD denotes standard deviation. The
‘Range’ parameter encompasses the entire distribution breadth.

"pl
11 "pl

22 "pl
33 "pl

12 "pl
13 "pl

23

Plastic
strain
(m")

FEM Average �674 �659 1333 6 0 0
SD 344 350 655 231 0 2
Median �637 �610 1253 �11 0 0
Range 2308 1886 3332 1979 3 10

"el
11 "el

22 "el
33 "el

12 "el
13 "el

23

Elastic
strain
(m")

FEM Average 653 640 1959 0 0 0
SD 249 226 312 34 0 0
Median 682 653 1890 �1 0 0
Range 1108 1146 1238 236 0 1

Equations
(13a) and (13b)

0 0 2543 0 0 0

�11 �22 �33 �12 �13 �23

Stress
(MPa)

FEM Average �105 �105 �1 0 0 0
SD 10 9 4 5 0 0
Median �106 �106 0 0 0 0
Range 54 54 22 28 0 0

Equation (14) �222 �222 0 0 0 0



stress value computed by analysing all the  volumes together

is acceptable if (i) the total reflection volume is much greater

than the RVE and (ii) the distribution of Heyn stresses is

random in all grains of all  volumes. The bottom half of

Table 6 also shows that the ‘fit errors’ of the computed stresses

obtained from regression analysis do not adequately reflect

the direct-space dispersion of direct-space stress values.

The closeness of the stress values computed from equation

(14) to the stresses obtained from simulated diffraction

analysis also indicates that our model is a good approximation

of a random polycrystalline slab. Consequently, formulations

based on texture-induced elastic anisotropy in thin-film

geometries, such as the Vook–Witt or inverse Vook–Witt

approaches (Vook & Witt, 1965; Witt & Vook, 1968; Welzel &

Fréour, 2007; Welzel et al., 2006), are not applicable for our

models.

(c) Effects of plastic deformation in the single-phase Cu

model. Here the (undeformed) Cu mesh was subjected to a

70�C temperature increase. The total stresses caused by the

constrained in-plane thermal expansion induced (hetero-

geneous) plastic flow in all grains.

Direct-space analysis. Table 8 lists the direct-space mesh

averages and their dispersion parameters for plastic strains,

elastic strains and stresses. While the Cu slab is still subjected

to far-field isotropic compressive plane stresses due to

boundary constraints, the average stress magnitude in the slab

is approximately half of the value predicted by fully elastic

solutions [equation (14)] due to plastic flow. The mesh-aver-

aged plastic and elastic strains are comparable in magnitude,

with plastic strains having much wider distributions. The

shapes of these strain distributions, however, are different:

while normality could not be rejected for plastic strain

distributions, elastic strain distributions failed both normality

tests (Fig. 11). On the other hand, the RVEDS values obtained

for elastic or plastic strains (Fig. 12) are very close (35

grains) and are similar to the RVEDS obtained for the elastic

loading of the Cu mesh, indicating that plastic flow of this

magnitude (< 0.3%) does not significantly impact the number

of grains constituting a representative volume element for

single-phase Cu.

Diffraction analysis. h"033i versus sin2  plots computed for

this model are shown in Fig. 13 for all three reflections. The

plots for the 200 and 222 reflections exhibit significantly larger

nonlinearities than the elastic model, even though the overall

forms are similar. These oscillations cannot be attributed to

changes in texture or elastic anisotropy, since these para-

meters are identical to their values for the fully elastic case.

The deviations from linearity are also much larger than any
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Figure 12
The variation in cumulative average (a) elastic and (b) plastic strains with number of grains randomly selected from the edge-constrained polycrystalline
Cu model for �T = 70�C. The vertical error bars on the far right span one standard deviation (�1

2STD).

Figure 13
h"033i versus sin2  plots for the 200, 222 and 420 reflections for the in-plane constrained single-phase Cu mesh heated by 70�C. At each  angle, strain
values for all diffracting grains are plotted. The dashed lines connect average strain values (included to guide the eye). The green solid straight lines
depict least-squares fits.



statistical (random) scatter expected in the data; the average

strain components for many  volumes are further out from

the regression fit line than the full data spread for the parti-

cular  volume. We note that elastic anisotropy should not

have caused oscillations in the 200 and 222 reflections if the

global Reuss assumption were valid (Noyan & Cohen, 1987).

Table 9 shows that the in-plane stress values computed from

linear regression analysis of these plots using the Neerfeld–

Hill and Kröner diffraction moduli do not agree with either

the overall mesh average or the direct-space average stress

components for the grain subsets contributing to these

reflections;2 stresses computed with DEC values at the Voigt

and Reuss limits would have yielded much larger errors. We

also observe that linearity of a h"033i versus sin2  plot does

not guarantee accuracy; the most ‘linear’ plot, corresponding

to the 420 reflection, which has the smallest ‘fit’ errors, exhibits

similar stress differences from the mesh average to the

nonlinear (‘oscillatory’) plots for the 200 and 222 reflections.

We conclude that, for single-phase non-textured poly-

crystals, non-random distribution of Heyn stresses in diffrac-

tion volumes is the most probable cause of systematic errors in

diffraction stress analysis, since this is the only difference

between our elastic and elasto-plastic Cu models. To investi-

gate further the effects of systematic partitioning of such

strains and stresses among diffraction volumes, we modelled

the free thermal expansion of a W–Cu slab heated to �T =

70�C. Here the mutual constraint between Cu and W grains is

expected to cause residual stresses balanced between the two

phases. In this exercise we also checked whether elastic

anisotropy of the constituent crystallites is the main driver of

oscillations. If this were the case, direct-space and diffraction

average stress values should be comparable.

5.2. Unconstrained thermal expansion in a two-phase (Cu–
W) slab model

Direct-space analysis. This model consisted of 676 hexa-

gonal grains in a single-layer 26�26 matrix, with 352 elasto-

plastic Cu grains and 324 fully elastic W grains randomly

placed in the mesh and connected to each other across rigid

boundaries normal to the slab plane. The slab boundaries were

free to expand in all three directions. This model was subjected

to a uniform temperature increase of �T = 70�C, and relevant

stress and strain parameters were obtained from the

(converged) finite-element solution. In this model plastic flow

was confined to the softer Cu phase. This plastic strain

distribution is summarized in Table 10. Most of the plastic flow

is accommodated by in-plane shear strains.

Table 11 lists the direct-space elastic strains and stresses

averaged over the entire mesh and its two phases. These

residual stresses formed in response to the systematic parti-

tioning of plastic flow between grains of the two phases. As

required by the (unconstrained) far-field slab boundary

conditions, all average stress tensor components for the

complete mesh are zero. The average normal stresses h�iii and

the in-plane shear stress h�12i have very broad distributions.

The magnitudes of the out-of-plane shear stresses/strains h�j3i

and h"j3i (j = 1, 2) are very close to zero with very narrow

distributions; these terms are neglected in the following

discussion.

The distributions for the average stress and strain compo-

nents over the entire mesh are not Gaussian. A representative

example is shown in Fig. 14(a). RVE analysis showed that

500 randomly picked grains are needed before the cumula-

tive stress averages converge to the mesh averages [Fig. 14(b)].

This is more than an order of magnitude larger than the RVE

for the single-phase Cu model. In direct space the stress and

elastic strain distributions for the Cu phase (which suffered

plastic flow) are close to normal (Gaussian) distributions

[Fig. 14(c)]. The corresponding terms for the (fully elastic) W

phase are not normally distributed [Fig. 14(e)]. RVE analysis

showed that approximately 200 and 300 grains are required for

the in-plane stress averages to reach the phase-averaged stress

values for the Cu and W phases, respectively [Figs. 14(d) and

14( f)]. Since W is isotropic, the broad stress/strain distribu-

tions in the W phase are caused solely by local constraint of

the Cu phase.

The stress values in Table 11 show that, in contrast to the

single-phase models, where the mesh was under plane stress,

the average stress tensors for the Cu and W phases are

triaxial,3 with all normal stress components having the same
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Table 9
In-plane average stresses h�11ihkl obtained from slopes of regression-
fitted lines to the data shown in Fig. 13 with Neerfeld–Hill and Kröner
diffraction moduli (Table 4).

The standard errors shown in parentheses are ‘regression-fit’ errors. The FEM
yielded �11 = �22 = �105 MPa.

Diffraction analysis, h�11i
hkl (MPa)

Reflection At Neerfeld–Hill limit At Kröner limit

200 �140 � 20 �156 � 22
222 �88 � 17 �84 � 17
420 �126 � 4 �134 � 5
Average of reflections �118 � 9 �125 � 9

Table 10
Average plastic strain components (in microstrain) for the Cu phase of
the two-phase model for �T = 70�C; there was no plastic flow in the W
grains.

Parameter h"11i
pl
Cu h"22i

pl
Cu h"33i

pl
Cu h"12i

pl
Cu h"13i

pl
Cu h"23i

pl
Cu

Average �5 2 4 �14 3 1
Standard deviation 13 54 55 167 3 1
Maximum 84 187 365 798 15 4
Minimum �58 �394 �222 �668 �1 �1

2 For the 200, 222 and 420 reflection volumes, the direct-space in-plane average
stress values h�11ihkl ffi h�22ihkl computed from the FEM output were
�105 � 10, �105 � 10 and �106 � 9 MPa, respectively.

3 While the average in-plane stresses are equal in each phase, h�11it and h�22it
(t = Cu, W), the average phase stresses h�33it along ~PP3 are approximately half
of the in-plane stress values. Since the film is unconstrained at both top and
bottom surfaces (normal to ~SS3), h�33it can only exist as a gradient along this
axis, locally zero at each surface and locally balanced along the thickness by
the variation in shear stress components.



sign for a given phase (compressive and tensile, respectively).

Further, all average stress components h�iiit (t = Cu, W) satisfy

the equilibrium condition for average phase stresses (Noyan,

1983b),

X
t

fth�iiit ¼ 0: ð15Þ

Here the average shear stresses normal to the surface, h�i3it

(i = 1, 2), are not included in the summation due to their

negligible magnitudes.

In summary, direct-space analysis of the stresses within the

grains of the two-phase model showed that while, as dictated

by the conditions of equilibrium, the overall stress is zero,

individual phases have triaxial average stress states which

balance each other. Given the distributions in Fig. 14, average
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Figure 14
Distributions of the in-plane grain-averaged stress component h�22i for (a) the entire Cu–W model and (c), (e) its constituent phases, Cu and W,
respectively. The red dashed line in panel (c) is a Gaussian regression fit, included to guide the eye. (b), (d), ( f ) The corresponding representative volume
element analysis results. In these plots the solid bars on the far right depict one standard deviation of h�22i after the running average has stabilized.



stresses are quite inadequate to capture the stress state of the

overall system or the distribution of local stresses. Conse-

quently, direct-space free-body diagrams which contain

material volumes � RVEDS are inadequate to represent the

internal stress distributions within such systems.

Diffraction analysis. The variation in grain-averaged strains

h"033i
t;hkl
i (t = Cu, W) with sin2  for the 200 reflections of W and

Cu is shown in Figs. 15(a) and 15(c), respectively. The solid

lines in these plots show the linear regression fits, while the

dashed lines connect the average strain values at each  and
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Figure 15
The variation in grain-averaged strains h"033i

ph;hkl
i with sin2  for the 200 reflections of (a) W and (c) Cu in the W–Cu composite subjected to a 70�C

temperature increase. The dashed lines in these plots connect the average strain values and are included to guide the eye. Solid lines are from linear
regression analysis. (b) and (d) Plots of only  volume averaged strains h"033i

ph;200
 . Solid lines are from linear regression analysis for these average values.

Table 11
Model parameters (number of grains Ni and volume fractions fi) and average elastic strain and stress components for the full model and its two phases.

Average stress values are highlighted in bold. SD denotes standard deviation. The ‘Range’ parameters show the total distribution breadth. Out-of plane shear
components h"i3i and h�i3i (i 6¼ 3) had negligible magnitudes and breadths; these are omitted for brevity.

Strain (m") Stress (MPa)

Parameter h"11i h"22i h"33i h"12i h�11i h�22i h�33i h�12i

Full mesh, N = 676 Average �57 �56 40 4 0 0 0 0
SD 205 207 78 61 55 55 27 28
Median �12 �15 25 0 �11 -5 -3
Range 1340 1121 613 610 272 257 108 112

Cu phase, NCu = 352, fCu = 0.52 Average �167 �173 72 �2 �43 �44 �23 �1
SD 212 206 83 48 24 24 13 23
Median �166 �185 66 �1 �46 �44 �21
Range† 1340 1121 613 427 136 131 65 101

W phase, NW = 324, fW = 0.48 Average 63 75 �1 6 47 48 26 1
SD 108 103 39 73 38 34 9 34
Median 59 59 0 2 43 42 26
Range 651 519 208 610 212 173 52 203

P
ph fphh�iiiph Equilibrium condition test for average stresses 0.2 0.2 0.5

† The ranges for the entire mesh and for the Cu phase are equal for normal strains since the maximum and minimum strains occur in Cu grains.



are included to guide the eye. In Figs. 15(b) and 15(d),  
volume averaged strains h"033i

t;200
 versus sin2  and linear fits

to these average values are plotted; the error bars span one

standard deviation. We note that, for both phases, the  -

averaged data, which are the quantities measured by diffrac-

tion, do not adequately reflect the dispersion of the individual

grain-averaged strains.

Taken together, Figs. 14 and 15 show that neither the

distribution breadths of grain-averaged strains along various

directions nor the ‘linearities’ of h"033i
t;hkl
 versus sin2  plots

are strongly correlated with the Zener indices ZI of the phases

from which they originate. The linearities of h"033i
t;hkl
 versus

sin2  (t = Cu, W) plots were comparable for all modelled

reflections. In addition, deviations of the average strain values

from their real-space counterparts were not correlated with

either the indices of particular reflections or the ZI of the

particular phase.

Table 12 lists the slopes and intercepts obtained from linear

regression analysis of the average grain data for both phases

h"033i
t
i; versus sin2  (t = W, Cu). For the 200 reflections of both

phases, slopes and intercepts obtained from fitting the  -

averaged strain data [Figs. 15(b) and 15(d)] are also reported.

The values in parentheses for mt
hkl and It

hkl correspond to

standard errors reported by the regression fitting program. For

the 200 reflections, using the average strain data for each  
volume significantly reduces the standard errors associated

with m
ph
hkl and I

ph
hkl . In the last two columns of Table 12 we list

the stress values h�11i
ph
hkl and h�33i

ph
hkl calculated from equation

(8c) using DEC values at the Kröner limit. The tabulated

stress uncertainties were obtained by error propagation.

The (direct-space) reflection-average stresses obtained

directly from the finite-element model (Table 11) and from the

simulated diffraction analysis (Table 12, last two columns)

show agreement in the sign of the stress values for both

phases: both techniques yield compressive residual stresses for

the Cu phase and tensile stresses for the W phase. The

computed stress magnitudes, on the other hand, show devia-

tions – most average diffraction stress values are about half of

the corresponding real-space averages. The discrepancies

between direct-space and diffraction-based stress values could

have been much worse: under normal experimental circum-

stances one would have used the biaxial h"033i
t
�; versus sin2  

equation [equation (8e)] for analysis, not the triaxial one

[equation (8c)], since the slab is only one grain thick. For such

a case the stress components h�11i
ph
hkl computed using only the

slopes would have had deviations from the direct-space values

equal in magnitude to the h�33i
ph
hkl components (Noyan &

Cohen, 1987).

The uncertainty values of the diffraction-based stress results

obtained by fitting the  average strain data h"033i
t
 (t = W, Cu)

are much smaller than those obtained from fitting the indivi-

dual grain values (Fig. 15). Since, in actual experiments, only

 -averaged strain data are available, regression analysis

underestimates the uncertainty associated with the computed

stress values. Finally, even though the  -averaged phase strain

h"033i
t
 data shown in Figs. 15(b) and 15(d) seem ‘linear’,

omission of a few data points can yield significantly different

slopes and intercepts. For example, if only the first five points

in the W plots [Figs. 15(a) and 15(b)] were used, the slope

would have been close to zero, yielding a very low stress value.

Thus, these plots should not be considered ‘linear’. We

conclude that the elastic anisotropy of the unit cell is not

always the sole cause, or even the primary cause, of non-

linearities in h"033i versus sin2  data.

6. Discussion

The basic theoretical development [equations (1a)–(12)]

shows that, within an ROI of a statistically homogeneous

untextured polycrystalline body, the equivalence of an elastic

(Cauchy) stress tensor measured with mechanical techniques

and the tensor measured by diffraction is possible if and only if

both sampling adequacy and strain uniformity conditions are

satisfied:

(i) Sampling adequacy condition: measurement domain(s)

utilized for both techniques are representative elements of the

entire ROI with respect to physical properties.

(ii) Stress uniformity condition: the total volumes of these

measurement domains for each technique, respectively, can be

represented by free-body elements with identical uniform

traction distributions on their boundaries.

(Both of these conditions are trivially satisfied in homo-

geneous solid continua loaded uniformly at the far field.)

Even when these conditions are satisfied, the requirements

for representative volume elements are different for direct-

space and diffraction techniques. The average elastic moduli

ERVE and �RVE, and stress rRVE and strain ���RVE values for any

direct-space RVEDS must be identical to their corresponding

values for a material point within an equivalent isotropic solid

loaded at the far field with stress tensor r0. For diffraction

measurements based on equations (8a)–(8e), all subsets of the

reflection volume Vhkl utilized in an experiment must possess

homogeneous distributions of the average elastic moduli and

stress and strain tensors. In addition, if Vhkl is to be considered
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Table 12
Slopes and intercepts [equation (8e)] obtained from regression analysis,
and reflection-average stresses computed from these values, for the Cu
and W phases of the Cu–W slab heated by 70�C.

For the 200 reflection of both phases, regression results obtained from fitting
the  average strain h"033i

ph
 data are also shown. Standard errors reported by

the regression program are shown in parentheses. The corresponding error
values for the computed stresses were obtained by error propagation.

Phase
(t) Reflection

mt
hkl

(m")
It

hkl

(m")
h�11i

t
hkl

(MPa)
h�33i

t
hkl

(MPa)

t = Cu 200 h"033i
t
i �123 (57) 42 (27) �19 (13) �10 (13)

200 h"033i
t
 �77 (7) 26 (3) �12 (2) �7 (1)

222 h"033i
t
 �49 (13) 4 (2) �14 (2) �8 (2)

420 h"033i
t
 �61 (11) 4 (3) �19 (2) �14 (2)

t = W 200 h"033i
t
i 23 (93) 6 (45) 20 (50) 13 (41)

200 h"033i
t
 48 (15) 7 (5) 37 (7) 23 (5)

222 h"033i
t
 101 (21) �10 (8) 58 (10) 27 (8)

420 h"033i
t
 92 (14) �1 (4) 60 (6) 32 (4)



a diffraction representative volume RVEhkl
diff, the average

diffraction stress tensor, computed with Neerfeld–Hill or

Kröner DEC, must be equal to the far-field stress tensor:

rhkl ¼ r0, i.e. the average of all Heyn stresses must be statis-

tically equal to zero within the fibre-textured discontinuous

volume RVEhkl
diff.

To investigate the effects of elastic and plastic strain

distributions in a set of fully coupled anisotropic crystallites on

the relevant representative volume elements we used FEM

analysis. Our first three models contained isotropic stress and

strain distributions. For single-phase Cu and W polycrystalline

slab models (Models 1 and 2, respectively) subjected to

unconstrained thermal expansion and a W polycrystalline slab

subjected to constrained thermal expansion (Model 3), the

direct-space strain/stress tensors computed at finite-element

nodes or elements, or averaged over various material volumes,

were identical. The h"033i versus sin2  plots computed from

diffracting grains at the modelled  angles were exactly linear

and yielded strain/stress values identical to the direct-space

analysis.

A polycrystalline Cu slab subjected to constrained thermal

expansion was studied in Model 4. In this case local stresses/

strains developed to keep the grain boundaries compatible in

response to the uniform stress exerted at the (far-field)

boundary. These Heyn stresses/strains were approximately

randomly distributed within the model and were self-

balancing: they averaged out to zero over the entire mesh, and

over representative volume elements. A simple statistical

analysis showed that a minimum of approximately 35 grains

(10% of the mesh population) were required in direct space

for the interaction stresses/strains to average out. Thus, all

volumes containing 35 grains or more could be considered

direct-space representative volume elements and replaced by

a material point in an equivalent isotropic Cu slab.

The presence of Heyn strains caused slight deviations from

linearity in h"033i versus sin2  plots for all reflections

modelled in the analysis, since the  volumes over which

strains were averaged at each tilt angle were smaller than the

RVE required to average out the interaction strain compo-

nents. However, since the distributions of the interaction

strains were random with tilt angle, linear regression analysis

based on a biaxial stress state model [equation (8e)] yielded

average in-plane stress values acceptably close to those

computed for an equivalent isotropic Cu slab heated by 25�C

with in-plane boundary constraint. We note here that, in

minimizing deviations from the model, simple linear regres-

sion of h"033i versus sin2  plots assumes implicitly that all  
volumes are of similar magnitude and contain similar numbers

of similarly sized grains. Thus, all data points (and their errors

as applicable) are given equal weight. This was the case for our

model. If some  volumes are much smaller than others (due

to texture or a grain size distribution with long tails) their

deviation from linearity in response to a far-field traction

might be large. In such cases a weighted regression model

might be used. However, it might not be justified to use Bragg

peak intensities as weights in this case. If there is a distribution

of grain sizes in the diffracting volume, the integrated or

maximum peak intensities might not accurately reflect the

volume fraction of diffracting grains (Noyan & Kaldor, 2004).

In our next model (Model 5), the same Cu mesh as utilized

in Models 2 and 4 was heated under in-plane boundary

constraint to �T = 70�C. This caused plastic flow in all Cu

grains, with compressive in-plane plastic strains. Plastic strains

normal to the slab plane were tensile. This level of plastic flow

did not change the number of grains constituting a direct-

space RVE; averaging over 35 to 40 random grains was suffi-

cient to reach the mesh averages of elastic and plastic strain, as

well as of stress components. The direct-space mesh-averaged

in-plane stress components �11 and �22 were approximately

half of the stress expected for a fully elastic model due to

plastic relaxation. The out-of plane stress component �33 was

negligible. The direct-space stress averages of individual

reflection volumes were very close to the overall mesh

averages. In this model, while plastic strains exhibited quasi-

Gaussian distributions, the distributions of the elastic strains in

the Cu grains were no longer Gaussian.

For this model, h"033i versus sin2  plots for all reflections

exhibited statistically significant nonlinearities. Diffraction

stress analysis using simple linear regression of the h"033i 
versus sin2  plots yielded stress values which deviated by

more than one standard deviation from the direct-space stress

averages of the corresponding reflection volumes. Arithmetic

averages of the stress values for the three reflections, which

constitute almost the entire mesh volume, did not show better

agreement. The only difference between this Cu model and

Models 2 and 3 (free expansion of Cu mesh, and biaxial elastic

loading of Cu mesh by uniform edge constraint, respectively;

all three models were based on the same mesh, with identical

grain locations, shapes and orientations) is the non-random

distribution of Heyn interaction strains in the Cu grains due to

plastic flow. We conclude that, if the distribution of elastic

strains in the constituent grains is non-random, even a ‘linear-

seeming’ h"033i versus sin2  plot of a particular reflection can

yield stress values which are not equal to the direct-space far-

field loads or to the (arithmetic) average stress components in

the corresponding reflection volumes. This is expected, since

regression analysis assumes that the means of (random) errors

are zero and no systematic errors are present (Fox, 2015;

Seber & Wild, 2003; Seber, 2015).

Our final model (Model 6) consisted of heating a two-phase

Cu–W slab with free boundaries to �T = 70�C. In this case

there were no boundary (far-field) stresses. There were,

however, significant heterogeneous stress and strain fields

within the slab caused by the mutual constraint of Cu and W

grains arising from their different CTEs; the W grains

constrained the Cu grains from achieving their free-body

dimensions at the higher temperature and placed them in

compression, while the Cu grains pulled on the less-expanding

W grains and placed them in tension. The degree of

compression caused plastic flow in Cu, while the W grains

were fully elastic. In this system the direct-space RVEs

required approximately ten times more grains than the single-

phase models. Diffraction stress analysis using simulated

h"033i versus sin2  plots yielded stress values with the correct
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sign for all reflections of both phases. The stress magnitudes,

however, did not show good agreement with the direct-space

averages, similar to the case for Model 5 where plastic flow was

also finite.

For this two-phase model, the phase-average stresses

obtained from diffraction analysis could not be assigned to

direct-space ‘equivalent isotropic volumes’ of the corre-

sponding phases due to the broad stress/elastic strain distri-

butions. In fact, one could not even predict the (average)

stress state within a given grain of a particular phase from the

phase-average stresses: in our model some grains in Cu had

tensile stresses and some in the W phase had compressive

stresses.

Mechanical methods such as hole drilling or sectioning,

which sample volumes � RVEDS, will yield a zero stress field

in such (two-phase) samples since they lack phase specificity.

However, such a result does not represent the true stress

distribution within the material. For such samples it would be

better to use both mechanical and diffraction methods.

7. Summary and conclusions

Our results show that the main difference in measuring resi-

dual stresses using mechanical or single-reflection-based

diffraction methods stems from the very different volumes

sampled, and averaged over, by the respective probes. In

almost all cases, both the geometry and the topology of the

sampled volumes are different. The diffraction techniques

take multiple averages at each stage of the measurement, with

each average assigning different ‘weights’ to the averaged

parameters. First, a Bragg peak at a given  tilt yields the

average lattice parameter, and hence strain, over those grains

oriented to diffract at the particular  angle for the particular

reflection; the strains within each such grain are also averages

over the respective grain volume. Second, when one then uses

classical linear regression to refine the strain tensor employing

the average strains referred to the  volumes utilized in the

measurement, one usually assigns equivalent weights to all

strain values, intimating that all  volumes contain compar-

able grain populations. This final ‘reflection average’ origi-

nates from only a fraction of the illuminated volume. Thus, the

average stress tensor computed from a single reflection

average may or may not be equal to the far-field stress tensor

of the ROI. This depends on the partitioning of elastic strains

between different texture groups. Asserting, without proof,

that the measured rhkl is identical to the far-field stress r0 at

ROI boundaries might lead to wrong conclusions.

In practice, most diffraction strain experiments are time

constrained and aim to use the fewest possible measurements

to obtain a usable result. If the goal is to identify Saint-Venant

regions or other ROIs where rapid changes in stress/strain

occur, this can be accomplished by simply mapping the

average diffraction strain h"033i at a particular  tilt for a

number of direct-space locations within the particular ROI

before undertaking a full stress measurement. For ROIs with

homogeneous strain distributions, such as regions AR2 and BR2

in Fig. 16(b) (Appendix B), h"033i will be (statistically) inde-

pendent of position. If this is not the case, one can then adjust

the X-ray spot size to achieve homogeneity. Such strain maps,

when combined with metallographic grain size analysis and

texture measurements, can be used to guide further stress

measurements. In contrast to stress analysis, strain values

obtained by diffraction can be very accurate and precise

(Noyan et al., 2020) since, for strain mapping, one does not

need to combine interpenetrating volumes for the tensor

transformations required for stress analysis.

If the goal is to obtain residual stress values which are

identical to those from mechanical measurements, one must

ensure that diffraction strains are measured over a repre-

sentative volume of the entire ROI. This requires measure-

ment of multiple reflections, each with as many  tilts as

practically feasible. If the measured d versus sin2  or h"033i 
versus sin2  plots are linear (regular) for all reflections, and

yield the same stress value with appropriate DEC, there is at

least some indication that the sampled reflection volumes

represent a direct-space RVE. This equality is a necessary but

insufficient condition. Such validation is especially important

in samples where systematic partitioning of elastic (and

plastic) strains is possible (e.g. samples subjected to directional

deformation, multi-phase samples or textured thin films). If

systematic deviations from linearity are observed for any

reflection, diffraction analysis must be supplemented by

further analysis, including metallography, texture measure-

ments, polycrystalline finite-element models and mechanical

(relaxation) measurements. Curve fitting of diffraction data

using formalisms based solely on elastic anisotropy should be

avoided; elastic anisotropy of the unit cell is not always the

sole cause, or even the primary cause, of nonlinearities in

h"033i versus sin2  data.

APPENDIX A
Linear elasticity analysis

Linear elasticity theory is a special case of continuum-

mechanics elasticity analysis, which provides a simple and

useful mathematical model capable of describing fully rever-

sible (elastic) deformation of a wide range of solid bodies

under load. This approach is used extensively in structural

analysis and engineering design; it is often implemented within

numerical approaches such as finite-difference, finite-element

or mean-field methods. In addition to being limited to elastic

deformation, this approach assumes infinitesimal displace-

ments and neglects rotations. These assumptions permit the

use of linear (constitutive) relationships between the compo-

nents of stress and strain tensors which describe the distri-

bution of deformation and load within the solid volume.

Since almost all residual stress analysis formalisms utilize

linear elasticity theory for computing residual stresses from

(measured) displacements or elastic strain values, we include a

very basic review of the definitions in this approach following

the treatment of Eringen (1980, 1975).
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A1. Description of solid continua

In continuum mechanics a solid body B is assumed to have a

continuous distribution of matter at all scales. This assumption

implies that the constituent material is infinitely subdividable

and, in a homogeneous body at the infinitesimal limit, all

(approximately zero-dimensional) material volumes have

identical physical properties. These ‘material points’ {Q0} are

elements of the set constituting B. Each material point Q0 is

associated with a geometric point Q which can be defined by

its coordinates in a metric space, such as a coordinate manifold

in Euclidian three space. Thus, the (geometric) point Q is the

place occupied by the material point Q0. Neglecting rigid-body

translations/rotations, the deformation of a continuum is

characterized by the changes in the position of every material

point in response to applied loads and/or tractions. In the

literature, the coordinates for the deformed body are called

spatial or Eulerian, whereas the coordinates in the un-

deformed (natural) state are termed material or Lagrangian.

These coordinates are used, respectively, to define Eulerian

and Lagrangian strain tensors.

A2. Definition of strain at a point

Consider the deformation/distortion of a continuum solid

body by the application of external (surface) loads and/or

tractions. If the displacement of any point within the body

from its initial position is infinitesimally small, the geometry

and material parameters (such as elastic moduli, density etc.)

at each material point can be considered independent of

deformation. Also, since for infinitesimal displacements the

displacement gradient is much smaller than unity, ru� 1, it

can be shown that the Lagrangian and Eulerian strain tensors

E* and e, respectively, are approximately the same, and equal

to the (infinitesimal) Cauchy strain tensor """ with components

"ij ¼
1

2
ðui;j þ uj;iÞ: ð16Þ

Here "ij is a symmetric second-rank tensor and the comma

between the subscripts indicates the partial derivative along

the xj axis. Once "ij have been determined at a point Q for a

given coordinate system xi , the strains "0ij for any other coor-

dinate system x0i can be obtained from the transformation law

for second-rank tensors (Nye, 1985),

"0ij ¼ aikajl"kl: ð17Þ

Here, aij are direction cosines linking the coordinate systems xi

and x0i, and summation over repeated indices (Einstein nota-

tion) is indicated.

We note that since, for infinitesimal displacements, E*’ e’

""" for all points Q, any differences in the material and spatial

coordinates of a given material point in the continuum are

negligible. Consequently, in what follows we will not distin-

guish spatial (geometric) and material points, and simply use

‘points’ at which all parameters of interest are defined. Note

that a geometric point in a ‘continuum material’ is not

equivalent to a geometric point in a crystalline solid. In the

latter case the (geometric) point might fall on or between

(Bohr) atoms, and the stress and strain definitions used here

will not be applicable (Xiong et al., 2019).

The components of the Cauchy strain tensor cannot take

arbitrary values. Equation (16) defines a system of six differ-

ential equations for the specification of three displacement

components ui. In order to ensure single-valued continuous

displacement functions within the continuum (required to

avoid gaps and/or overlaps of the material within the body),

the (infinitesimal) strain terms "ij must satisfy the Saint-

Venant compatibility equations (Eringen, 1980),

"ij;kl þ "kl;ij � "lj;ik � "ik;jl ¼ 0: ð18Þ

The compatibility condition can cause large differences in

the strain state of a crystallite embedded in an aggregate

compared with the same crystallite by itself, even if the far-

field stresses are the same in both cases.

A3. Definition of stress at a point

The total force in a cross section of the body, divided by the

particular cross-sectional area, is termed mean (or nominal)

stress. This parameter is of limited utility since, for the general

loading case, internal forces (and moments) can vary from

point to point. Consequently, local stresses defined at points

must be used.

Consider a continuous body at static equilibrium with an

arbitrary set of surface forces F. Within the entire body,

internal contact forces and moments are transmitted from

point to point such that local and global compatibility condi-

tions are satisfied. Let A be an imaginary surface dividing the

(continuous) body into two segments and containing the

internal point Q. Using the Euler–Cauchy principle, the force

distribution on an element of area �A containing Q with

normal vector n is equivalent to a contact (surface) force �F

exerted at Q and surface moment �M. Neglecting body forces,

this contact force is given by

�F ¼ TðnÞ�A; ð19Þ

where T(n) is the mean surface traction.

Cauchy’s stress principle asserts that as �A tends to zero

the surface moment �M vanishes and the mean surface

traction T(n) tends to the stress vector TðnÞ ¼ T
ðnÞ
i xi at the point

Q associated with a plane with normal vector n,

T
ðnÞ
i ¼ lim

�A!0

�Fi

�A
¼

dFi

dA
: ð20Þ

Here xi is the unit vector along Cartesian coordinate xi (i = 1 to

3) of n and �Fi is the contact force component along xi .

Cauchy’s stress theorem states that at any point within the

solid body there exists a symmetric second-rank tensor field,

called the Cauchy stress tensor, such that T(n) is a linear

function of n,

TðnÞ ¼ n � r � T
ðnÞ
j ¼ �ijni; ð21Þ

where �ij are the components of the (symmetric) Cauchy stress

tensor (�ij = �ji).

Equation (22) indicates that the stress vector T(n) at any

point P in a solid continuum associated with a plane with
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normal unit vector n can be expressed as a function of the

stress vectors on the planes perpendicular to the coordinate

axes xi, i.e. in terms of the components �ij of the stress tensor

r. The components of the stress tensor �0ij for any other

coordinate system x0i can then be obtained from the transfor-

mation law for second-rank tensors,

�0ij ¼ aikajl�kl: ð22Þ

For continuum bodies in static equilibrium the components

of the Cauchy stress tensor must satisfy the conditions of

equilibrium

�ij;j þ Fi ¼ 0 ð23Þ

at every point within the body and

�ijnj ¼ Fi ð24Þ

at all points on the surface of the body.

A4. Linear constitutive equations

In linear elasticity theory for homogeneous (continuum)

solids, the strains induced in the body are linearly related to

the stresses caused by applied loads/tractions through Hooke’s

law (Nye, 1985),

�ij ¼ Cijkl"kl; ð25aÞ

"ij ¼ Sijkl�kl; ð25bÞ

where Cijkl and Sijkl are the stiffness and compliance tensors,

respectively, of the material. Both Cijkl and Sijkl are fourth-

rank symmetric tensors. Note that, while the forms of the

stiffness and compliance tensors depend on the symmetry of

the unit cell of a solid (if any), Cauchy stress and strain tensors

and Hooke’s law cannot be applied directly to a single unit cell

since a unit cell is not a continuum.

If the material is an isotropic continuum, with elastic

properties independent of position or direction within the

material (translational and rotational invariance, spherical

symmetry), the Cijkl and Sijkl tensors have only two unique

terms and the material has the same stiffness in all directions.

In this case Hooke’s law [equations (25a) and (25b)] is greatly

simplified:

�ij ¼
E

1þ �
"ij þ

�E

ð1þ �Þ ð1� 2�Þ

ij"kk; ð26aÞ

"ij ¼
1þ �

E
�ij �

�

E

ij�kk; ð26bÞ

where E and � denote Young’s modulus and Poisson’s ratio,

respectively, of the (isotropic) material, and 
ij is Kronecker’s

delta.

In anisotropic single crystals some crystal directions in the

solid can be much stiffer than others. For cubic crystals the

effective Young modulus (stiffness) along any crystal direction

[hkl] can be expressed as

1

Ehkl

¼ S1111 � 2 ðS1111 � S1122Þ � 2S2323

� 	 h2k2 þ k2l2 þ l2h2

ðh2 þ k2 þ l2Þ
2


 �
:

ð27Þ

Here, the compliance terms are referred to the unit-cell

coordinate system along the h00li axes. If the term in the

brackets is zero, i.e. [(S1111 � S1122) � 2S2323] = 0, the stiffness

of the cubic crystal is independent of crystal direction and the

material exhibits an isotropic elastic response. This same term,

re-arranged, is the Zener anisotropy index, ZI = (S1111 �

S1122)/2S2323.

APPENDIX B
Definition of free-body diagrams in Saint-Venant
regions

When boundary effects are present, local stress/strain values

may depend on position within the specimen, even for a

microstructurally homogeneous material. An example is

shown in Fig. 16, where isochromatic stress contours in a

homogeneous acrylic cylinder placed under compression by a

C-clamp are shown. This system of C-clamp and cylinder

contains residual stresses; the compressive stresses in the

cylinder are balanced by the stresses in the C-clamp. Regions
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Figure 16
(a) Isochromatic contours in a homogeneous acrylic cylinder compressed
by a C-clamp. Regions R1 and R3 have Saint-Venant stresses and strains
due to imperfections in the clamp surfaces. Region R2 has a homogeneous
stress/strain distribution. (b) Idealized free-body diagrams of these
regions, each with two regions of interest (green dashed squares). While
one can infer the boundary stresses acting on the free-body diagrams of
AR2
� BR2

from nominal stresses at the cylinder boundary, this is not
possible for those in R1 and R3.



R1 and R3 have Saint-Venant stresses and strains due to

imperfections of the clamp surfaces, while region R2 has a

homogeneous stress/strain distribution. Idealized free-body

diagrams of these regions, each with two (example) ROIs A

and B, are shown in Fig. 16(b). In region R2 the average

stresses are equal to the local stresses; ROIs AR2 and BR2

possess identical stress states, which are equal to the far-field

stresses at the boundaries of R2. This applies to any ROI of

any size, including material points, within R2. For the Saint-

Venant regions R1 and R3, the (average) stress state within any

ROI depends on its position and its size.
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Şeren, M. H. (2021). PhD thesis, Columbia University, USA.
Song, Y. & Noyan, I. (1996). Philos. Mag. A, 73, 1105–1112.
Taira, S., Hayashi, K. & Urakawa, N. (1971). J. Jpn. Inst. Metals, 35,

189–196.
Toupin, R. A. (1965). Arch. Ration. Mech. Anal. 18, 83–96.
Vel, S. S., Cook, A. C., Johnson, S. E. & Gerbi, C. (2016). Comput.

Methods Appl. Mech. Eng. 310, 749–779.
Vijayakumar, M., Sriramamurthy, A. & Nagender Naidu, S. V. (1988).

Calphad, 12, 177–184.
Vook, R. & Witt, F. (1965). J. Vac. Sci. Technol. 2, 49–57.
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